annotate data/model/FFTModel.cpp @ 473:47b41ec34407

* Avoid waiting on uninstalled transforms mutex in TransformFactory:: getTransformInstallStatus -- we can return TransformUnknown * Don't follow link in SelectableLabel when clicking to select it * Restore lost version number in plugin param dialog
author Chris Cannam
date Tue, 28 Oct 2008 18:06:06 +0000
parents 115f60df1e4d
children 83eae5239db6
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@297 18 #include "AggregateWaveModel.h"
Chris@152 19
Chris@183 20 #include "base/Profiler.h"
Chris@275 21 #include "base/Pitch.h"
Chris@183 22
Chris@402 23 #include <algorithm>
Chris@402 24
Chris@152 25 #include <cassert>
Chris@152 26
Chris@152 27 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 28 int channel,
Chris@152 29 WindowType windowType,
Chris@152 30 size_t windowSize,
Chris@152 31 size_t windowIncrement,
Chris@152 32 size_t fftSize,
Chris@152 33 bool polar,
Chris@334 34 StorageAdviser::Criteria criteria,
Chris@152 35 size_t fillFromColumn) :
Chris@152 36 //!!! ZoomConstraint!
Chris@152 37 m_server(0),
Chris@152 38 m_xshift(0),
Chris@152 39 m_yshift(0)
Chris@152 40 {
Chris@297 41 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
Chris@297 42
Chris@297 43 m_server = getServer(model,
Chris@297 44 channel,
Chris@297 45 windowType,
Chris@297 46 windowSize,
Chris@297 47 windowIncrement,
Chris@297 48 fftSize,
Chris@297 49 polar,
Chris@334 50 criteria,
Chris@297 51 fillFromColumn);
Chris@152 52
Chris@200 53 if (!m_server) return; // caller should check isOK()
Chris@200 54
Chris@152 55 size_t xratio = windowIncrement / m_server->getWindowIncrement();
Chris@152 56 size_t yratio = m_server->getFFTSize() / fftSize;
Chris@152 57
Chris@152 58 while (xratio > 1) {
Chris@152 59 if (xratio & 0x1) {
Chris@152 60 std::cerr << "ERROR: FFTModel: Window increment ratio "
Chris@152 61 << windowIncrement << " / "
Chris@152 62 << m_server->getWindowIncrement()
Chris@152 63 << " must be a power of two" << std::endl;
Chris@152 64 assert(!(xratio & 0x1));
Chris@152 65 }
Chris@152 66 ++m_xshift;
Chris@152 67 xratio >>= 1;
Chris@152 68 }
Chris@152 69
Chris@152 70 while (yratio > 1) {
Chris@152 71 if (yratio & 0x1) {
Chris@152 72 std::cerr << "ERROR: FFTModel: FFT size ratio "
Chris@152 73 << m_server->getFFTSize() << " / " << fftSize
Chris@152 74 << " must be a power of two" << std::endl;
Chris@152 75 assert(!(yratio & 0x1));
Chris@152 76 }
Chris@152 77 ++m_yshift;
Chris@152 78 yratio >>= 1;
Chris@152 79 }
Chris@152 80 }
Chris@152 81
Chris@152 82 FFTModel::~FFTModel()
Chris@152 83 {
Chris@200 84 if (m_server) FFTDataServer::releaseInstance(m_server);
Chris@152 85 }
Chris@152 86
Chris@360 87 void
Chris@360 88 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 89 {
Chris@360 90 if (m_sourceModel) {
Chris@362 91 std::cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << std::endl;
Chris@362 92 if (m_server) {
Chris@362 93 FFTDataServer::releaseInstance(m_server);
Chris@362 94 m_server = 0;
Chris@362 95 }
Chris@360 96 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
Chris@360 97 }
Chris@360 98 }
Chris@360 99
Chris@297 100 FFTDataServer *
Chris@297 101 FFTModel::getServer(const DenseTimeValueModel *model,
Chris@297 102 int channel,
Chris@297 103 WindowType windowType,
Chris@297 104 size_t windowSize,
Chris@297 105 size_t windowIncrement,
Chris@297 106 size_t fftSize,
Chris@297 107 bool polar,
Chris@334 108 StorageAdviser::Criteria criteria,
Chris@297 109 size_t fillFromColumn)
Chris@297 110 {
Chris@297 111 // Obviously, an FFT model of channel C (where C != -1) of an
Chris@297 112 // aggregate model is the same as the FFT model of the appropriate
Chris@297 113 // channel of whichever model that aggregate channel is drawn
Chris@297 114 // from. We should use that model here, in case we already have
Chris@297 115 // the data for it or will be wanting the same data again later.
Chris@297 116
Chris@297 117 // If the channel is -1 (i.e. mixture of all channels), then we
Chris@297 118 // can't do this shortcut unless the aggregate model only has one
Chris@297 119 // channel or contains exactly all of the channels of a single
Chris@297 120 // other model. That isn't very likely -- if it were the case,
Chris@297 121 // why would we be using an aggregate model?
Chris@297 122
Chris@297 123 if (channel >= 0) {
Chris@297 124
Chris@297 125 const AggregateWaveModel *aggregate =
Chris@297 126 dynamic_cast<const AggregateWaveModel *>(model);
Chris@297 127
Chris@297 128 if (aggregate && channel < aggregate->getComponentCount()) {
Chris@297 129
Chris@297 130 AggregateWaveModel::ModelChannelSpec spec =
Chris@297 131 aggregate->getComponent(channel);
Chris@297 132
Chris@297 133 return getServer(spec.model,
Chris@297 134 spec.channel,
Chris@297 135 windowType,
Chris@297 136 windowSize,
Chris@297 137 windowIncrement,
Chris@297 138 fftSize,
Chris@297 139 polar,
Chris@334 140 criteria,
Chris@297 141 fillFromColumn);
Chris@297 142 }
Chris@297 143 }
Chris@297 144
Chris@297 145 // The normal case
Chris@297 146
Chris@297 147 return FFTDataServer::getFuzzyInstance(model,
Chris@297 148 channel,
Chris@297 149 windowType,
Chris@297 150 windowSize,
Chris@297 151 windowIncrement,
Chris@297 152 fftSize,
Chris@297 153 polar,
Chris@334 154 criteria,
Chris@297 155 fillFromColumn);
Chris@297 156 }
Chris@297 157
Chris@152 158 size_t
Chris@152 159 FFTModel::getSampleRate() const
Chris@152 160 {
Chris@152 161 return isOK() ? m_server->getModel()->getSampleRate() : 0;
Chris@152 162 }
Chris@152 163
Chris@152 164 void
Chris@182 165 FFTModel::getColumn(size_t x, Column &result) const
Chris@152 166 {
Chris@183 167 Profiler profiler("FFTModel::getColumn", false);
Chris@183 168
Chris@152 169 result.clear();
Chris@408 170 size_t h = getHeight();
Chris@408 171
Chris@408 172 float magnitudes[h];
Chris@408 173 if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) {
Chris@408 174 for (size_t y = 0; y < h; ++y) {
Chris@408 175 result.push_back(magnitudes[h]);
Chris@408 176 }
Chris@408 177 } else {
Chris@408 178 for (size_t i = 0; i < h; ++i) result.push_back(0.f);
Chris@152 179 }
Chris@152 180 }
Chris@152 181
Chris@152 182 QString
Chris@152 183 FFTModel::getBinName(size_t n) const
Chris@152 184 {
Chris@152 185 size_t sr = getSampleRate();
Chris@152 186 if (!sr) return "";
Chris@204 187 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 188 return name;
Chris@152 189 }
Chris@152 190
Chris@275 191 bool
Chris@275 192 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
Chris@275 193 {
Chris@275 194 if (!isOK()) return false;
Chris@275 195
Chris@275 196 size_t sampleRate = m_server->getModel()->getSampleRate();
Chris@275 197
Chris@275 198 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 199 frequency = (float(y) * sampleRate) / fftSize;
Chris@275 200
Chris@275 201 if (x+1 >= getWidth()) return false;
Chris@275 202
Chris@275 203 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 204 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 205 // At window size w, for bin b, f is b*sr/w.
Chris@275 206 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 207 // We need to know what phase shift we expect from h/sr sec.
Chris@275 208 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 209 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 210 // = 2pi * (h * b) / w.
Chris@275 211
Chris@275 212 float oldPhase = getPhaseAt(x, y);
Chris@275 213 float newPhase = getPhaseAt(x+1, y);
Chris@275 214
Chris@275 215 size_t incr = getResolution();
Chris@275 216
Chris@275 217 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
Chris@275 218
Chris@275 219 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 220
Chris@275 221 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
Chris@275 222
Chris@275 223 // The new frequency estimate based on the phase error resulting
Chris@275 224 // from assuming the "native" frequency of this bin
Chris@275 225
Chris@275 226 frequency =
Chris@275 227 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@275 228 (2 * M_PI * incr);
Chris@275 229
Chris@275 230 return true;
Chris@275 231 }
Chris@275 232
Chris@275 233 FFTModel::PeakLocationSet
Chris@275 234 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
Chris@275 235 {
Chris@275 236 FFTModel::PeakLocationSet peaks;
Chris@275 237 if (!isOK()) return peaks;
Chris@275 238
Chris@275 239 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 240 ymax = getHeight() - 1;
Chris@275 241 }
Chris@275 242
Chris@275 243 Column values;
Chris@275 244
Chris@275 245 if (type == AllPeaks) {
Chris@275 246 for (size_t y = ymin; y <= ymax; ++y) {
Chris@275 247 values.push_back(getMagnitudeAt(x, y));
Chris@275 248 }
Chris@275 249 size_t i = 0;
Chris@275 250 for (size_t bin = ymin; bin <= ymax; ++bin) {
Chris@275 251 if ((i == 0 || values[i] > values[i-1]) &&
Chris@275 252 (i == values.size()-1 || values[i] >= values[i+1])) {
Chris@275 253 peaks.insert(bin);
Chris@275 254 }
Chris@275 255 ++i;
Chris@275 256 }
Chris@275 257 return peaks;
Chris@275 258 }
Chris@275 259
Chris@275 260 getColumn(x, values);
Chris@275 261
Chris@275 262 // For peak picking we use a moving median window, picking the
Chris@275 263 // highest value within each continuous region of values that
Chris@275 264 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 265 // size to a roughly constant pitch range (about four tones).
Chris@275 266
Chris@275 267 size_t sampleRate = getSampleRate();
Chris@275 268
Chris@275 269 std::deque<float> window;
Chris@275 270 std::vector<size_t> inrange;
Chris@280 271 float dist = 0.5;
Chris@280 272 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@275 273 size_t halfWin = medianWinSize/2;
Chris@275 274
Chris@275 275 size_t binmin;
Chris@275 276 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 277 else binmin = 0;
Chris@275 278
Chris@275 279 size_t binmax;
Chris@275 280 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 281 else binmax = values.size()-1;
Chris@275 282
Chris@275 283 for (size_t bin = binmin; bin <= binmax; ++bin) {
Chris@275 284
Chris@275 285 float value = values[bin];
Chris@275 286
Chris@275 287 window.push_back(value);
Chris@275 288
Chris@280 289 // so-called median will actually be the dist*100'th percentile
Chris@280 290 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 291 halfWin = medianWinSize/2;
Chris@275 292
Chris@275 293 while (window.size() > medianWinSize) window.pop_front();
Chris@275 294
Chris@275 295 if (type == MajorPitchAdaptivePeaks) {
Chris@275 296 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 297 else binmax = values.size()-1;
Chris@275 298 }
Chris@275 299
Chris@275 300 std::deque<float> sorted(window);
Chris@275 301 std::sort(sorted.begin(), sorted.end());
Chris@280 302 float median = sorted[int(sorted.size() * dist)];
Chris@275 303
Chris@275 304 if (value > median) {
Chris@275 305 inrange.push_back(bin);
Chris@275 306 }
Chris@275 307
Chris@275 308 if (value <= median || bin+1 == values.size()) {
Chris@275 309 size_t peakbin = 0;
Chris@275 310 float peakval = 0.f;
Chris@275 311 if (!inrange.empty()) {
Chris@275 312 for (size_t i = 0; i < inrange.size(); ++i) {
Chris@275 313 if (i == 0 || values[inrange[i]] > peakval) {
Chris@275 314 peakval = values[inrange[i]];
Chris@275 315 peakbin = inrange[i];
Chris@275 316 }
Chris@275 317 }
Chris@275 318 inrange.clear();
Chris@275 319 if (peakbin >= ymin && peakbin <= ymax) {
Chris@275 320 peaks.insert(peakbin);
Chris@275 321 }
Chris@275 322 }
Chris@275 323 }
Chris@275 324 }
Chris@275 325
Chris@275 326 return peaks;
Chris@275 327 }
Chris@275 328
Chris@275 329 size_t
Chris@280 330 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
Chris@280 331 size_t bin, float &percentile) const
Chris@275 332 {
Chris@280 333 percentile = 0.5;
Chris@275 334 if (type == MajorPeaks) return 10;
Chris@275 335 if (bin == 0) return 3;
Chris@280 336
Chris@275 337 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 338 float binfreq = (sampleRate * bin) / fftSize;
Chris@275 339 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 340
Chris@275 341 int hibin = lrintf((hifreq * fftSize) / sampleRate);
Chris@275 342 int medianWinSize = hibin - bin;
Chris@275 343 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 344
Chris@280 345 percentile = 0.5 + (binfreq / sampleRate);
Chris@280 346
Chris@275 347 return medianWinSize;
Chris@275 348 }
Chris@275 349
Chris@275 350 FFTModel::PeakSet
Chris@275 351 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
Chris@275 352 size_t ymin, size_t ymax)
Chris@275 353 {
Chris@275 354 PeakSet peaks;
Chris@275 355 if (!isOK()) return peaks;
Chris@275 356 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 357
Chris@275 358 size_t sampleRate = getSampleRate();
Chris@275 359 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 360 size_t incr = getResolution();
Chris@275 361
Chris@275 362 // This duplicates some of the work of estimateStableFrequency to
Chris@275 363 // allow us to retrieve the phases in two separate vertical
Chris@275 364 // columns, instead of jumping back and forth between columns x and
Chris@275 365 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 366
Chris@275 367 std::vector<float> phases;
Chris@275 368 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 369 i != locations.end(); ++i) {
Chris@275 370 phases.push_back(getPhaseAt(x, *i));
Chris@275 371 }
Chris@275 372
Chris@275 373 size_t phaseIndex = 0;
Chris@275 374 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 375 i != locations.end(); ++i) {
Chris@275 376 float oldPhase = phases[phaseIndex];
Chris@275 377 float newPhase = getPhaseAt(x+1, *i);
Chris@275 378 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
Chris@275 379 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 380 float frequency =
Chris@275 381 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 382 / (2 * M_PI * incr);
Chris@275 383 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
Chris@275 384 // if (stable)
Chris@275 385 peaks[*i] = frequency;
Chris@275 386 ++phaseIndex;
Chris@275 387 }
Chris@275 388
Chris@275 389 return peaks;
Chris@275 390 }
Chris@275 391
Chris@152 392 Model *
Chris@152 393 FFTModel::clone() const
Chris@152 394 {
Chris@152 395 return new FFTModel(*this);
Chris@152 396 }
Chris@152 397
Chris@152 398 FFTModel::FFTModel(const FFTModel &model) :
Chris@152 399 DenseThreeDimensionalModel(),
Chris@152 400 m_server(model.m_server),
Chris@152 401 m_xshift(model.m_xshift),
Chris@152 402 m_yshift(model.m_yshift)
Chris@152 403 {
Chris@152 404 FFTDataServer::claimInstance(m_server);
Chris@152 405 }
Chris@152 406