annotate data/model/FFTModel.cpp @ 301:73537d900d4b

* Add MIDI file export (closes FR#1643721)
author Chris Cannam
date Thu, 04 Oct 2007 11:52:38 +0000
parents c022976d18e8
children aa8dbac62024
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@297 18 #include "AggregateWaveModel.h"
Chris@152 19
Chris@183 20 #include "base/Profiler.h"
Chris@275 21 #include "base/Pitch.h"
Chris@183 22
Chris@152 23 #include <cassert>
Chris@152 24
Chris@152 25 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 26 int channel,
Chris@152 27 WindowType windowType,
Chris@152 28 size_t windowSize,
Chris@152 29 size_t windowIncrement,
Chris@152 30 size_t fftSize,
Chris@152 31 bool polar,
Chris@152 32 size_t fillFromColumn) :
Chris@152 33 //!!! ZoomConstraint!
Chris@152 34 m_server(0),
Chris@152 35 m_xshift(0),
Chris@152 36 m_yshift(0)
Chris@152 37 {
Chris@297 38 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
Chris@297 39
Chris@297 40 m_server = getServer(model,
Chris@297 41 channel,
Chris@297 42 windowType,
Chris@297 43 windowSize,
Chris@297 44 windowIncrement,
Chris@297 45 fftSize,
Chris@297 46 polar,
Chris@297 47 fillFromColumn);
Chris@152 48
Chris@200 49 if (!m_server) return; // caller should check isOK()
Chris@200 50
Chris@152 51 size_t xratio = windowIncrement / m_server->getWindowIncrement();
Chris@152 52 size_t yratio = m_server->getFFTSize() / fftSize;
Chris@152 53
Chris@152 54 while (xratio > 1) {
Chris@152 55 if (xratio & 0x1) {
Chris@152 56 std::cerr << "ERROR: FFTModel: Window increment ratio "
Chris@152 57 << windowIncrement << " / "
Chris@152 58 << m_server->getWindowIncrement()
Chris@152 59 << " must be a power of two" << std::endl;
Chris@152 60 assert(!(xratio & 0x1));
Chris@152 61 }
Chris@152 62 ++m_xshift;
Chris@152 63 xratio >>= 1;
Chris@152 64 }
Chris@152 65
Chris@152 66 while (yratio > 1) {
Chris@152 67 if (yratio & 0x1) {
Chris@152 68 std::cerr << "ERROR: FFTModel: FFT size ratio "
Chris@152 69 << m_server->getFFTSize() << " / " << fftSize
Chris@152 70 << " must be a power of two" << std::endl;
Chris@152 71 assert(!(yratio & 0x1));
Chris@152 72 }
Chris@152 73 ++m_yshift;
Chris@152 74 yratio >>= 1;
Chris@152 75 }
Chris@152 76 }
Chris@152 77
Chris@152 78 FFTModel::~FFTModel()
Chris@152 79 {
Chris@200 80 if (m_server) FFTDataServer::releaseInstance(m_server);
Chris@152 81 }
Chris@152 82
Chris@297 83 FFTDataServer *
Chris@297 84 FFTModel::getServer(const DenseTimeValueModel *model,
Chris@297 85 int channel,
Chris@297 86 WindowType windowType,
Chris@297 87 size_t windowSize,
Chris@297 88 size_t windowIncrement,
Chris@297 89 size_t fftSize,
Chris@297 90 bool polar,
Chris@297 91 size_t fillFromColumn)
Chris@297 92 {
Chris@297 93 // Obviously, an FFT model of channel C (where C != -1) of an
Chris@297 94 // aggregate model is the same as the FFT model of the appropriate
Chris@297 95 // channel of whichever model that aggregate channel is drawn
Chris@297 96 // from. We should use that model here, in case we already have
Chris@297 97 // the data for it or will be wanting the same data again later.
Chris@297 98
Chris@297 99 // If the channel is -1 (i.e. mixture of all channels), then we
Chris@297 100 // can't do this shortcut unless the aggregate model only has one
Chris@297 101 // channel or contains exactly all of the channels of a single
Chris@297 102 // other model. That isn't very likely -- if it were the case,
Chris@297 103 // why would we be using an aggregate model?
Chris@297 104
Chris@297 105 if (channel >= 0) {
Chris@297 106
Chris@297 107 const AggregateWaveModel *aggregate =
Chris@297 108 dynamic_cast<const AggregateWaveModel *>(model);
Chris@297 109
Chris@297 110 if (aggregate && channel < aggregate->getComponentCount()) {
Chris@297 111
Chris@297 112 AggregateWaveModel::ModelChannelSpec spec =
Chris@297 113 aggregate->getComponent(channel);
Chris@297 114
Chris@297 115 return getServer(spec.model,
Chris@297 116 spec.channel,
Chris@297 117 windowType,
Chris@297 118 windowSize,
Chris@297 119 windowIncrement,
Chris@297 120 fftSize,
Chris@297 121 polar,
Chris@297 122 fillFromColumn);
Chris@297 123 }
Chris@297 124 }
Chris@297 125
Chris@297 126 // The normal case
Chris@297 127
Chris@297 128 return FFTDataServer::getFuzzyInstance(model,
Chris@297 129 channel,
Chris@297 130 windowType,
Chris@297 131 windowSize,
Chris@297 132 windowIncrement,
Chris@297 133 fftSize,
Chris@297 134 polar,
Chris@297 135 fillFromColumn);
Chris@297 136 }
Chris@297 137
Chris@152 138 size_t
Chris@152 139 FFTModel::getSampleRate() const
Chris@152 140 {
Chris@152 141 return isOK() ? m_server->getModel()->getSampleRate() : 0;
Chris@152 142 }
Chris@152 143
Chris@152 144 void
Chris@182 145 FFTModel::getColumn(size_t x, Column &result) const
Chris@152 146 {
Chris@183 147 Profiler profiler("FFTModel::getColumn", false);
Chris@183 148
Chris@152 149 result.clear();
Chris@152 150 size_t height(getHeight());
Chris@152 151 for (size_t y = 0; y < height; ++y) {
Chris@152 152 result.push_back(const_cast<FFTModel *>(this)->getMagnitudeAt(x, y));
Chris@152 153 }
Chris@152 154 }
Chris@152 155
Chris@152 156 QString
Chris@152 157 FFTModel::getBinName(size_t n) const
Chris@152 158 {
Chris@152 159 size_t sr = getSampleRate();
Chris@152 160 if (!sr) return "";
Chris@204 161 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 162 return name;
Chris@152 163 }
Chris@152 164
Chris@275 165 bool
Chris@275 166 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
Chris@275 167 {
Chris@275 168 if (!isOK()) return false;
Chris@275 169
Chris@275 170 size_t sampleRate = m_server->getModel()->getSampleRate();
Chris@275 171
Chris@275 172 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 173 frequency = (float(y) * sampleRate) / fftSize;
Chris@275 174
Chris@275 175 if (x+1 >= getWidth()) return false;
Chris@275 176
Chris@275 177 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 178 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 179 // At window size w, for bin b, f is b*sr/w.
Chris@275 180 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 181 // We need to know what phase shift we expect from h/sr sec.
Chris@275 182 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 183 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 184 // = 2pi * (h * b) / w.
Chris@275 185
Chris@275 186 float oldPhase = getPhaseAt(x, y);
Chris@275 187 float newPhase = getPhaseAt(x+1, y);
Chris@275 188
Chris@275 189 size_t incr = getResolution();
Chris@275 190
Chris@275 191 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
Chris@275 192
Chris@275 193 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 194
Chris@275 195 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
Chris@275 196
Chris@275 197 // The new frequency estimate based on the phase error resulting
Chris@275 198 // from assuming the "native" frequency of this bin
Chris@275 199
Chris@275 200 frequency =
Chris@275 201 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@275 202 (2 * M_PI * incr);
Chris@275 203
Chris@275 204 return true;
Chris@275 205 }
Chris@275 206
Chris@275 207 FFTModel::PeakLocationSet
Chris@275 208 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
Chris@275 209 {
Chris@275 210 FFTModel::PeakLocationSet peaks;
Chris@275 211 if (!isOK()) return peaks;
Chris@275 212
Chris@275 213 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 214 ymax = getHeight() - 1;
Chris@275 215 }
Chris@275 216
Chris@275 217 Column values;
Chris@275 218
Chris@275 219 if (type == AllPeaks) {
Chris@275 220 for (size_t y = ymin; y <= ymax; ++y) {
Chris@275 221 values.push_back(getMagnitudeAt(x, y));
Chris@275 222 }
Chris@275 223 size_t i = 0;
Chris@275 224 for (size_t bin = ymin; bin <= ymax; ++bin) {
Chris@275 225 if ((i == 0 || values[i] > values[i-1]) &&
Chris@275 226 (i == values.size()-1 || values[i] >= values[i+1])) {
Chris@275 227 peaks.insert(bin);
Chris@275 228 }
Chris@275 229 ++i;
Chris@275 230 }
Chris@275 231 return peaks;
Chris@275 232 }
Chris@275 233
Chris@275 234 getColumn(x, values);
Chris@275 235
Chris@275 236 // For peak picking we use a moving median window, picking the
Chris@275 237 // highest value within each continuous region of values that
Chris@275 238 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 239 // size to a roughly constant pitch range (about four tones).
Chris@275 240
Chris@275 241 size_t sampleRate = getSampleRate();
Chris@275 242
Chris@275 243 std::deque<float> window;
Chris@275 244 std::vector<size_t> inrange;
Chris@280 245 float dist = 0.5;
Chris@280 246 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@275 247 size_t halfWin = medianWinSize/2;
Chris@275 248
Chris@275 249 size_t binmin;
Chris@275 250 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 251 else binmin = 0;
Chris@275 252
Chris@275 253 size_t binmax;
Chris@275 254 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 255 else binmax = values.size()-1;
Chris@275 256
Chris@275 257 for (size_t bin = binmin; bin <= binmax; ++bin) {
Chris@275 258
Chris@275 259 float value = values[bin];
Chris@275 260
Chris@275 261 window.push_back(value);
Chris@275 262
Chris@280 263 // so-called median will actually be the dist*100'th percentile
Chris@280 264 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 265 halfWin = medianWinSize/2;
Chris@275 266
Chris@275 267 while (window.size() > medianWinSize) window.pop_front();
Chris@275 268
Chris@275 269 if (type == MajorPitchAdaptivePeaks) {
Chris@275 270 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 271 else binmax = values.size()-1;
Chris@275 272 }
Chris@275 273
Chris@275 274 std::deque<float> sorted(window);
Chris@275 275 std::sort(sorted.begin(), sorted.end());
Chris@280 276 float median = sorted[int(sorted.size() * dist)];
Chris@275 277
Chris@275 278 if (value > median) {
Chris@275 279 inrange.push_back(bin);
Chris@275 280 }
Chris@275 281
Chris@275 282 if (value <= median || bin+1 == values.size()) {
Chris@275 283 size_t peakbin = 0;
Chris@275 284 float peakval = 0.f;
Chris@275 285 if (!inrange.empty()) {
Chris@275 286 for (size_t i = 0; i < inrange.size(); ++i) {
Chris@275 287 if (i == 0 || values[inrange[i]] > peakval) {
Chris@275 288 peakval = values[inrange[i]];
Chris@275 289 peakbin = inrange[i];
Chris@275 290 }
Chris@275 291 }
Chris@275 292 inrange.clear();
Chris@275 293 if (peakbin >= ymin && peakbin <= ymax) {
Chris@275 294 peaks.insert(peakbin);
Chris@275 295 }
Chris@275 296 }
Chris@275 297 }
Chris@275 298 }
Chris@275 299
Chris@275 300 return peaks;
Chris@275 301 }
Chris@275 302
Chris@275 303 size_t
Chris@280 304 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
Chris@280 305 size_t bin, float &percentile) const
Chris@275 306 {
Chris@280 307 percentile = 0.5;
Chris@275 308 if (type == MajorPeaks) return 10;
Chris@275 309 if (bin == 0) return 3;
Chris@280 310
Chris@275 311 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 312 float binfreq = (sampleRate * bin) / fftSize;
Chris@275 313 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 314
Chris@275 315 int hibin = lrintf((hifreq * fftSize) / sampleRate);
Chris@275 316 int medianWinSize = hibin - bin;
Chris@275 317 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 318
Chris@280 319 percentile = 0.5 + (binfreq / sampleRate);
Chris@280 320
Chris@275 321 return medianWinSize;
Chris@275 322 }
Chris@275 323
Chris@275 324 FFTModel::PeakSet
Chris@275 325 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
Chris@275 326 size_t ymin, size_t ymax)
Chris@275 327 {
Chris@275 328 PeakSet peaks;
Chris@275 329 if (!isOK()) return peaks;
Chris@275 330 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 331
Chris@275 332 size_t sampleRate = getSampleRate();
Chris@275 333 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 334 size_t incr = getResolution();
Chris@275 335
Chris@275 336 // This duplicates some of the work of estimateStableFrequency to
Chris@275 337 // allow us to retrieve the phases in two separate vertical
Chris@275 338 // columns, instead of jumping back and forth between columns x and
Chris@275 339 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 340
Chris@275 341 std::vector<float> phases;
Chris@275 342 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 343 i != locations.end(); ++i) {
Chris@275 344 phases.push_back(getPhaseAt(x, *i));
Chris@275 345 }
Chris@275 346
Chris@275 347 size_t phaseIndex = 0;
Chris@275 348 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 349 i != locations.end(); ++i) {
Chris@275 350 float oldPhase = phases[phaseIndex];
Chris@275 351 float newPhase = getPhaseAt(x+1, *i);
Chris@275 352 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
Chris@275 353 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 354 float frequency =
Chris@275 355 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 356 / (2 * M_PI * incr);
Chris@275 357 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
Chris@275 358 // if (stable)
Chris@275 359 peaks[*i] = frequency;
Chris@275 360 ++phaseIndex;
Chris@275 361 }
Chris@275 362
Chris@275 363 return peaks;
Chris@275 364 }
Chris@275 365
Chris@152 366 Model *
Chris@152 367 FFTModel::clone() const
Chris@152 368 {
Chris@152 369 return new FFTModel(*this);
Chris@152 370 }
Chris@152 371
Chris@152 372 FFTModel::FFTModel(const FFTModel &model) :
Chris@152 373 DenseThreeDimensionalModel(),
Chris@152 374 m_server(model.m_server),
Chris@152 375 m_xshift(model.m_xshift),
Chris@152 376 m_yshift(model.m_yshift)
Chris@152 377 {
Chris@152 378 FFTDataServer::claimInstance(m_server);
Chris@152 379 }
Chris@152 380