Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@297
|
18 #include "AggregateWaveModel.h"
|
Chris@152
|
19
|
Chris@183
|
20 #include "base/Profiler.h"
|
Chris@275
|
21 #include "base/Pitch.h"
|
Chris@183
|
22
|
Chris@402
|
23 #include <algorithm>
|
Chris@402
|
24
|
Chris@152
|
25 #include <cassert>
|
Chris@152
|
26
|
Chris@152
|
27 FFTModel::FFTModel(const DenseTimeValueModel *model,
|
Chris@152
|
28 int channel,
|
Chris@152
|
29 WindowType windowType,
|
Chris@152
|
30 size_t windowSize,
|
Chris@152
|
31 size_t windowIncrement,
|
Chris@152
|
32 size_t fftSize,
|
Chris@152
|
33 bool polar,
|
Chris@334
|
34 StorageAdviser::Criteria criteria,
|
Chris@152
|
35 size_t fillFromColumn) :
|
Chris@152
|
36 //!!! ZoomConstraint!
|
Chris@152
|
37 m_server(0),
|
Chris@152
|
38 m_xshift(0),
|
Chris@152
|
39 m_yshift(0)
|
Chris@152
|
40 {
|
Chris@297
|
41 setSourceModel(const_cast<DenseTimeValueModel *>(model)); //!!! hmm.
|
Chris@297
|
42
|
Chris@297
|
43 m_server = getServer(model,
|
Chris@297
|
44 channel,
|
Chris@297
|
45 windowType,
|
Chris@297
|
46 windowSize,
|
Chris@297
|
47 windowIncrement,
|
Chris@297
|
48 fftSize,
|
Chris@297
|
49 polar,
|
Chris@334
|
50 criteria,
|
Chris@297
|
51 fillFromColumn);
|
Chris@152
|
52
|
Chris@200
|
53 if (!m_server) return; // caller should check isOK()
|
Chris@200
|
54
|
Chris@152
|
55 size_t xratio = windowIncrement / m_server->getWindowIncrement();
|
Chris@152
|
56 size_t yratio = m_server->getFFTSize() / fftSize;
|
Chris@152
|
57
|
Chris@152
|
58 while (xratio > 1) {
|
Chris@152
|
59 if (xratio & 0x1) {
|
Chris@152
|
60 std::cerr << "ERROR: FFTModel: Window increment ratio "
|
Chris@152
|
61 << windowIncrement << " / "
|
Chris@152
|
62 << m_server->getWindowIncrement()
|
Chris@152
|
63 << " must be a power of two" << std::endl;
|
Chris@152
|
64 assert(!(xratio & 0x1));
|
Chris@152
|
65 }
|
Chris@152
|
66 ++m_xshift;
|
Chris@152
|
67 xratio >>= 1;
|
Chris@152
|
68 }
|
Chris@152
|
69
|
Chris@152
|
70 while (yratio > 1) {
|
Chris@152
|
71 if (yratio & 0x1) {
|
Chris@152
|
72 std::cerr << "ERROR: FFTModel: FFT size ratio "
|
Chris@152
|
73 << m_server->getFFTSize() << " / " << fftSize
|
Chris@152
|
74 << " must be a power of two" << std::endl;
|
Chris@152
|
75 assert(!(yratio & 0x1));
|
Chris@152
|
76 }
|
Chris@152
|
77 ++m_yshift;
|
Chris@152
|
78 yratio >>= 1;
|
Chris@152
|
79 }
|
Chris@152
|
80 }
|
Chris@152
|
81
|
Chris@152
|
82 FFTModel::~FFTModel()
|
Chris@152
|
83 {
|
Chris@200
|
84 if (m_server) FFTDataServer::releaseInstance(m_server);
|
Chris@152
|
85 }
|
Chris@152
|
86
|
Chris@360
|
87 void
|
Chris@360
|
88 FFTModel::sourceModelAboutToBeDeleted()
|
Chris@360
|
89 {
|
Chris@360
|
90 if (m_sourceModel) {
|
Chris@362
|
91 std::cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_sourceModel << ")" << std::endl;
|
Chris@362
|
92 if (m_server) {
|
Chris@362
|
93 FFTDataServer::releaseInstance(m_server);
|
Chris@362
|
94 m_server = 0;
|
Chris@362
|
95 }
|
Chris@360
|
96 FFTDataServer::modelAboutToBeDeleted(m_sourceModel);
|
Chris@360
|
97 }
|
Chris@360
|
98 }
|
Chris@360
|
99
|
Chris@297
|
100 FFTDataServer *
|
Chris@297
|
101 FFTModel::getServer(const DenseTimeValueModel *model,
|
Chris@297
|
102 int channel,
|
Chris@297
|
103 WindowType windowType,
|
Chris@297
|
104 size_t windowSize,
|
Chris@297
|
105 size_t windowIncrement,
|
Chris@297
|
106 size_t fftSize,
|
Chris@297
|
107 bool polar,
|
Chris@334
|
108 StorageAdviser::Criteria criteria,
|
Chris@297
|
109 size_t fillFromColumn)
|
Chris@297
|
110 {
|
Chris@297
|
111 // Obviously, an FFT model of channel C (where C != -1) of an
|
Chris@297
|
112 // aggregate model is the same as the FFT model of the appropriate
|
Chris@297
|
113 // channel of whichever model that aggregate channel is drawn
|
Chris@297
|
114 // from. We should use that model here, in case we already have
|
Chris@297
|
115 // the data for it or will be wanting the same data again later.
|
Chris@297
|
116
|
Chris@297
|
117 // If the channel is -1 (i.e. mixture of all channels), then we
|
Chris@297
|
118 // can't do this shortcut unless the aggregate model only has one
|
Chris@297
|
119 // channel or contains exactly all of the channels of a single
|
Chris@297
|
120 // other model. That isn't very likely -- if it were the case,
|
Chris@297
|
121 // why would we be using an aggregate model?
|
Chris@297
|
122
|
Chris@297
|
123 if (channel >= 0) {
|
Chris@297
|
124
|
Chris@297
|
125 const AggregateWaveModel *aggregate =
|
Chris@297
|
126 dynamic_cast<const AggregateWaveModel *>(model);
|
Chris@297
|
127
|
Chris@297
|
128 if (aggregate && channel < aggregate->getComponentCount()) {
|
Chris@297
|
129
|
Chris@297
|
130 AggregateWaveModel::ModelChannelSpec spec =
|
Chris@297
|
131 aggregate->getComponent(channel);
|
Chris@297
|
132
|
Chris@297
|
133 return getServer(spec.model,
|
Chris@297
|
134 spec.channel,
|
Chris@297
|
135 windowType,
|
Chris@297
|
136 windowSize,
|
Chris@297
|
137 windowIncrement,
|
Chris@297
|
138 fftSize,
|
Chris@297
|
139 polar,
|
Chris@334
|
140 criteria,
|
Chris@297
|
141 fillFromColumn);
|
Chris@297
|
142 }
|
Chris@297
|
143 }
|
Chris@297
|
144
|
Chris@297
|
145 // The normal case
|
Chris@297
|
146
|
Chris@297
|
147 return FFTDataServer::getFuzzyInstance(model,
|
Chris@297
|
148 channel,
|
Chris@297
|
149 windowType,
|
Chris@297
|
150 windowSize,
|
Chris@297
|
151 windowIncrement,
|
Chris@297
|
152 fftSize,
|
Chris@297
|
153 polar,
|
Chris@334
|
154 criteria,
|
Chris@297
|
155 fillFromColumn);
|
Chris@297
|
156 }
|
Chris@297
|
157
|
Chris@152
|
158 size_t
|
Chris@152
|
159 FFTModel::getSampleRate() const
|
Chris@152
|
160 {
|
Chris@152
|
161 return isOK() ? m_server->getModel()->getSampleRate() : 0;
|
Chris@152
|
162 }
|
Chris@152
|
163
|
Chris@533
|
164 FFTModel::Column
|
Chris@533
|
165 FFTModel::getColumn(size_t x) const
|
Chris@152
|
166 {
|
Chris@183
|
167 Profiler profiler("FFTModel::getColumn", false);
|
Chris@183
|
168
|
Chris@533
|
169 Column result;
|
Chris@533
|
170
|
Chris@152
|
171 result.clear();
|
Chris@408
|
172 size_t h = getHeight();
|
Chris@509
|
173 result.reserve(h);
|
Chris@408
|
174
|
Chris@408
|
175 float magnitudes[h];
|
Chris@500
|
176
|
Chris@408
|
177 if (m_server->getMagnitudesAt(x << m_xshift, magnitudes)) {
|
Chris@500
|
178
|
Chris@408
|
179 for (size_t y = 0; y < h; ++y) {
|
Chris@500
|
180 result.push_back(magnitudes[y]);
|
Chris@408
|
181 }
|
Chris@500
|
182
|
Chris@408
|
183 } else {
|
Chris@408
|
184 for (size_t i = 0; i < h; ++i) result.push_back(0.f);
|
Chris@152
|
185 }
|
Chris@533
|
186
|
Chris@533
|
187 return result;
|
Chris@152
|
188 }
|
Chris@152
|
189
|
Chris@152
|
190 QString
|
Chris@152
|
191 FFTModel::getBinName(size_t n) const
|
Chris@152
|
192 {
|
Chris@152
|
193 size_t sr = getSampleRate();
|
Chris@152
|
194 if (!sr) return "";
|
Chris@204
|
195 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
|
Chris@152
|
196 return name;
|
Chris@152
|
197 }
|
Chris@152
|
198
|
Chris@275
|
199 bool
|
Chris@275
|
200 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
|
Chris@275
|
201 {
|
Chris@275
|
202 if (!isOK()) return false;
|
Chris@275
|
203
|
Chris@275
|
204 size_t sampleRate = m_server->getModel()->getSampleRate();
|
Chris@275
|
205
|
Chris@275
|
206 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
207 frequency = (float(y) * sampleRate) / fftSize;
|
Chris@275
|
208
|
Chris@275
|
209 if (x+1 >= getWidth()) return false;
|
Chris@275
|
210
|
Chris@275
|
211 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
212 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
213 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
214 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
215 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
216 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
217 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
218 // = 2pi * (h * b) / w.
|
Chris@275
|
219
|
Chris@275
|
220 float oldPhase = getPhaseAt(x, y);
|
Chris@275
|
221 float newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
222
|
Chris@275
|
223 size_t incr = getResolution();
|
Chris@275
|
224
|
Chris@275
|
225 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
|
Chris@275
|
226
|
Chris@275
|
227 float phaseError = princargf(newPhase - expectedPhase);
|
Chris@275
|
228
|
Chris@275
|
229 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
|
Chris@275
|
230
|
Chris@275
|
231 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
232 // from assuming the "native" frequency of this bin
|
Chris@275
|
233
|
Chris@275
|
234 frequency =
|
Chris@275
|
235 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
|
Chris@275
|
236 (2 * M_PI * incr);
|
Chris@275
|
237
|
Chris@275
|
238 return true;
|
Chris@275
|
239 }
|
Chris@275
|
240
|
Chris@275
|
241 FFTModel::PeakLocationSet
|
Chris@275
|
242 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
|
Chris@275
|
243 {
|
Chris@551
|
244 Profiler profiler("FFTModel::getPeaks");
|
Chris@551
|
245
|
Chris@275
|
246 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
247 if (!isOK()) return peaks;
|
Chris@275
|
248
|
Chris@275
|
249 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
250 ymax = getHeight() - 1;
|
Chris@275
|
251 }
|
Chris@275
|
252
|
Chris@275
|
253 if (type == AllPeaks) {
|
Chris@551
|
254 int minbin = ymin;
|
Chris@551
|
255 if (minbin > 0) minbin = minbin - 1;
|
Chris@551
|
256 int maxbin = ymax;
|
Chris@551
|
257 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
|
Chris@551
|
258 const int n = maxbin - minbin + 1;
|
Chris@551
|
259 float values[n];
|
Chris@551
|
260 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
|
Chris@275
|
261 for (size_t bin = ymin; bin <= ymax; ++bin) {
|
Chris@551
|
262 if (bin == minbin || bin == maxbin) continue;
|
Chris@551
|
263 if (values[bin - minbin] > values[bin - minbin - 1] &&
|
Chris@551
|
264 values[bin - minbin] > values[bin - minbin + 1]) {
|
Chris@275
|
265 peaks.insert(bin);
|
Chris@275
|
266 }
|
Chris@275
|
267 }
|
Chris@275
|
268 return peaks;
|
Chris@275
|
269 }
|
Chris@275
|
270
|
Chris@551
|
271 Column values = getColumn(x);
|
Chris@275
|
272
|
Chris@500
|
273 float mean = 0.f;
|
Chris@551
|
274 for (int i = 0; i < values.size(); ++i) mean += values[i];
|
Chris@500
|
275 if (values.size() >0) mean /= values.size();
|
Chris@500
|
276
|
Chris@275
|
277 // For peak picking we use a moving median window, picking the
|
Chris@275
|
278 // highest value within each continuous region of values that
|
Chris@275
|
279 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
280 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
281
|
Chris@275
|
282 size_t sampleRate = getSampleRate();
|
Chris@275
|
283
|
Chris@275
|
284 std::deque<float> window;
|
Chris@275
|
285 std::vector<size_t> inrange;
|
Chris@280
|
286 float dist = 0.5;
|
Chris@500
|
287
|
Chris@280
|
288 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@275
|
289 size_t halfWin = medianWinSize/2;
|
Chris@275
|
290
|
Chris@275
|
291 size_t binmin;
|
Chris@275
|
292 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
293 else binmin = 0;
|
Chris@275
|
294
|
Chris@275
|
295 size_t binmax;
|
Chris@275
|
296 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
|
Chris@275
|
297 else binmax = values.size()-1;
|
Chris@275
|
298
|
Chris@500
|
299 size_t prevcentre = 0;
|
Chris@500
|
300
|
Chris@275
|
301 for (size_t bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
302
|
Chris@275
|
303 float value = values[bin];
|
Chris@275
|
304
|
Chris@275
|
305 window.push_back(value);
|
Chris@275
|
306
|
Chris@280
|
307 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
308 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
309 halfWin = medianWinSize/2;
|
Chris@275
|
310
|
Chris@500
|
311 while (window.size() > medianWinSize) {
|
Chris@500
|
312 window.pop_front();
|
Chris@500
|
313 }
|
Chris@500
|
314
|
Chris@500
|
315 size_t actualSize = window.size();
|
Chris@275
|
316
|
Chris@275
|
317 if (type == MajorPitchAdaptivePeaks) {
|
Chris@275
|
318 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
|
Chris@275
|
319 else binmax = values.size()-1;
|
Chris@275
|
320 }
|
Chris@275
|
321
|
Chris@275
|
322 std::deque<float> sorted(window);
|
Chris@275
|
323 std::sort(sorted.begin(), sorted.end());
|
Chris@280
|
324 float median = sorted[int(sorted.size() * dist)];
|
Chris@275
|
325
|
Chris@500
|
326 size_t centrebin = 0;
|
Chris@500
|
327 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
328
|
Chris@500
|
329 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
330
|
Chris@500
|
331 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
332
|
Chris@500
|
333 float centre = values[prevcentre];
|
Chris@500
|
334
|
Chris@500
|
335 if (centre > median) {
|
Chris@500
|
336 inrange.push_back(centrebin);
|
Chris@500
|
337 }
|
Chris@500
|
338
|
Chris@500
|
339 if (centre <= median || centrebin+1 == values.size()) {
|
Chris@500
|
340 if (!inrange.empty()) {
|
Chris@500
|
341 size_t peakbin = 0;
|
Chris@500
|
342 float peakval = 0.f;
|
Chris@500
|
343 for (size_t i = 0; i < inrange.size(); ++i) {
|
Chris@500
|
344 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
345 peakval = values[inrange[i]];
|
Chris@500
|
346 peakbin = inrange[i];
|
Chris@500
|
347 }
|
Chris@500
|
348 }
|
Chris@500
|
349 inrange.clear();
|
Chris@500
|
350 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
351 peaks.insert(peakbin);
|
Chris@275
|
352 }
|
Chris@275
|
353 }
|
Chris@275
|
354 }
|
Chris@500
|
355
|
Chris@500
|
356 if (bin == binmin) break;
|
Chris@275
|
357 }
|
Chris@275
|
358 }
|
Chris@275
|
359
|
Chris@275
|
360 return peaks;
|
Chris@275
|
361 }
|
Chris@275
|
362
|
Chris@275
|
363 size_t
|
Chris@280
|
364 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
|
Chris@280
|
365 size_t bin, float &percentile) const
|
Chris@275
|
366 {
|
Chris@280
|
367 percentile = 0.5;
|
Chris@275
|
368 if (type == MajorPeaks) return 10;
|
Chris@275
|
369 if (bin == 0) return 3;
|
Chris@280
|
370
|
Chris@275
|
371 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
372 float binfreq = (sampleRate * bin) / fftSize;
|
Chris@275
|
373 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
374
|
Chris@275
|
375 int hibin = lrintf((hifreq * fftSize) / sampleRate);
|
Chris@275
|
376 int medianWinSize = hibin - bin;
|
Chris@275
|
377 if (medianWinSize < 3) medianWinSize = 3;
|
Chris@280
|
378
|
Chris@280
|
379 percentile = 0.5 + (binfreq / sampleRate);
|
Chris@280
|
380
|
Chris@275
|
381 return medianWinSize;
|
Chris@275
|
382 }
|
Chris@275
|
383
|
Chris@275
|
384 FFTModel::PeakSet
|
Chris@275
|
385 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
|
Chris@275
|
386 size_t ymin, size_t ymax)
|
Chris@275
|
387 {
|
Chris@551
|
388 Profiler profiler("FFTModel::getPeakFrequencies");
|
Chris@551
|
389
|
Chris@275
|
390 PeakSet peaks;
|
Chris@275
|
391 if (!isOK()) return peaks;
|
Chris@275
|
392 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
393
|
Chris@275
|
394 size_t sampleRate = getSampleRate();
|
Chris@275
|
395 size_t fftSize = m_server->getFFTSize() >> m_yshift;
|
Chris@275
|
396 size_t incr = getResolution();
|
Chris@275
|
397
|
Chris@275
|
398 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
399 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
400 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
401 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
402
|
Chris@275
|
403 std::vector<float> phases;
|
Chris@275
|
404 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
405 i != locations.end(); ++i) {
|
Chris@275
|
406 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
407 }
|
Chris@275
|
408
|
Chris@275
|
409 size_t phaseIndex = 0;
|
Chris@275
|
410 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
411 i != locations.end(); ++i) {
|
Chris@275
|
412 float oldPhase = phases[phaseIndex];
|
Chris@275
|
413 float newPhase = getPhaseAt(x+1, *i);
|
Chris@275
|
414 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
|
Chris@275
|
415 float phaseError = princargf(newPhase - expectedPhase);
|
Chris@275
|
416 float frequency =
|
Chris@275
|
417 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
418 / (2 * M_PI * incr);
|
Chris@275
|
419 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
|
Chris@275
|
420 // if (stable)
|
Chris@275
|
421 peaks[*i] = frequency;
|
Chris@275
|
422 ++phaseIndex;
|
Chris@275
|
423 }
|
Chris@275
|
424
|
Chris@275
|
425 return peaks;
|
Chris@275
|
426 }
|
Chris@275
|
427
|
Chris@152
|
428 Model *
|
Chris@152
|
429 FFTModel::clone() const
|
Chris@152
|
430 {
|
Chris@152
|
431 return new FFTModel(*this);
|
Chris@152
|
432 }
|
Chris@152
|
433
|
Chris@152
|
434 FFTModel::FFTModel(const FFTModel &model) :
|
Chris@152
|
435 DenseThreeDimensionalModel(),
|
Chris@152
|
436 m_server(model.m_server),
|
Chris@152
|
437 m_xshift(model.m_xshift),
|
Chris@152
|
438 m_yshift(model.m_yshift)
|
Chris@152
|
439 {
|
Chris@152
|
440 FFTDataServer::claimInstance(m_server);
|
Chris@152
|
441 }
|
Chris@152
|
442
|