Mercurial > hg > svapp
view audioio/AudioCallbackPlaySource.cpp @ 0:db6fcbd4405c
initial import
author | Chris Cannam |
---|---|
date | Tue, 10 Jan 2006 16:33:16 +0000 |
parents | |
children | 97c69acdcb82 |
line wrap: on
line source
/* -*- c-basic-offset: 4 -*- vi:set ts=8 sts=4 sw=4: */ /* A waveform viewer and audio annotation editor. Chris Cannam, Queen Mary University of London, 2005 This is experimental software. Not for distribution. */ #include "AudioCallbackPlaySource.h" #include "AudioGenerator.h" #include "base/Model.h" #include "base/ViewManager.h" #include "model/DenseTimeValueModel.h" #include "model/SparseOneDimensionalModel.h" #include "dsp/timestretching/IntegerTimeStretcher.h" #include <iostream> //#define DEBUG_AUDIO_PLAY_SOURCE 1 //const size_t AudioCallbackPlaySource::m_ringBufferSize = 102400; const size_t AudioCallbackPlaySource::m_ringBufferSize = 131071; AudioCallbackPlaySource::AudioCallbackPlaySource(ViewManager *manager) : m_viewManager(manager), m_audioGenerator(new AudioGenerator(manager)), m_bufferCount(0), m_blockSize(1024), m_sourceSampleRate(0), m_targetSampleRate(0), m_playLatency(0), m_playing(false), m_exiting(false), m_bufferedToFrame(0), m_outputLeft(0.0), m_outputRight(0.0), m_slowdownCounter(0), m_timeStretcher(0), m_fillThread(0), m_converter(0) { // preallocate some slots, to avoid reallocation in an // un-thread-safe manner later while (m_buffers.size() < 20) m_buffers.push_back(0); m_viewManager->setAudioPlaySource(this); } AudioCallbackPlaySource::~AudioCallbackPlaySource() { m_exiting = true; if (m_fillThread) { m_condition.wakeAll(); m_fillThread->wait(); delete m_fillThread; } clearModels(); } void AudioCallbackPlaySource::addModel(Model *model) { m_mutex.lock(); m_models.insert(model); bool buffersChanged = false, srChanged = false; if (m_sourceSampleRate == 0) { m_sourceSampleRate = model->getSampleRate(); srChanged = true; } else if (model->getSampleRate() != m_sourceSampleRate) { std::cerr << "AudioCallbackPlaySource::addModel: ERROR: " << "New model sample rate does not match" << std::endl << "existing model(s) (new " << model->getSampleRate() << " vs " << m_sourceSampleRate << "), playback will be wrong" << std::endl; } size_t sz = m_ringBufferSize; if (m_bufferCount > 0) { sz = m_buffers[0]->getSize(); } size_t modelChannels = 1; DenseTimeValueModel *dtvm = dynamic_cast<DenseTimeValueModel *>(model); if (dtvm) modelChannels = dtvm->getChannelCount(); while (m_bufferCount < modelChannels) { if (m_buffers.size() < modelChannels) { // This is a hideously chancy operation -- the RT thread // could be using this vector. We allocated several slots // in the ctor to avoid exactly this, but if we ever end // up with more channels than that (!) then we're just // going to have to risk it m_buffers.push_back(new RingBuffer<float>(sz)); } else { // The usual case m_buffers[m_bufferCount] = new RingBuffer<float>(sz); } ++m_bufferCount; buffersChanged = true; } if (buffersChanged) { m_audioGenerator->setTargetChannelCount(m_bufferCount); } if (buffersChanged || srChanged) { if (m_converter) { src_delete(m_converter); m_converter = 0; } if (getSourceSampleRate() != getTargetSampleRate()) { int err = 0; m_converter = src_new(SRC_SINC_FASTEST, m_bufferCount, &err); if (!m_converter) { std::cerr << "AudioCallbackPlaySource::setModel: ERROR in creating samplerate converter: " << src_strerror(err) << std::endl; } } } m_audioGenerator->addModel(model); m_mutex.unlock(); if (!m_fillThread) { m_fillThread = new AudioCallbackPlaySourceFillThread(*this); m_fillThread->start(); } #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "AudioCallbackPlaySource::addModel: emitting modelReplaced" << std::endl; #endif emit modelReplaced(); if (srChanged && (getSourceSampleRate() != getTargetSampleRate())) { emit sampleRateMismatch(getSourceSampleRate(), getTargetSampleRate()); } } void AudioCallbackPlaySource::removeModel(Model *model) { m_mutex.lock(); m_models.erase(model); if (m_models.empty()) { if (m_converter) { src_delete(m_converter); m_converter = 0; } m_sourceSampleRate = 0; } m_audioGenerator->removeModel(model); m_mutex.unlock(); } void AudioCallbackPlaySource::clearModels() { m_mutex.lock(); m_models.clear(); if (m_converter) { src_delete(m_converter); m_converter = 0; } m_audioGenerator->clearModels(); m_sourceSampleRate = 0; m_mutex.unlock(); } void AudioCallbackPlaySource::play(size_t startFrame) { // The fill thread will automatically empty its buffers before // starting again if we have not so far been playing, but not if // we're just re-seeking. if (m_playing) { m_mutex.lock(); m_bufferedToFrame = startFrame; for (size_t c = 0; c < m_bufferCount; ++c) { getRingBuffer(c).reset(); if (m_converter) src_reset(m_converter); } m_mutex.unlock(); } else { m_bufferedToFrame = startFrame; } m_audioGenerator->reset(); m_playing = true; m_condition.wakeAll(); } void AudioCallbackPlaySource::stop() { m_playing = false; m_condition.wakeAll(); } void AudioCallbackPlaySource::setTargetBlockSize(size_t size) { std::cerr << "AudioCallbackPlaySource::setTargetBlockSize() -> " << size << std::endl; m_blockSize = size; for (size_t i = 0; i < m_bufferCount; ++i) { getRingBuffer(i).resize(m_ringBufferSize); } } size_t AudioCallbackPlaySource::getTargetBlockSize() const { std::cerr << "AudioCallbackPlaySource::getTargetBlockSize() -> " << m_blockSize << std::endl; return m_blockSize; } void AudioCallbackPlaySource::setTargetPlayLatency(size_t latency) { m_playLatency = latency; } size_t AudioCallbackPlaySource::getTargetPlayLatency() const { return m_playLatency; } size_t AudioCallbackPlaySource::getCurrentPlayingFrame() { bool resample = false; double ratio = 1.0; if (getSourceSampleRate() != getTargetSampleRate()) { resample = true; ratio = double(getSourceSampleRate()) / double(getTargetSampleRate()); } size_t readSpace = 0; for (size_t c = 0; c < getSourceChannelCount(); ++c) { size_t spaceHere = getRingBuffer(c).getReadSpace(); if (c == 0 || spaceHere < readSpace) readSpace = spaceHere; } if (resample) { readSpace = size_t(readSpace * ratio + 0.1); } size_t lastRequestedFrame = 0; if (m_bufferedToFrame > readSpace) { lastRequestedFrame = m_bufferedToFrame - readSpace; } size_t framePlaying = lastRequestedFrame; size_t latency = m_playLatency; if (resample) latency = size_t(m_playLatency * ratio + 0.1); TimeStretcherData *timeStretcher = m_timeStretcher; if (timeStretcher) { latency += timeStretcher->getStretcher(0)->getProcessingLatency(); } if (framePlaying > latency) { framePlaying = framePlaying - latency; } else { framePlaying = 0; } #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "getCurrentPlayingFrame: readSpace " << readSpace << ", lastRequestedFrame " << lastRequestedFrame << ", framePlaying " << framePlaying << ", latency " << latency << std::endl; #endif return framePlaying; } void AudioCallbackPlaySource::setOutputLevels(float left, float right) { m_outputLeft = left; m_outputRight = right; } bool AudioCallbackPlaySource::getOutputLevels(float &left, float &right) { left = m_outputLeft; right = m_outputRight; return true; } void AudioCallbackPlaySource::setTargetSampleRate(size_t sr) { m_targetSampleRate = sr; } size_t AudioCallbackPlaySource::getTargetSampleRate() const { if (m_targetSampleRate) return m_targetSampleRate; else return getSourceSampleRate(); } size_t AudioCallbackPlaySource::getSourceChannelCount() const { return m_bufferCount; } size_t AudioCallbackPlaySource::getSourceSampleRate() const { return m_sourceSampleRate; } AudioCallbackPlaySource::TimeStretcherData::TimeStretcherData(size_t channels, size_t factor, size_t blockSize) : m_factor(factor), m_blockSize(blockSize) { std::cerr << "TimeStretcherData::TimeStretcherData(" << channels << ", " << factor << ", " << blockSize << ")" << std::endl; for (size_t ch = 0; ch < channels; ++ch) { m_stretcher[ch] = StretcherBuffer //!!! We really need to measure performance and work out //what sort of quality level to use -- or at least to //allow the user to configure it (new IntegerTimeStretcher(factor, blockSize, 128), new double[blockSize * factor]); } m_stretchInputBuffer = new double[blockSize]; } AudioCallbackPlaySource::TimeStretcherData::~TimeStretcherData() { std::cerr << "IntegerTimeStretcher::~IntegerTimeStretcher" << std::endl; while (!m_stretcher.empty()) { delete m_stretcher.begin()->second.first; delete[] m_stretcher.begin()->second.second; m_stretcher.erase(m_stretcher.begin()); } delete m_stretchInputBuffer; } IntegerTimeStretcher * AudioCallbackPlaySource::TimeStretcherData::getStretcher(size_t channel) { return m_stretcher[channel].first; } double * AudioCallbackPlaySource::TimeStretcherData::getOutputBuffer(size_t channel) { return m_stretcher[channel].second; } double * AudioCallbackPlaySource::TimeStretcherData::getInputBuffer() { return m_stretchInputBuffer; } void AudioCallbackPlaySource::TimeStretcherData::run(size_t channel) { getStretcher(channel)->process(getInputBuffer(), getOutputBuffer(channel), m_blockSize); } void AudioCallbackPlaySource::setSlowdownFactor(size_t factor) { // Avoid locks -- create, assign, mark old one for scavenging // later (as a call to getSourceSamples may still be using it) TimeStretcherData *existingStretcher = m_timeStretcher; if (existingStretcher && existingStretcher->getFactor() == factor) { return; } if (factor > 1) { TimeStretcherData *newStretcher = new TimeStretcherData (getSourceChannelCount(), factor, getTargetBlockSize()); m_slowdownCounter = 0; m_timeStretcher = newStretcher; } else { m_timeStretcher = 0; } if (existingStretcher) { m_timeStretcherScavenger.claim(existingStretcher); } } size_t AudioCallbackPlaySource::getSourceSamples(size_t count, float **buffer) { if (!m_playing) { for (size_t ch = 0; ch < getSourceChannelCount(); ++ch) { for (size_t i = 0; i < count; ++i) { buffer[ch][i] = 0.0; } } return 0; } TimeStretcherData *timeStretcher = m_timeStretcher; if (!timeStretcher || timeStretcher->getFactor() == 1) { size_t got = 0; for (size_t ch = 0; ch < getSourceChannelCount(); ++ch) { RingBuffer<float> &rb = *m_buffers[ch]; // this is marginally more likely to leave our channels in // sync after a processing failure than just passing "count": size_t request = count; if (ch > 0) request = got; got = rb.read(buffer[ch], request); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySource::getSamples: got " << got << " samples on channel " << ch << ", signalling for more (possibly)" << std::endl; #endif } for (size_t ch = 0; ch < getSourceChannelCount(); ++ch) { for (size_t i = got; i < count; ++i) { buffer[ch][i] = 0.0; } } m_condition.wakeAll(); return got; } if (m_slowdownCounter == 0) { size_t got = 0; double *ib = timeStretcher->getInputBuffer(); for (size_t ch = 0; ch < getSourceChannelCount(); ++ch) { RingBuffer<float> &rb = *m_buffers[ch]; size_t request = count; if (ch > 0) request = got; // see above got = rb.read(buffer[ch], request); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySource::getSamples: got " << got << " samples on channel " << ch << ", running time stretcher" << std::endl; #endif for (size_t i = 0; i < count; ++i) { ib[i] = buffer[ch][i]; } timeStretcher->run(ch); } } else if (m_slowdownCounter >= timeStretcher->getFactor()) { // reset this in case the factor has changed leaving the // counter out of range m_slowdownCounter = 0; } for (size_t ch = 0; ch < getSourceChannelCount(); ++ch) { double *ob = timeStretcher->getOutputBuffer(ch); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "AudioCallbackPlaySource::getSamples: Copying from (" << (m_slowdownCounter * count) << "," << count << ") to buffer" << std::endl; #endif for (size_t i = 0; i < count; ++i) { buffer[ch][i] = ob[m_slowdownCounter * count + i]; } } if (m_slowdownCounter == 0) m_condition.wakeAll(); m_slowdownCounter = (m_slowdownCounter + 1) % timeStretcher->getFactor(); return count; } void AudioCallbackPlaySource::fillBuffers() { static float *tmp = 0; static size_t tmpSize = 0; size_t space = 0; for (size_t c = 0; c < m_bufferCount; ++c) { size_t spaceHere = getRingBuffer(c).getWriteSpace(); if (c == 0 || spaceHere < space) space = spaceHere; } if (space == 0) return; #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: filling " << space << " frames" << std::endl; #endif size_t f = m_bufferedToFrame; #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "buffered to " << f << " already" << std::endl; #endif bool resample = (getSourceSampleRate() != getTargetSampleRate()); size_t channels = getSourceChannelCount(); size_t orig = space; size_t got = 0; static float **bufferPtrs = 0; static size_t bufferPtrCount = 0; if (bufferPtrCount < channels) { if (bufferPtrs) delete[] bufferPtrs; bufferPtrs = new float *[channels]; bufferPtrCount = channels; } size_t generatorBlockSize = m_audioGenerator->getBlockSize(); if (resample && m_converter) { double ratio = double(getTargetSampleRate()) / double(getSourceSampleRate()); orig = size_t(orig / ratio + 0.1); // orig must be a multiple of generatorBlockSize orig = (orig / generatorBlockSize) * generatorBlockSize; if (orig == 0) return; size_t work = std::max(orig, space); // We only allocate one buffer, but we use it in two halves. // We place the non-interleaved values in the second half of // the buffer (orig samples for channel 0, orig samples for // channel 1 etc), and then interleave them into the first // half of the buffer. Then we resample back into the second // half (interleaved) and de-interleave the results back to // the start of the buffer for insertion into the ringbuffers. // What a faff -- especially as we've already de-interleaved // the audio data from the source file elsewhere before we // even reach this point. if (tmpSize < channels * work * 2) { delete[] tmp; tmp = new float[channels * work * 2]; tmpSize = channels * work * 2; } float *nonintlv = tmp + channels * work; float *intlv = tmp; float *srcout = tmp + channels * work; for (size_t c = 0; c < channels; ++c) { for (size_t i = 0; i < orig; ++i) { nonintlv[channels * i + c] = 0.0f; } } for (std::set<Model *>::iterator mi = m_models.begin(); mi != m_models.end(); ++mi) { for (size_t c = 0; c < channels; ++c) { bufferPtrs[c] = nonintlv + c * orig; } size_t gotHere = m_audioGenerator->mixModel (*mi, f, orig, bufferPtrs); got = std::max(got, gotHere); } // and interleave into first half for (size_t c = 0; c < channels; ++c) { for (size_t i = 0; i < orig; ++i) { float sample = 0; if (i < got) { sample = nonintlv[c * orig + i]; } intlv[channels * i + c] = sample; } } SRC_DATA data; data.data_in = intlv; data.data_out = srcout; data.input_frames = orig; data.output_frames = work; data.src_ratio = ratio; data.end_of_input = 0; int err = src_process(m_converter, &data); size_t toCopy = size_t(work * ratio + 0.1); if (err) { std::cerr << "AudioCallbackPlaySourceFillThread: ERROR in samplerate conversion: " << src_strerror(err) << std::endl; //!!! Then what? } else { got = data.input_frames_used; toCopy = data.output_frames_gen; #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Resampled " << got << " frames to " << toCopy << " frames" << std::endl; #endif } for (size_t c = 0; c < channels; ++c) { for (size_t i = 0; i < toCopy; ++i) { tmp[i] = srcout[channels * i + c]; } getRingBuffer(c).write(tmp, toCopy); } } else { // space must be a multiple of generatorBlockSize space = (space / generatorBlockSize) * generatorBlockSize; if (space == 0) return; if (tmpSize < channels * space) { delete[] tmp; tmp = new float[channels * space]; tmpSize = channels * space; } for (size_t c = 0; c < channels; ++c) { bufferPtrs[c] = tmp + c * space; for (size_t i = 0; i < space; ++i) { tmp[c * space + i] = 0.0f; } } for (std::set<Model *>::iterator mi = m_models.begin(); mi != m_models.end(); ++mi) { got = m_audioGenerator->mixModel (*mi, f, space, bufferPtrs); } for (size_t c = 0; c < channels; ++c) { got = getRingBuffer(c).write(bufferPtrs[c], space); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "Wrote " << got << " frames for ch " << c << ", now " << getRingBuffer(c).getReadSpace() << " to read" << std::endl; #endif } } m_bufferedToFrame = f + got; } void AudioCallbackPlaySource::AudioCallbackPlaySourceFillThread::run() { AudioCallbackPlaySource &s(m_source); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cerr << "AudioCallbackPlaySourceFillThread starting" << std::endl; #endif s.m_mutex.lock(); bool previouslyPlaying = s.m_playing; while (!s.m_exiting) { s.m_timeStretcherScavenger.scavenge(); float ms = 100; if (s.getSourceSampleRate() > 0) { ms = float(m_ringBufferSize) / float(s.getSourceSampleRate()) * 1000.0; } if (!s.m_playing) ms *= 10; #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: waiting for " << ms/4 << "ms..." << std::endl; #endif s.m_condition.wait(&s.m_mutex, size_t(ms / 4)); #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: awoken" << std::endl; #endif if (!s.getSourceSampleRate()) continue; bool playing = s.m_playing; if (playing && !previouslyPlaying) { #ifdef DEBUG_AUDIO_PLAY_SOURCE std::cout << "AudioCallbackPlaySourceFillThread: playback state changed, resetting" << std::endl; #endif for (size_t c = 0; c < s.getSourceChannelCount(); ++c) { s.getRingBuffer(c).reset(); } } previouslyPlaying = playing; if (!playing) continue; s.fillBuffers(); } s.m_mutex.unlock(); } #ifdef INCLUDE_MOCFILES #include "AudioCallbackPlaySource.moc.cpp" #endif