Chris@1086
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@1086
|
2
|
Chris@1086
|
3 /*
|
Chris@1086
|
4 Sonic Visualiser
|
Chris@1086
|
5 An audio file viewer and annotation editor.
|
Chris@1086
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@1086
|
7
|
Chris@1086
|
8 This program is free software; you can redistribute it and/or
|
Chris@1086
|
9 modify it under the terms of the GNU General Public License as
|
Chris@1086
|
10 published by the Free Software Foundation; either version 2 of the
|
Chris@1086
|
11 License, or (at your option) any later version. See the file
|
Chris@1086
|
12 COPYING included with this distribution for more information.
|
Chris@1086
|
13 */
|
Chris@1086
|
14
|
Chris@1086
|
15 #ifndef TEST_FFT_MODEL_H
|
Chris@1086
|
16 #define TEST_FFT_MODEL_H
|
Chris@1086
|
17
|
Chris@1086
|
18 #include "../FFTModel.h"
|
Chris@1086
|
19
|
Chris@1086
|
20 #include "MockWaveModel.h"
|
Chris@1086
|
21
|
Chris@1086
|
22 #include "Compares.h"
|
Chris@1086
|
23
|
Chris@1086
|
24 #include <QObject>
|
Chris@1086
|
25 #include <QtTest>
|
Chris@1086
|
26 #include <QDir>
|
Chris@1086
|
27
|
Chris@1086
|
28 #include <iostream>
|
Chris@1088
|
29 #include <complex>
|
Chris@1086
|
30
|
Chris@1086
|
31 using namespace std;
|
Chris@1086
|
32
|
Chris@1086
|
33 class TestFFTModel : public QObject
|
Chris@1086
|
34 {
|
Chris@1086
|
35 Q_OBJECT
|
Chris@1086
|
36
|
Chris@1088
|
37 private:
|
Chris@1088
|
38 void test(DenseTimeValueModel *model,
|
Chris@1088
|
39 WindowType window, int windowSize, int windowIncrement, int fftSize,
|
Chris@1088
|
40 int columnNo, vector<vector<complex<float>>> expectedValues,
|
Chris@1088
|
41 int expectedWidth) {
|
Chris@1088
|
42 for (int ch = 0; in_range_for(expectedValues, ch); ++ch) {
|
Chris@1091
|
43 FFTModel fftm(model, ch, window, windowSize, windowIncrement, fftSize);
|
Chris@1091
|
44 QCOMPARE(fftm.getWidth(), expectedWidth);
|
Chris@1091
|
45 int hs1 = fftSize/2 + 1;
|
Chris@1091
|
46 QCOMPARE(fftm.getHeight(), hs1);
|
Chris@1091
|
47 vector<float> reals(hs1 + 1, 0.f);
|
Chris@1091
|
48 vector<float> imags(hs1 + 1, 0.f);
|
Chris@1091
|
49 reals[hs1] = 999.f; // overrun guards
|
Chris@1091
|
50 imags[hs1] = 999.f;
|
Chris@1099
|
51 for (int stepThrough = 0; stepThrough <= 1; ++stepThrough) {
|
Chris@1099
|
52 if (stepThrough) {
|
Chris@1099
|
53 // Read through the columns in order instead of
|
Chris@1099
|
54 // randomly accessing the one we want. This is to
|
Chris@1099
|
55 // exercise the case where the FFT model saves
|
Chris@1099
|
56 // part of each input frame and moves along by
|
Chris@1099
|
57 // only the non-overlapping distance
|
Chris@1099
|
58 for (int sc = 0; sc < columnNo; ++sc) {
|
Chris@1099
|
59 fftm.getValuesAt(sc, &reals[0], &imags[0]);
|
Chris@1088
|
60 }
|
Chris@1099
|
61 }
|
Chris@1088
|
62 fftm.getValuesAt(columnNo, &reals[0], &imags[0]);
|
Chris@1088
|
63 for (int i = 0; i < hs1; ++i) {
|
Chris@1088
|
64 float eRe = expectedValues[ch][i].real();
|
Chris@1088
|
65 float eIm = expectedValues[ch][i].imag();
|
Chris@1099
|
66 float thresh = 1e-5f;
|
Chris@1099
|
67 if (abs(reals[i] - eRe) > thresh ||
|
Chris@1099
|
68 abs(imags[i] - eIm) > thresh) {
|
Chris@1099
|
69 cerr << "ERROR: output is not as expected for column "
|
Chris@1099
|
70 << i << " in channel " << ch << " (stepThrough = "
|
Chris@1099
|
71 << stepThrough << ")" << endl;
|
Chris@1088
|
72 cerr << "expected : ";
|
Chris@1088
|
73 for (int j = 0; j < hs1; ++j) {
|
Chris@1088
|
74 cerr << expectedValues[ch][j] << " ";
|
Chris@1088
|
75 }
|
Chris@1088
|
76 cerr << "\nactual : ";
|
Chris@1088
|
77 for (int j = 0; j < hs1; ++j) {
|
Chris@1088
|
78 cerr << complex<float>(reals[j], imags[j]) << " ";
|
Chris@1088
|
79 }
|
Chris@1088
|
80 cerr << endl;
|
Chris@1088
|
81 }
|
Chris@1110
|
82 COMPARE_FUZZIER_F(reals[i], eRe);
|
Chris@1110
|
83 COMPARE_FUZZIER_F(imags[i], eIm);
|
Chris@1088
|
84 }
|
Chris@1088
|
85 QCOMPARE(reals[hs1], 999.f);
|
Chris@1088
|
86 QCOMPARE(imags[hs1], 999.f);
|
Chris@1088
|
87 }
|
Chris@1088
|
88 }
|
Chris@1088
|
89 }
|
Chris@1089
|
90
|
Chris@1086
|
91 private slots:
|
Chris@1086
|
92
|
Chris@1088
|
93 // NB. FFTModel columns are centred on the sample frame, and in
|
Chris@1088
|
94 // particular this means column 0 is centred at sample 0 (i.e. it
|
Chris@1088
|
95 // contains only half the window-size worth of real samples, the
|
Chris@1088
|
96 // others are 0-valued from before the origin). Generally in
|
Chris@1088
|
97 // these tests we are padding our signal with half a window of
|
Chris@1088
|
98 // zeros, in order that the result for column 0 is all zeros
|
Chris@1088
|
99 // (rather than something with a step in it that is harder to
|
Chris@1088
|
100 // reason about the FFT of) and the results for subsequent columns
|
Chris@1088
|
101 // are those of our expected signal.
|
Chris@1089
|
102
|
Chris@1088
|
103 void dc_simple_rect() {
|
Chris@1088
|
104 MockWaveModel mwm({ DC }, 16, 4);
|
Chris@1088
|
105 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1088
|
106 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
107 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1088
|
108 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
109 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1088
|
110 { { { 4.f, 0.f }, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
111 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
112 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
113 }
|
Chris@1088
|
114
|
Chris@1088
|
115 void dc_simple_hann() {
|
Chris@1088
|
116 // The Hann window function is a simple sinusoid with period
|
Chris@1088
|
117 // equal to twice the window size, and it halves the DC energy
|
Chris@1088
|
118 MockWaveModel mwm({ DC }, 16, 4);
|
Chris@1088
|
119 test(&mwm, HanningWindow, 8, 8, 8, 0,
|
Chris@1088
|
120 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
121 test(&mwm, HanningWindow, 8, 8, 8, 1,
|
Chris@1088
|
122 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1088
|
123 test(&mwm, HanningWindow, 8, 8, 8, 2,
|
Chris@1088
|
124 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1088
|
125 test(&mwm, HanningWindow, 8, 8, 8, 3,
|
Chris@1089
|
126 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1088
|
127 }
|
Chris@1088
|
128
|
Chris@1099
|
129 void dc_simple_hann_halfoverlap() {
|
Chris@1099
|
130 MockWaveModel mwm({ DC }, 16, 4);
|
Chris@1099
|
131 test(&mwm, HanningWindow, 8, 4, 8, 0,
|
Chris@1099
|
132 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1099
|
133 test(&mwm, HanningWindow, 8, 4, 8, 2,
|
Chris@1099
|
134 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7);
|
Chris@1099
|
135 test(&mwm, HanningWindow, 8, 4, 8, 3,
|
Chris@1099
|
136 { { { 4.f, 0.f }, { 2.f, 0.f }, {}, {}, {} } }, 7);
|
Chris@1099
|
137 test(&mwm, HanningWindow, 8, 4, 8, 6,
|
Chris@1099
|
138 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1099
|
139 }
|
Chris@1099
|
140
|
Chris@1089
|
141 void sine_simple_rect() {
|
Chris@1089
|
142 MockWaveModel mwm({ Sine }, 16, 4);
|
Chris@1091
|
143 // Sine: output is purely imaginary. Note the sign is flipped
|
Chris@1091
|
144 // (normally the first half of the output would have negative
|
Chris@1091
|
145 // sign for a sine starting at 0) because the model does an
|
Chris@1091
|
146 // FFT shift to centre the phase
|
Chris@1089
|
147 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
148 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
149 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1089
|
150 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
151 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1089
|
152 { { {}, { 0.f, 2.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
153 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
154 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
155 }
|
Chris@1089
|
156
|
Chris@1089
|
157 void cosine_simple_rect() {
|
Chris@1089
|
158 MockWaveModel mwm({ Cosine }, 16, 4);
|
Chris@1091
|
159 // Cosine: output is purely real. Note the sign is flipped
|
Chris@1091
|
160 // because the model does an FFT shift to centre the phase
|
Chris@1089
|
161 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
162 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
163 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
164 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
165 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
166 { { {}, { -2.f, 0.f }, {}, {}, {} } }, 4);
|
Chris@1089
|
167 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
168 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
169 }
|
Chris@1089
|
170
|
Chris@1104
|
171 void twochan_simple_rect() {
|
Chris@1104
|
172 MockWaveModel mwm({ Sine, Cosine }, 16, 4);
|
Chris@1104
|
173 // Test that the two channels are read and converted separately
|
Chris@1104
|
174 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1104
|
175 {
|
Chris@1104
|
176 { {}, {}, {}, {}, {} },
|
Chris@1104
|
177 { {}, {}, {}, {}, {} }
|
Chris@1104
|
178 }, 4);
|
Chris@1104
|
179 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1104
|
180 {
|
Chris@1104
|
181 { {}, { 0.f, 2.f }, {}, {}, {} },
|
Chris@1104
|
182 { {}, { -2.f, 0.f }, {}, {}, {} }
|
Chris@1104
|
183 }, 4);
|
Chris@1104
|
184 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1104
|
185 {
|
Chris@1104
|
186 { {}, { 0.f, 2.f }, {}, {}, {} },
|
Chris@1104
|
187 { {}, { -2.f, 0.f }, {}, {}, {} }
|
Chris@1104
|
188 }, 4);
|
Chris@1104
|
189 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1104
|
190 {
|
Chris@1104
|
191 { {}, {}, {}, {}, {} },
|
Chris@1104
|
192 { {}, {}, {}, {}, {} }
|
Chris@1104
|
193 }, 4);
|
Chris@1104
|
194 }
|
Chris@1104
|
195
|
Chris@1089
|
196 void nyquist_simple_rect() {
|
Chris@1089
|
197 MockWaveModel mwm({ Nyquist }, 16, 4);
|
Chris@1091
|
198 // Again, the sign is flipped. This has the same amount of
|
Chris@1091
|
199 // energy as the DC example
|
Chris@1089
|
200 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
201 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
202 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
203 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
|
Chris@1089
|
204 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
205 { { {}, {}, {}, {}, { -4.f, 0.f } } }, 4);
|
Chris@1089
|
206 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
207 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
208 }
|
Chris@1089
|
209
|
Chris@1089
|
210 void dirac_simple_rect() {
|
Chris@1089
|
211 MockWaveModel mwm({ Dirac }, 16, 4);
|
Chris@1091
|
212 // The window scales by 0.5 and some signs are flipped. Only
|
Chris@1091
|
213 // column 1 has any data (the single impulse).
|
Chris@1089
|
214 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1089
|
215 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
216 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
217 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 4);
|
Chris@1089
|
218 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
219 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
220 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1089
|
221 { { {}, {}, {}, {}, {} } }, 4);
|
Chris@1089
|
222 }
|
Chris@1091
|
223
|
Chris@1091
|
224 void dirac_simple_rect_2() {
|
Chris@1091
|
225 MockWaveModel mwm({ Dirac }, 16, 8);
|
Chris@1091
|
226 // With 8 samples padding, the FFT shift places the first
|
Chris@1091
|
227 // Dirac impulse at the start of column 1, thus giving all
|
Chris@1091
|
228 // positive values
|
Chris@1091
|
229 test(&mwm, RectangularWindow, 8, 8, 8, 0,
|
Chris@1091
|
230 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
231 test(&mwm, RectangularWindow, 8, 8, 8, 1,
|
Chris@1091
|
232 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 5);
|
Chris@1091
|
233 test(&mwm, RectangularWindow, 8, 8, 8, 2,
|
Chris@1091
|
234 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
235 test(&mwm, RectangularWindow, 8, 8, 8, 3,
|
Chris@1091
|
236 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
237 test(&mwm, RectangularWindow, 8, 8, 8, 4,
|
Chris@1091
|
238 { { {}, {}, {}, {}, {} } }, 5);
|
Chris@1091
|
239 }
|
Chris@1089
|
240
|
Chris@1099
|
241 void dirac_simple_rect_halfoverlap() {
|
Chris@1099
|
242 MockWaveModel mwm({ Dirac }, 16, 4);
|
Chris@1099
|
243 test(&mwm, RectangularWindow, 8, 4, 8, 0,
|
Chris@1099
|
244 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1099
|
245 test(&mwm, RectangularWindow, 8, 4, 8, 1,
|
Chris@1099
|
246 { { { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f }, { 0.5f, 0.f } } }, 7);
|
Chris@1099
|
247 test(&mwm, RectangularWindow, 8, 4, 8, 2,
|
Chris@1099
|
248 { { { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f }, { -0.5f, 0.f }, { 0.5f, 0.f } } }, 7);
|
Chris@1099
|
249 test(&mwm, RectangularWindow, 8, 4, 8, 3,
|
Chris@1099
|
250 { { {}, {}, {}, {}, {} } }, 7);
|
Chris@1086
|
251 }
|
Chris@1086
|
252
|
Chris@1086
|
253 };
|
Chris@1086
|
254
|
Chris@1086
|
255 #endif
|