annotate audioio/PhaseVocoderTimeStretcher.cpp @ 63:0ffab5d7e3e1

...
author Chris Cannam
date Wed, 28 Nov 2007 11:55:09 +0000
parents 3c5756fb6a68
children
rev   line source
Chris@43 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@43 2
Chris@43 3 /*
Chris@43 4 Sonic Visualiser
Chris@43 5 An audio file viewer and annotation editor.
Chris@43 6 Centre for Digital Music, Queen Mary, University of London.
Chris@43 7 This file copyright 2006 Chris Cannam and QMUL.
Chris@43 8
Chris@43 9 This program is free software; you can redistribute it and/or
Chris@43 10 modify it under the terms of the GNU General Public License as
Chris@43 11 published by the Free Software Foundation; either version 2 of the
Chris@43 12 License, or (at your option) any later version. See the file
Chris@43 13 COPYING included with this distribution for more information.
Chris@43 14 */
Chris@43 15
Chris@63 16 #ifndef HAVE_RUBBERBAND
Chris@63 17
Chris@43 18 #include "PhaseVocoderTimeStretcher.h"
Chris@43 19
Chris@43 20 #include <iostream>
Chris@43 21 #include <cassert>
Chris@43 22
Chris@43 23 #include <QMutexLocker>
Chris@43 24
Chris@43 25 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1
Chris@43 26
Chris@43 27 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t sampleRate,
Chris@43 28 size_t channels,
Chris@43 29 float ratio,
Chris@43 30 bool sharpen,
Chris@43 31 size_t maxOutputBlockSize) :
Chris@43 32 m_sampleRate(sampleRate),
Chris@43 33 m_channels(channels),
Chris@43 34 m_maxOutputBlockSize(maxOutputBlockSize),
Chris@43 35 m_ratio(ratio),
Chris@43 36 m_sharpen(sharpen),
Chris@43 37 m_totalCount(0),
Chris@43 38 m_transientCount(0),
Chris@43 39 m_n2sum(0),
Chris@43 40 m_mutex(new QMutex())
Chris@43 41 {
Chris@43 42 initialise();
Chris@43 43 }
Chris@43 44
Chris@43 45 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher()
Chris@43 46 {
Chris@43 47 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl;
Chris@43 48
Chris@43 49 cleanup();
Chris@43 50
Chris@43 51 delete m_mutex;
Chris@43 52 }
Chris@43 53
Chris@43 54 void
Chris@43 55 PhaseVocoderTimeStretcher::initialise()
Chris@43 56 {
Chris@43 57 std::cerr << "PhaseVocoderTimeStretcher::initialise" << std::endl;
Chris@43 58
Chris@43 59 calculateParameters();
Chris@43 60
Chris@43 61 m_analysisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@43 62 m_synthesisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@43 63
Chris@43 64 m_prevPhase = new float *[m_channels];
Chris@43 65 m_prevAdjustedPhase = new float *[m_channels];
Chris@43 66
Chris@43 67 m_prevTransientMag = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@43 68 m_prevTransientScore = 0;
Chris@43 69 m_prevTransient = false;
Chris@43 70
Chris@43 71 m_tempbuf = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 72
Chris@43 73 m_time = new float *[m_channels];
Chris@43 74 m_freq = new fftf_complex *[m_channels];
Chris@43 75 m_plan = new fftf_plan[m_channels];
Chris@43 76 m_iplan = new fftf_plan[m_channels];
Chris@43 77
Chris@43 78 m_inbuf = new RingBuffer<float> *[m_channels];
Chris@43 79 m_outbuf = new RingBuffer<float> *[m_channels];
Chris@43 80 m_mashbuf = new float *[m_channels];
Chris@43 81
Chris@43 82 m_modulationbuf = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 83
Chris@43 84 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 85
Chris@43 86 m_prevPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@43 87 m_prevAdjustedPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@43 88
Chris@43 89 m_time[c] = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 90 m_freq[c] = (fftf_complex *)fftf_malloc(sizeof(fftf_complex) *
Chris@43 91 (m_wlen / 2 + 1));
Chris@43 92
Chris@43 93 m_plan[c] = fftf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_MEASURE);
Chris@43 94 m_iplan[c] = fftf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_MEASURE);
Chris@43 95
Chris@43 96 m_outbuf[c] = new RingBuffer<float>
Chris@43 97 ((m_maxOutputBlockSize + m_wlen) * 2);
Chris@43 98 m_inbuf[c] = new RingBuffer<float>
Chris@43 99 (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen);
Chris@43 100
Chris@43 101 std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
Chris@43 102
Chris@43 103
Chris@43 104 m_mashbuf[c] = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 105
Chris@43 106 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 107 m_mashbuf[c][i] = 0.0;
Chris@43 108 }
Chris@43 109
Chris@43 110 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 111 m_prevPhase[c][i] = 0.0;
Chris@43 112 m_prevAdjustedPhase[c][i] = 0.0;
Chris@43 113 }
Chris@43 114 }
Chris@43 115
Chris@43 116 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 117 m_modulationbuf[i] = 0.0;
Chris@43 118 }
Chris@43 119
Chris@43 120 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 121 m_prevTransientMag[i] = 0.0;
Chris@43 122 }
Chris@43 123 }
Chris@43 124
Chris@43 125 void
Chris@43 126 PhaseVocoderTimeStretcher::calculateParameters()
Chris@43 127 {
Chris@43 128 std::cerr << "PhaseVocoderTimeStretcher::calculateParameters" << std::endl;
Chris@43 129
Chris@43 130 m_wlen = 1024;
Chris@43 131
Chris@43 132 //!!! In transient sharpening mode, we need to pick the window
Chris@43 133 //length so as to be more or less fixed in audio duration (i.e. we
Chris@43 134 //need to exploit the sample rate)
Chris@43 135
Chris@43 136 //!!! have to work out the relationship between wlen and transient
Chris@43 137 //threshold
Chris@43 138
Chris@43 139 if (m_ratio < 1) {
Chris@43 140 if (m_ratio < 0.4) {
Chris@43 141 m_n1 = 1024;
Chris@43 142 m_wlen = 2048;
Chris@43 143 } else if (m_ratio < 0.8) {
Chris@43 144 m_n1 = 512;
Chris@43 145 } else {
Chris@43 146 m_n1 = 256;
Chris@43 147 }
Chris@43 148 if (shouldSharpen()) {
Chris@43 149 m_wlen = 2048;
Chris@43 150 }
Chris@43 151 m_n2 = lrintf(m_n1 * m_ratio);
Chris@43 152 } else {
Chris@43 153 if (m_ratio > 2) {
Chris@43 154 m_n2 = 512;
Chris@43 155 m_wlen = 4096;
Chris@43 156 } else if (m_ratio > 1.6) {
Chris@43 157 m_n2 = 384;
Chris@43 158 m_wlen = 2048;
Chris@43 159 } else {
Chris@43 160 m_n2 = 256;
Chris@43 161 }
Chris@43 162 if (shouldSharpen()) {
Chris@43 163 if (m_wlen < 2048) m_wlen = 2048;
Chris@43 164 }
Chris@43 165 m_n1 = lrintf(m_n2 / m_ratio);
Chris@43 166 if (m_n1 == 0) {
Chris@43 167 m_n1 = 1;
Chris@43 168 m_n2 = lrintf(m_ratio);
Chris@43 169 }
Chris@43 170 }
Chris@43 171
Chris@43 172 m_transientThreshold = lrintf(m_wlen / 4.5);
Chris@43 173
Chris@43 174 m_totalCount = 0;
Chris@43 175 m_transientCount = 0;
Chris@43 176 m_n2sum = 0;
Chris@43 177
Chris@43 178
Chris@43 179 std::cerr << "PhaseVocoderTimeStretcher: channels = " << m_channels
Chris@43 180 << ", ratio = " << m_ratio
Chris@43 181 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
Chris@43 182 << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl;
Chris@43 183 // << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
Chris@43 184 }
Chris@43 185
Chris@43 186 void
Chris@43 187 PhaseVocoderTimeStretcher::cleanup()
Chris@43 188 {
Chris@43 189 std::cerr << "PhaseVocoderTimeStretcher::cleanup" << std::endl;
Chris@43 190
Chris@43 191 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 192
Chris@43 193 fftf_destroy_plan(m_plan[c]);
Chris@43 194 fftf_destroy_plan(m_iplan[c]);
Chris@43 195
Chris@43 196 fftf_free(m_time[c]);
Chris@43 197 fftf_free(m_freq[c]);
Chris@43 198
Chris@43 199 fftf_free(m_mashbuf[c]);
Chris@43 200 fftf_free(m_prevPhase[c]);
Chris@43 201 fftf_free(m_prevAdjustedPhase[c]);
Chris@43 202
Chris@43 203 delete m_inbuf[c];
Chris@43 204 delete m_outbuf[c];
Chris@43 205 }
Chris@43 206
Chris@43 207 fftf_free(m_tempbuf);
Chris@43 208 fftf_free(m_modulationbuf);
Chris@43 209 fftf_free(m_prevTransientMag);
Chris@43 210
Chris@43 211 delete[] m_prevPhase;
Chris@43 212 delete[] m_prevAdjustedPhase;
Chris@43 213 delete[] m_inbuf;
Chris@43 214 delete[] m_outbuf;
Chris@43 215 delete[] m_mashbuf;
Chris@43 216 delete[] m_time;
Chris@43 217 delete[] m_freq;
Chris@43 218 delete[] m_plan;
Chris@43 219 delete[] m_iplan;
Chris@43 220
Chris@43 221 delete m_analysisWindow;
Chris@43 222 delete m_synthesisWindow;
Chris@43 223 }
Chris@43 224
Chris@43 225 void
Chris@43 226 PhaseVocoderTimeStretcher::setRatio(float ratio)
Chris@43 227 {
Chris@43 228 QMutexLocker locker(m_mutex);
Chris@43 229
Chris@43 230 size_t formerWlen = m_wlen;
Chris@43 231 m_ratio = ratio;
Chris@43 232
Chris@43 233 std::cerr << "PhaseVocoderTimeStretcher::setRatio: new ratio " << ratio
Chris@43 234 << std::endl;
Chris@43 235
Chris@43 236 calculateParameters();
Chris@43 237
Chris@43 238 if (m_wlen == formerWlen) {
Chris@43 239
Chris@43 240 // This is the only container whose size depends on m_ratio
Chris@43 241
Chris@43 242 RingBuffer<float> **newin = new RingBuffer<float> *[m_channels];
Chris@43 243
Chris@43 244 size_t formerSize = m_inbuf[0]->getSize();
Chris@43 245 size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen;
Chris@43 246
Chris@43 247 std::cerr << "resizing inbuf from " << formerSize << " to "
Chris@43 248 << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
Chris@43 249
Chris@43 250 if (formerSize != newSize) {
Chris@43 251
Chris@43 252 size_t ready = m_inbuf[0]->getReadSpace();
Chris@43 253
Chris@43 254 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 255 newin[c] = new RingBuffer<float>(newSize);
Chris@43 256 }
Chris@43 257
Chris@43 258 if (ready > 0) {
Chris@43 259
Chris@43 260 size_t copy = std::min(ready, newSize);
Chris@43 261 float *tmp = new float[ready];
Chris@43 262
Chris@43 263 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 264 m_inbuf[c]->read(tmp, ready);
Chris@43 265 newin[c]->write(tmp + ready - copy, copy);
Chris@43 266 }
Chris@43 267
Chris@43 268 delete[] tmp;
Chris@43 269 }
Chris@43 270
Chris@43 271 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 272 delete m_inbuf[c];
Chris@43 273 }
Chris@43 274
Chris@43 275 delete[] m_inbuf;
Chris@43 276 m_inbuf = newin;
Chris@43 277 }
Chris@43 278
Chris@43 279 } else {
Chris@43 280
Chris@43 281 std::cerr << "wlen changed" << std::endl;
Chris@43 282 cleanup();
Chris@43 283 initialise();
Chris@43 284 }
Chris@43 285 }
Chris@43 286
Chris@43 287 size_t
Chris@43 288 PhaseVocoderTimeStretcher::getProcessingLatency() const
Chris@43 289 {
Chris@43 290 return getWindowSize() - getInputIncrement();
Chris@43 291 }
Chris@43 292
Chris@43 293 size_t
Chris@43 294 PhaseVocoderTimeStretcher::getRequiredInputSamples() const
Chris@43 295 {
Chris@43 296 QMutexLocker locker(m_mutex);
Chris@43 297
Chris@43 298 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0;
Chris@43 299 return m_wlen - m_inbuf[0]->getReadSpace();
Chris@43 300 }
Chris@43 301
Chris@43 302 void
Chris@43 303 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples)
Chris@43 304 {
Chris@43 305 QMutexLocker locker(m_mutex);
Chris@43 306
Chris@43 307 // We need to add samples from input to our internal buffer. When
Chris@43 308 // we have m_windowSize samples in the buffer, we can process it,
Chris@43 309 // move the samples back by m_n1 and write the output onto our
Chris@43 310 // internal output buffer. If we have (samples * ratio) samples
Chris@43 311 // in that, we can write m_n2 of them back to output and return
Chris@43 312 // (otherwise we have to write zeroes).
Chris@43 313
Chris@43 314 // When we process, we write m_wlen to our fixed output buffer
Chris@43 315 // (m_mashbuf). We then pull out the first m_n2 samples from that
Chris@43 316 // buffer, push them into the output ring buffer, and shift
Chris@43 317 // m_mashbuf left by that amount.
Chris@43 318
Chris@43 319 // The processing latency is then m_wlen - m_n2.
Chris@43 320
Chris@43 321 size_t consumed = 0;
Chris@43 322
Chris@43 323 while (consumed < samples) {
Chris@43 324
Chris@43 325 size_t writable = m_inbuf[0]->getWriteSpace();
Chris@43 326 writable = std::min(writable, samples - consumed);
Chris@43 327
Chris@43 328 if (writable == 0) {
Chris@43 329 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 330 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl;
Chris@43 331 #endif
Chris@43 332 if (m_inbuf[0]->getReadSpace() < m_wlen ||
Chris@43 333 m_outbuf[0]->getWriteSpace() < m_n2) {
Chris@43 334 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl;
Chris@43 335 break;
Chris@43 336 }
Chris@43 337 } else {
Chris@43 338
Chris@43 339 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 340 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
Chris@43 341 #endif
Chris@43 342
Chris@43 343 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 344 m_inbuf[c]->write(input[c] + consumed, writable);
Chris@43 345 }
Chris@43 346 consumed += writable;
Chris@43 347 }
Chris@43 348
Chris@43 349 while (m_inbuf[0]->getReadSpace() >= m_wlen &&
Chris@43 350 m_outbuf[0]->getWriteSpace() >= m_n2) {
Chris@43 351
Chris@43 352 // We know we have at least m_wlen samples available
Chris@43 353 // in m_inbuf. We need to peek m_wlen of them for
Chris@43 354 // processing, and then read m_n1 to advance the read
Chris@43 355 // pointer.
Chris@43 356
Chris@43 357 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 358
Chris@43 359 size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen);
Chris@43 360 assert(got == m_wlen);
Chris@43 361
Chris@43 362 analyseBlock(c, m_tempbuf);
Chris@43 363 }
Chris@43 364
Chris@43 365 bool transient = false;
Chris@43 366 if (shouldSharpen()) transient = isTransient();
Chris@43 367
Chris@43 368 size_t n2 = m_n2;
Chris@43 369
Chris@43 370 if (transient) {
Chris@43 371 n2 = m_n1;
Chris@43 372 }
Chris@43 373
Chris@43 374 ++m_totalCount;
Chris@43 375 if (transient) ++m_transientCount;
Chris@43 376 m_n2sum += n2;
Chris@43 377
Chris@43 378 // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl;
Chris@43 379
Chris@43 380 if (m_totalCount > 50 && m_transientCount < m_totalCount) {
Chris@43 381
Chris@43 382 int fixed = lrintf(m_transientCount * m_n1);
Chris@43 383
Chris@43 384 int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio);
Chris@43 385 int idealSquashy = idealTotal - fixed;
Chris@43 386
Chris@43 387 int squashyCount = m_totalCount - m_transientCount;
Chris@43 388
Chris@43 389 n2 = lrintf(idealSquashy / squashyCount);
Chris@43 390
Chris@43 391 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 392 if (n2 != m_n2) {
Chris@43 393 std::cerr << m_n2 << " -> " << n2 << std::endl;
Chris@43 394 }
Chris@43 395 #endif
Chris@43 396 }
Chris@43 397
Chris@43 398 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 399
Chris@43 400 synthesiseBlock(c, m_mashbuf[c],
Chris@43 401 c == 0 ? m_modulationbuf : 0,
Chris@43 402 m_prevTransient ? m_n1 : m_n2);
Chris@43 403
Chris@43 404
Chris@43 405 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 406 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
Chris@43 407 #endif
Chris@43 408 m_inbuf[c]->skip(m_n1);
Chris@43 409
Chris@43 410 for (size_t i = 0; i < n2; ++i) {
Chris@43 411 if (m_modulationbuf[i] > 0.f) {
Chris@43 412 m_mashbuf[c][i] /= m_modulationbuf[i];
Chris@43 413 }
Chris@43 414 }
Chris@43 415
Chris@43 416 m_outbuf[c]->write(m_mashbuf[c], n2);
Chris@43 417
Chris@43 418 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@43 419 m_mashbuf[c][i] = m_mashbuf[c][i + n2];
Chris@43 420 }
Chris@43 421
Chris@43 422 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@43 423 m_mashbuf[c][i] = 0.0f;
Chris@43 424 }
Chris@43 425 }
Chris@43 426
Chris@43 427 m_prevTransient = transient;
Chris@43 428
Chris@43 429 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@43 430 m_modulationbuf[i] = m_modulationbuf[i + n2];
Chris@43 431 }
Chris@43 432
Chris@43 433 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@43 434 m_modulationbuf[i] = 0.0f;
Chris@43 435 }
Chris@43 436
Chris@43 437 if (!transient) m_n2 = n2;
Chris@43 438 }
Chris@43 439
Chris@43 440
Chris@43 441 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 442 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
Chris@43 443 #endif
Chris@43 444 }
Chris@43 445
Chris@43 446 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 447 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl;
Chris@43 448 #endif
Chris@43 449
Chris@43 450 // std::cerr << "ratio: nominal: " << getRatio() << " actual: "
Chris@43 451 // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl;
Chris@43 452 }
Chris@43 453
Chris@43 454 size_t
Chris@43 455 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const
Chris@43 456 {
Chris@43 457 QMutexLocker locker(m_mutex);
Chris@43 458
Chris@43 459 return m_outbuf[0]->getReadSpace();
Chris@43 460 }
Chris@43 461
Chris@43 462 void
Chris@43 463 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples)
Chris@43 464 {
Chris@43 465 QMutexLocker locker(m_mutex);
Chris@43 466
Chris@43 467 if (m_outbuf[0]->getReadSpace() < samples) {
Chris@43 468 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
Chris@43 469 size_t fill = samples - m_outbuf[0]->getReadSpace();
Chris@43 470 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 471 for (size_t i = 0; i < fill; ++i) {
Chris@43 472 output[c][i] = 0.0;
Chris@43 473 }
Chris@43 474 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
Chris@43 475 }
Chris@43 476 } else {
Chris@43 477 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 478 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
Chris@43 479 #endif
Chris@43 480 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 481 m_outbuf[c]->read(output[c], samples);
Chris@43 482 }
Chris@43 483 }
Chris@43 484
Chris@43 485 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 486 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl;
Chris@43 487 #endif
Chris@43 488 }
Chris@43 489
Chris@43 490 void
Chris@43 491 PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf)
Chris@43 492 {
Chris@43 493 size_t i;
Chris@43 494
Chris@43 495 // buf contains m_wlen samples
Chris@43 496
Chris@43 497 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 498 std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl;
Chris@43 499 #endif
Chris@43 500
Chris@43 501 m_analysisWindow->cut(buf);
Chris@43 502
Chris@43 503 for (i = 0; i < m_wlen/2; ++i) {
Chris@43 504 float temp = buf[i];
Chris@43 505 buf[i] = buf[i + m_wlen/2];
Chris@43 506 buf[i + m_wlen/2] = temp;
Chris@43 507 }
Chris@43 508
Chris@43 509 for (i = 0; i < m_wlen; ++i) {
Chris@43 510 m_time[c][i] = buf[i];
Chris@43 511 }
Chris@43 512
Chris@43 513 fftf_execute(m_plan[c]); // m_time -> m_freq
Chris@43 514 }
Chris@43 515
Chris@43 516 bool
Chris@43 517 PhaseVocoderTimeStretcher::isTransient()
Chris@43 518 {
Chris@43 519 int count = 0;
Chris@43 520
Chris@43 521 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 522
Chris@43 523 float real = 0.f, imag = 0.f;
Chris@43 524
Chris@43 525 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 526 real += m_freq[c][i][0];
Chris@43 527 imag += m_freq[c][i][1];
Chris@43 528 }
Chris@43 529
Chris@43 530 float sqrmag = (real * real + imag * imag);
Chris@43 531
Chris@43 532 if (m_prevTransientMag[i] > 0.f) {
Chris@43 533 float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]);
Chris@43 534 if (diff > 3.f) ++count;
Chris@43 535 }
Chris@43 536
Chris@43 537 m_prevTransientMag[i] = sqrmag;
Chris@43 538 }
Chris@43 539
Chris@43 540 bool isTransient = false;
Chris@43 541
Chris@43 542 // if (count > m_transientThreshold &&
Chris@43 543 // count > m_prevTransientScore * 1.2) {
Chris@43 544 if (count > m_prevTransientScore &&
Chris@43 545 count > m_transientThreshold &&
Chris@43 546 count - m_prevTransientScore > int(m_wlen) / 20) {
Chris@43 547 isTransient = true;
Chris@43 548
Chris@43 549
Chris@43 550 // std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ")" << std::endl;
Chris@43 551 // } else {
Chris@43 552 // std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl;
Chris@43 553 }
Chris@43 554
Chris@43 555 m_prevTransientScore = count;
Chris@43 556
Chris@43 557 return isTransient;
Chris@43 558 }
Chris@43 559
Chris@43 560 void
Chris@43 561 PhaseVocoderTimeStretcher::synthesiseBlock(size_t c,
Chris@43 562 float *out,
Chris@43 563 float *modulation,
Chris@43 564 size_t lastStep)
Chris@43 565 {
Chris@43 566 bool unchanged = (lastStep == m_n1);
Chris@43 567
Chris@43 568 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 569
Chris@43 570 float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0]));
Chris@43 571 float adjustedPhase = phase;
Chris@43 572
Chris@43 573 if (!unchanged) {
Chris@43 574
Chris@43 575 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
Chris@43 576
Chris@43 577 float expectedPhase = m_prevPhase[c][i] + omega;
Chris@43 578
Chris@43 579 float phaseError = princargf(phase - expectedPhase);
Chris@43 580
Chris@43 581 float phaseIncrement = (omega + phaseError) / m_n1;
Chris@43 582
Chris@43 583 adjustedPhase = m_prevAdjustedPhase[c][i] +
Chris@43 584 lastStep * phaseIncrement;
Chris@43 585
Chris@43 586 float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] +
Chris@43 587 m_freq[c][i][1] * m_freq[c][i][1]);
Chris@43 588
Chris@43 589 float real = mag * cosf(adjustedPhase);
Chris@43 590 float imag = mag * sinf(adjustedPhase);
Chris@43 591 m_freq[c][i][0] = real;
Chris@43 592 m_freq[c][i][1] = imag;
Chris@43 593 }
Chris@43 594
Chris@43 595 m_prevPhase[c][i] = phase;
Chris@43 596 m_prevAdjustedPhase[c][i] = adjustedPhase;
Chris@43 597 }
Chris@43 598
Chris@43 599 fftf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft
Chris@43 600
Chris@43 601 for (size_t i = 0; i < m_wlen/2; ++i) {
Chris@43 602 float temp = m_time[c][i];
Chris@43 603 m_time[c][i] = m_time[c][i + m_wlen/2];
Chris@43 604 m_time[c][i + m_wlen/2] = temp;
Chris@43 605 }
Chris@43 606
Chris@43 607 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 608 m_time[c][i] = m_time[c][i] / m_wlen;
Chris@43 609 }
Chris@43 610
Chris@43 611 m_synthesisWindow->cut(m_time[c]);
Chris@43 612
Chris@43 613 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 614 out[i] += m_time[c][i];
Chris@43 615 }
Chris@43 616
Chris@43 617 if (modulation) {
Chris@43 618
Chris@43 619 float area = m_analysisWindow->getArea();
Chris@43 620
Chris@43 621 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 622 float val = m_synthesisWindow->getValue(i);
Chris@43 623 modulation[i] += val * area;
Chris@43 624 }
Chris@43 625 }
Chris@43 626 }
Chris@43 627
Chris@43 628
Chris@63 629 #endif