Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@297
|
18 #include "AggregateWaveModel.h"
|
Chris@152
|
19
|
Chris@183
|
20 #include "base/Profiler.h"
|
Chris@275
|
21 #include "base/Pitch.h"
|
Chris@183
|
22
|
Chris@402
|
23 #include <algorithm>
|
Chris@402
|
24
|
Chris@152
|
25 #include <cassert>
|
Chris@152
|
26
|
Chris@152
|
27 FFTModel::FFTModel(const DenseTimeValueModel *model,
|
Chris@152
|
28 int channel,
|
Chris@152
|
29 WindowType windowType,
|
Chris@152
|
30 size_t windowSize,
|
Chris@152
|
31 size_t windowIncrement,
|
Chris@152
|
32 size_t fftSize,
|
Chris@152
|
33 bool polar,
|
Chris@334
|
34 StorageAdviser::Criteria criteria,
|
Chris@152
|
35 size_t fillFromColumn) :
|
Chris@152
|
36 //!!! ZoomConstraint!
|
Chris@152
|
37 m_server(0),
|
Chris@152
|
38 m_xshift(0),
|
Chris@152
|
39 m_yshift(0)
|
Chris@152
|
40 {
|
Chris@297
|
41 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
|
Chris@297
|
42
|
Chris@297
|
43 m_server = getServer(model,
|
Chris@297
|
44 channel,
|
Chris@297
|
45 windowType,
|
Chris@297
|
46 windowSize,
|
Chris@297
|
47 windowIncrement,
|
Chris@297
|
48 fftSize,
|
Chris@297
|
49 polar,
|
Chris@334
|
50 criteria,
|
Chris@297
|
51 fillFromColumn);
|
Chris@152
|
52
|
Chris@200
|
53 if (!m_server) return; // caller should check isOK()
|
Chris@200
|
54
|
Chris@152
|
55 size_t xratio = windowIncrement / m_server->getWindowIncrement();
|
Chris@152
|
56 size_t yratio = m_server->getFFTSize() / fftSize;
|
Chris@152
|
57
|
Chris@152
|
58 while (xratio > 1) {
|
Chris@152
|
59 if (xratio & 0x1) {
|
Chris@152
|
60 std::cerr << "ERROR: FFTModel: Window increment ratio "
|
Chris@152
|
61 << windowIncrement << " / "
|
Chris@152
|
62 << m_server->getWindowIncrement()
|
Chris@152
|
63 << " must be a power of two" << std::endl;
|
Chris@152
|
64 assert(!(xratio & 0x1));
|
Chris@152
|
65 }
|
Chris@152
|
66 ++m_xshift;
|
Chris@152
|
67 xratio >>= 1;
|
Chris@152
|
68 }
|
Chris@152
|
69
|
Chris@152
|
70 while (yratio > 1) {
|
Chris@152
|
71 if (yratio & 0x1) {
|
Chris@152
|
72 std::cerr << "ERROR: FFTModel: FFT size ratio "
|
Chris@152
|
73 << m_server->getFFTSize() << " / " << fftSize
|
Chris@152
|
74 << " must be a power of two" << std::endl;
|
Chris@152
|
75 assert(!(yratio & 0x1));
|
Chris@152
|
76 }
|
Chris@152
|
77 ++m_yshift;
|
Chris@152
|
78 yratio >>= 1;
|
Chris@152
|
79 }
|
Chris@152
|
80 }
|
Chris@152
|
81
|
Chris@152
|
82 FFTModel::~FFTModel()
|
Chris@152
|
83 {
|
Chris@200
|
84 if (m_server) FFTDataServer::releaseInstance(m_server);
|
Chris@152
|
85 }
|
Chris@152
|
86
|
Chris@360
|
87 void
|
Chris@360
|
88 FFTModel::sourceModelAboutToBeDeleted()
|
Chris@360
|
89 {
|
Chris@360
|
90 if (m_sourceModel) {
|
Chris@362
|
91 std::cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << std::endl;
|
Chris@362
|
92 if (m_server) {
|
Chris@362
|
93 FFTDataServer::releaseInstance(m_server);
|
Chris@362
|
94 m_server = 0;
|
Chris@362
|
95 }
|
Chris@360
|
96 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
|
Chris@360
|
97 }
|
Chris@360
|
98 }
|
Chris@360
|
99
|
Chris@297
|
100 FFTDataServer *
|
Chris@297
|
101 FFTModel::getServer(const DenseTimeValueModel *model,
|
Chris@297
|
102 int channel,
|
Chris@297
|
103 WindowType windowType,
|
Chris@297
|
104 size_t windowSize,
|
Chris@297
|
105 size_t windowIncrement,
|
Chris@297
|
106 size_t fftSize,
|
Chris@297
|
107 bool polar,
|
Chris@334
|
108 StorageAdviser::Criteria criteria,
|
Chris@297
|
109 size_t fillFromColumn)
|
Chris@297
|
110 {
|
Chris@297
|
111 // Obviously, an FFT model of channel C (where C != -1) of an
|
Chris@297
|
112 // aggregate model is the same as the FFT model of the appropriate
|
Chris@297
|
113 // channel of whichever model that aggregate channel is drawn
|
Chris@297
|
114 // from. We should use that model here, in case we already have
|
Chris@297
|
115 // the data for it or will be wanting the same data again later.
|
Chris@297
|
116
|
Chris@297
|
117 // If the channel is -1 (i.e. mixture of all channels), then we
|
Chris@297
|
118 // can't do this shortcut unless the aggregate model only has one
|
Chris@297
|
119 // channel or contains exactly all of the channels of a single
|
Chris@297
|
120 // other model. That isn't very likely -- if it were the case,
|
Chris@297
|
121 // why would we be using an aggregate model?
|
Chris@297
|
122
|
Chris@297
|
123 if (channel >= 0) {
|
Chris@297
|
124
|
Chris@297
|
125 const AggregateWaveModel *aggregate =
|
Chris@297
|
126 dynamic_cast<const AggregateWaveModel *>(model);
|
Chris@297
|
127
|
Chris@297
|
128 if (aggregate && channel < aggregate->getComponentCount()) {
|
Chris@297
|
129
|
Chris@297
|
130 AggregateWaveModel::ModelChannelSpec spec =
|
Chris@297
|
131 aggregate->getComponent(channel);
|
Chris@297
|
132
|
Chris@297
|
133 return getServer(spec.model,
|
Chris@297
|
134 spec.channel,
|
Chris@297
|
135 windowType,
|
Chris@297
|
136 windowSize,
|
Chris@297
|
137 windowIncrement,
|
Chris@297
|
138 fftSize,
|
Chris@297
|
139 polar,
|
Chris@334
|
140 criteria,
|
Chris@297
|
141 fillFromColumn);
|
Chris@297
|
142 }
|
Chris@297
|
143 }
|
Chris@297
|
144
|
Chris@297
|
145 // The normal case
|
Chris@297
|
146
|
Chris@297
|
147 return FFTDataServer::getFuzzyInstance(model,
|
Chris@297
|
148 channel,
|
Chris@297
|
149 windowType,
|
Chris@297
|
150 windowSize,
|
Chris@297
|
151 windowIncrement,
|
Chris@297
|
152 fftSize,
|
Chris@297
|
153 polar,
|
Chris@334
|
154 criteria,
|
Chris@297
|
155 fillFromColumn);
|
Chris@297
|
156 }
|
Chris@297
|
157
|
Chris@152
|
158 size_t
|
Chris@152
|
159 FFTModel::getSampleRate() const
|
Chris@152
|
160 {
|
Chris@152
|
161 return isOK() ? m_server->getModel()->getSampleRate() : 0;
|
Chris@152
|
162 }
|
Chris@152
|
163
|
Chris@533
|
164 FFTModel::Column
|
Chris@533
|
165 FFTModel::getColumn(size_t x) const
|
Chris@152
|
166 {
|
Chris@183
|
167 Profiler profiler("FFTModel::getColumn", false);
|
Chris@183
|
168
|
Chris@533
|
169 Column result;
|
Chris@533
|
170
|
Chris@152
|
171 result.clear();
|
Chris@408
|
172 size_t h = getHeight();
|
Chris@509
|
173 result.reserve(h);
|
Chris@408
|
174
|
Chris@408
|
175 float magnitudes[h];
|
Chris@500
|
176
|
Chris@408
|
177 if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) {
|
Chris@500
|
178
|
Chris@408
|
179 for (size_t y = 0; y < h; ++y) {
|
Chris@500
|
180 result.push_back(magnitudes[y]);
|
Chris@408
|
181 }
|
Chris@500
|
182
|
Chris@408
|
183 } else {
|
Chris@408
|
184 for (size_t i = 0; i < h; ++i) result.push_back(0.f);
|
Chris@152
|
185 }
|
Chris@533
|
186
|
Chris@533
|
187 return result;
|
Chris@152
|
188 }
|
Chris@152
|
189
|
Chris@152
|
190 QString
|
Chris@152
|
191 FFTModel::getBinName(size_t n) const
|
Chris@152
|
192 {
|
Chris@152
|
193 size_t sr = getSampleRate();
|
Chris@152
|
194 if (!sr) return "";
|
Chris@204
|
195 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
|
Chris@152
|
196 return name;
|
Chris@152
|
197 }
|
Chris@152
|
198
|
Chris@275
|
199 bool
|
Chris@275
|
200 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
|
Chris@275
|
201 {
|
Chris@275
|
202 if (!isOK()) return false;
|
Chris@275
|
203
|
Chris@275
|
204 size_t sampleRate = m_server->getModel()->getSampleRate();
|
Chris@275
|
205
|
Chris@275
|
206 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
207 frequency = (float(y) * sampleRate) / fftSize;
|
Chris@275
|
208
|
Chris@275
|
209 if (x+1 >= getWidth()) return false;
|
Chris@275
|
210
|
Chris@275
|
211 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
212 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
213 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
214 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
215 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
216 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
217 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
218 // = 2pi * (h * b) / w.
|
Chris@275
|
219
|
Chris@275
|
220 float oldPhase = getPhaseAt(x, y);
|
Chris@275
|
221 float newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
222
|
Chris@275
|
223 size_t incr = getResolution();
|
Chris@275
|
224
|
Chris@275
|
225 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
|
Chris@275
|
226
|
Chris@275
|
227 float phaseError = princargf(newPhase - expectedPhase);
|
Chris@275
|
228
|
Chris@275
|
229 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
|
Chris@275
|
230
|
Chris@275
|
231 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
232 // from assuming the "native" frequency of this bin
|
Chris@275
|
233
|
Chris@275
|
234 frequency =
|
Chris@275
|
235 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
|
Chris@275
|
236 (2 * M_PI * incr);
|
Chris@275
|
237
|
Chris@275
|
238 return true;
|
Chris@275
|
239 }
|
Chris@275
|
240
|
Chris@275
|
241 FFTModel::PeakLocationSet
|
Chris@275
|
242 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
|
Chris@275
|
243 {
|
Chris@275
|
244 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
245 if (!isOK()) return peaks;
|
Chris@275
|
246
|
Chris@275
|
247 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
248 ymax = getHeight() - 1;
|
Chris@275
|
249 }
|
Chris@275
|
250
|
Chris@275
|
251 Column values;
|
Chris@275
|
252
|
Chris@275
|
253 if (type == AllPeaks) {
|
Chris@275
|
254 for (size_t y = ymin; y <= ymax; ++y) {
|
Chris@275
|
255 values.push_back(getMagnitudeAt(x, y));
|
Chris@275
|
256 }
|
Chris@275
|
257 size_t i = 0;
|
Chris@275
|
258 for (size_t bin = ymin; bin <= ymax; ++bin) {
|
Chris@275
|
259 if ((i == 0 || values[i] > values[i-1]) &&
|
Chris@275
|
260 (i == values.size()-1 || values[i] >= values[i+1])) {
|
Chris@275
|
261 peaks.insert(bin);
|
Chris@275
|
262 }
|
Chris@275
|
263 ++i;
|
Chris@275
|
264 }
|
Chris@275
|
265 return peaks;
|
Chris@275
|
266 }
|
Chris@275
|
267
|
Chris@533
|
268 values = getColumn(x);
|
Chris@275
|
269
|
Chris@500
|
270 float mean = 0.f;
|
Chris@500
|
271 for (int i =0; i < values.size(); ++i) mean += values[i];
|
Chris@500
|
272 if (values.size() >0) mean /= values.size();
|
Chris@500
|
273
|
Chris@275
|
274 // For peak picking we use a moving median window, picking the
|
Chris@275
|
275 // highest value within each continuous region of values that
|
Chris@275
|
276 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
277 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
278
|
Chris@275
|
279 size_t sampleRate = getSampleRate();
|
Chris@275
|
280
|
Chris@275
|
281 std::deque<float> window;
|
Chris@275
|
282 std::vector<size_t> inrange;
|
Chris@280
|
283 float dist = 0.5;
|
Chris@500
|
284
|
Chris@280
|
285 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@275
|
286 size_t halfWin = medianWinSize/2;
|
Chris@275
|
287
|
Chris@275
|
288 size_t binmin;
|
Chris@275
|
289 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
290 else binmin = 0;
|
Chris@275
|
291
|
Chris@275
|
292 size_t binmax;
|
Chris@275
|
293 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
|
Chris@275
|
294 else binmax = values.size()-1;
|
Chris@275
|
295
|
Chris@500
|
296 size_t prevcentre = 0;
|
Chris@500
|
297
|
Chris@275
|
298 for (size_t bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
299
|
Chris@275
|
300 float value = values[bin];
|
Chris@275
|
301
|
Chris@275
|
302 window.push_back(value);
|
Chris@275
|
303
|
Chris@280
|
304 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
305 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
306 halfWin = medianWinSize/2;
|
Chris@275
|
307
|
Chris@500
|
308 while (window.size() > medianWinSize) {
|
Chris@500
|
309 window.pop_front();
|
Chris@500
|
310 }
|
Chris@500
|
311
|
Chris@500
|
312 size_t actualSize = window.size();
|
Chris@275
|
313
|
Chris@275
|
314 if (type == MajorPitchAdaptivePeaks) {
|
Chris@275
|
315 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
|
Chris@275
|
316 else binmax = values.size()-1;
|
Chris@275
|
317 }
|
Chris@275
|
318
|
Chris@275
|
319 std::deque<float> sorted(window);
|
Chris@275
|
320 std::sort(sorted.begin(), sorted.end());
|
Chris@280
|
321 float median = sorted[int(sorted.size() * dist)];
|
Chris@275
|
322
|
Chris@500
|
323 size_t centrebin = 0;
|
Chris@500
|
324 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
325
|
Chris@500
|
326 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
327
|
Chris@500
|
328 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
329
|
Chris@500
|
330 float centre = values[prevcentre];
|
Chris@500
|
331
|
Chris@500
|
332 if (centre > median) {
|
Chris@500
|
333 inrange.push_back(centrebin);
|
Chris@500
|
334 }
|
Chris@500
|
335
|
Chris@500
|
336 if (centre <= median || centrebin+1 == values.size()) {
|
Chris@500
|
337 if (!inrange.empty()) {
|
Chris@500
|
338 size_t peakbin = 0;
|
Chris@500
|
339 float peakval = 0.f;
|
Chris@500
|
340 for (size_t i = 0; i < inrange.size(); ++i) {
|
Chris@500
|
341 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
342 peakval = values[inrange[i]];
|
Chris@500
|
343 peakbin = inrange[i];
|
Chris@500
|
344 }
|
Chris@500
|
345 }
|
Chris@500
|
346 inrange.clear();
|
Chris@500
|
347 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
348 peaks.insert(peakbin);
|
Chris@275
|
349 }
|
Chris@275
|
350 }
|
Chris@275
|
351 }
|
Chris@500
|
352
|
Chris@500
|
353 if (bin == binmin) break;
|
Chris@275
|
354 }
|
Chris@275
|
355 }
|
Chris@275
|
356
|
Chris@275
|
357 return peaks;
|
Chris@275
|
358 }
|
Chris@275
|
359
|
Chris@275
|
360 size_t
|
Chris@280
|
361 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
|
Chris@280
|
362 size_t bin, float &percentile) const
|
Chris@275
|
363 {
|
Chris@280
|
364 percentile = 0.5;
|
Chris@275
|
365 if (type == MajorPeaks) return 10;
|
Chris@275
|
366 if (bin == 0) return 3;
|
Chris@280
|
367
|
Chris@275
|
368 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
369 float binfreq = (sampleRate * bin) / fftSize;
|
Chris@275
|
370 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
371
|
Chris@275
|
372 int hibin = lrintf((hifreq * fftSize) / sampleRate);
|
Chris@275
|
373 int medianWinSize = hibin - bin;
|
Chris@275
|
374 if (medianWinSize < 3) medianWinSize = 3;
|
Chris@280
|
375
|
Chris@280
|
376 percentile = 0.5 + (binfreq / sampleRate);
|
Chris@280
|
377
|
Chris@275
|
378 return medianWinSize;
|
Chris@275
|
379 }
|
Chris@275
|
380
|
Chris@275
|
381 FFTModel::PeakSet
|
Chris@275
|
382 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
|
Chris@275
|
383 size_t ymin, size_t ymax)
|
Chris@275
|
384 {
|
Chris@275
|
385 PeakSet peaks;
|
Chris@275
|
386 if (!isOK()) return peaks;
|
Chris@275
|
387 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
388
|
Chris@275
|
389 size_t sampleRate = getSampleRate();
|
Chris@275
|
390 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
391 size_t incr = getResolution();
|
Chris@275
|
392
|
Chris@275
|
393 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
394 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
395 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
396 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
397
|
Chris@275
|
398 std::vector<float> phases;
|
Chris@275
|
399 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
400 i != locations.end(); ++i) {
|
Chris@275
|
401 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
402 }
|
Chris@275
|
403
|
Chris@275
|
404 size_t phaseIndex = 0;
|
Chris@275
|
405 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
406 i != locations.end(); ++i) {
|
Chris@275
|
407 float oldPhase = phases[phaseIndex];
|
Chris@275
|
408 float newPhase = getPhaseAt(x+1, *i);
|
Chris@275
|
409 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
|
Chris@275
|
410 float phaseError = princargf(newPhase - expectedPhase);
|
Chris@275
|
411 float frequency =
|
Chris@275
|
412 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
413 / (2 * M_PI * incr);
|
Chris@275
|
414 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
|
Chris@275
|
415 // if (stable)
|
Chris@275
|
416 peaks[*i] = frequency;
|
Chris@275
|
417 ++phaseIndex;
|
Chris@275
|
418 }
|
Chris@275
|
419
|
Chris@275
|
420 return peaks;
|
Chris@275
|
421 }
|
Chris@275
|
422
|
Chris@152
|
423 Model *
|
Chris@152
|
424 FFTModel::clone() const
|
Chris@152
|
425 {
|
Chris@152
|
426 return new FFTModel(*this);
|
Chris@152
|
427 }
|
Chris@152
|
428
|
Chris@152
|
429 FFTModel::FFTModel(const FFTModel &model) :
|
Chris@152
|
430 DenseThreeDimensionalModel(),
|
Chris@152
|
431 m_server(model.m_server),
|
Chris@152
|
432 m_xshift(model.m_xshift),
|
Chris@152
|
433 m_yshift(model.m_yshift)
|
Chris@152
|
434 {
|
Chris@152
|
435 FFTDataServer::claimInstance(m_server);
|
Chris@152
|
436 }
|
Chris@152
|
437
|