changeset 160:cff480c41f97

Add some cross-platform Boost headers
author Chris Cannam <cannam@all-day-breakfast.com>
date Sat, 16 Feb 2019 16:31:25 +0000
parents f4b37539fcc7
children 4797bbf470e7
files any/include/boost/math/distributions.hpp any/include/boost/math/distributions/arcsine.hpp any/include/boost/math/distributions/bernoulli.hpp any/include/boost/math/distributions/beta.hpp any/include/boost/math/distributions/binomial.hpp any/include/boost/math/distributions/cauchy.hpp any/include/boost/math/distributions/chi_squared.hpp any/include/boost/math/distributions/complement.hpp any/include/boost/math/distributions/detail/common_error_handling.hpp any/include/boost/math/distributions/detail/derived_accessors.hpp any/include/boost/math/distributions/detail/generic_mode.hpp any/include/boost/math/distributions/detail/generic_quantile.hpp any/include/boost/math/distributions/detail/hypergeometric_cdf.hpp any/include/boost/math/distributions/detail/hypergeometric_pdf.hpp any/include/boost/math/distributions/detail/hypergeometric_quantile.hpp any/include/boost/math/distributions/detail/inv_discrete_quantile.hpp any/include/boost/math/distributions/exponential.hpp any/include/boost/math/distributions/extreme_value.hpp any/include/boost/math/distributions/find_location.hpp any/include/boost/math/distributions/find_scale.hpp any/include/boost/math/distributions/fisher_f.hpp any/include/boost/math/distributions/fwd.hpp any/include/boost/math/distributions/gamma.hpp any/include/boost/math/distributions/geometric.hpp any/include/boost/math/distributions/hyperexponential.hpp any/include/boost/math/distributions/hypergeometric.hpp any/include/boost/math/distributions/inverse_chi_squared.hpp any/include/boost/math/distributions/inverse_gamma.hpp any/include/boost/math/distributions/inverse_gaussian.hpp any/include/boost/math/distributions/laplace.hpp any/include/boost/math/distributions/logistic.hpp any/include/boost/math/distributions/lognormal.hpp any/include/boost/math/distributions/negative_binomial.hpp any/include/boost/math/distributions/non_central_beta.hpp any/include/boost/math/distributions/non_central_chi_squared.hpp any/include/boost/math/distributions/non_central_f.hpp any/include/boost/math/distributions/non_central_t.hpp any/include/boost/math/distributions/normal.hpp any/include/boost/math/distributions/pareto.hpp any/include/boost/math/distributions/poisson.hpp any/include/boost/math/distributions/rayleigh.hpp any/include/boost/math/distributions/skew_normal.hpp any/include/boost/math/distributions/students_t.hpp any/include/boost/math/distributions/triangular.hpp any/include/boost/math/distributions/uniform.hpp any/include/boost/math/distributions/weibull.hpp
diffstat 46 files changed, 19045 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,53 @@
+//  Copyright John Maddock 2006, 2007.
+//  Copyright Paul A. Bristow 2006, 2007, 2009, 2010.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// This file includes *all* the distributions.
+// this *may* be convenient if many are used
+// - to avoid including each distribution individually.
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_HPP
+#define BOOST_MATH_DISTRIBUTIONS_HPP
+
+#include <boost/math/distributions/arcsine.hpp>
+#include <boost/math/distributions/bernoulli.hpp>
+#include <boost/math/distributions/beta.hpp>
+#include <boost/math/distributions/binomial.hpp>
+#include <boost/math/distributions/cauchy.hpp>
+#include <boost/math/distributions/chi_squared.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/exponential.hpp>
+#include <boost/math/distributions/extreme_value.hpp>
+#include <boost/math/distributions/fisher_f.hpp>
+#include <boost/math/distributions/gamma.hpp>
+#include <boost/math/distributions/geometric.hpp>
+#include <boost/math/distributions/hyperexponential.hpp>
+#include <boost/math/distributions/hypergeometric.hpp>
+#include <boost/math/distributions/inverse_chi_squared.hpp>
+#include <boost/math/distributions/inverse_gamma.hpp>
+#include <boost/math/distributions/inverse_gaussian.hpp>
+#include <boost/math/distributions/laplace.hpp>
+#include <boost/math/distributions/logistic.hpp>
+#include <boost/math/distributions/lognormal.hpp>
+#include <boost/math/distributions/negative_binomial.hpp>
+#include <boost/math/distributions/non_central_chi_squared.hpp>
+#include <boost/math/distributions/non_central_beta.hpp>
+#include <boost/math/distributions/non_central_f.hpp>
+#include <boost/math/distributions/non_central_t.hpp>
+#include <boost/math/distributions/normal.hpp>
+#include <boost/math/distributions/pareto.hpp>
+#include <boost/math/distributions/poisson.hpp>
+#include <boost/math/distributions/rayleigh.hpp>
+#include <boost/math/distributions/skew_normal.hpp>
+#include <boost/math/distributions/students_t.hpp>
+#include <boost/math/distributions/triangular.hpp>
+#include <boost/math/distributions/uniform.hpp>
+#include <boost/math/distributions/weibull.hpp>
+#include <boost/math/distributions/find_scale.hpp>
+#include <boost/math/distributions/find_location.hpp>
+
+#endif // BOOST_MATH_DISTRIBUTIONS_HPP
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/arcsine.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,535 @@
+// boost/math/distributions/arcsine.hpp
+
+// Copyright John Maddock 2014.
+// Copyright Paul A. Bristow 2014.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// http://en.wikipedia.org/wiki/arcsine_distribution
+
+// The arcsine Distribution is a continuous probability distribution.
+// http://en.wikipedia.org/wiki/Arcsine_distribution
+// http://www.wolframalpha.com/input/?i=ArcSinDistribution
+
+// Standard arcsine distribution is a special case of beta distribution with both a & b = one half,
+// and 0 <= x <= 1.
+
+// It is generalized to include any bounded support a <= x <= b from 0 <= x <= 1
+// by Wolfram and Wikipedia,
+// but using location and scale parameters by
+// Virtual Laboratories in Probability and Statistics http://www.math.uah.edu/stat/index.html
+// http://www.math.uah.edu/stat/special/Arcsine.html
+// The end-point version is simpler and more obvious, so we implement that.
+// TODO Perhaps provide location and scale functions?
+
+
+#ifndef BOOST_MATH_DIST_ARCSINE_HPP
+#define BOOST_MATH_DIST_ARCSINE_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/distributions/complement.hpp> // complements.
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks.
+#include <boost/math/constants/constants.hpp>
+
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+
+#if defined (BOOST_MSVC)
+#  pragma warning(push)
+#  pragma warning(disable: 4702) // Unreachable code,
+// in domain_error_imp in error_handling.
+#endif
+
+#include <utility>
+#include <exception>  // For std::domain_error.
+
+namespace boost
+{
+  namespace math
+  {
+    namespace arcsine_detail
+    {
+      // Common error checking routines for arcsine distribution functions:
+      // Duplicating for x_min and x_max provides specific error messages.
+      template <class RealType, class Policy>
+      inline bool check_x_min(const char* function, const RealType& x, RealType* result, const Policy& pol)
+      {
+        if (!(boost::math::isfinite)(x))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "x_min argument is %1%, but must be finite !", x, pol);
+          return false;
+        }
+        return true;
+      } // bool check_x_min
+
+      template <class RealType, class Policy>
+      inline bool check_x_max(const char* function, const RealType& x, RealType* result, const Policy& pol)
+      {
+        if (!(boost::math::isfinite)(x))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "x_max argument is %1%, but must be finite !", x, pol);
+          return false;
+        }
+        return true;
+      } // bool check_x_max
+
+
+      template <class RealType, class Policy>
+      inline bool check_x_minmax(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)
+      { // Check x_min < x_max
+        if (x_min >= x_max)
+        {
+          std::string msg = "x_max argument is %1%, but must be > x_min = " + lexical_cast<std::string>(x_min) + "!";
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            msg.c_str(), x_max, pol);
+           // "x_max argument is %1%, but must be > x_min !", x_max, pol);
+            //  "x_max argument is %1%, but must be > x_min %2!", x_max, x_min, pol); would be better. 
+          // But would require replication of all helpers functions in /policies/error_handling.hpp for two values,
+          // as well as two value versions of raise_error, raise_domain_error and do_format ...
+          // so use slightly hacky lexical_cast to string instead.
+          return false;
+        }
+        return true;
+      } // bool check_x_minmax
+
+      template <class RealType, class Policy>
+      inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
+      {
+        if ((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
+          return false;
+        }
+        return true;
+      } // bool check_prob
+
+      template <class RealType, class Policy>
+      inline bool check_x(const char* function, const RealType& x_min, const RealType& x_max, const RealType& x, RealType* result, const Policy& pol)
+      { // Check x finite and x_min < x < x_max.
+        if (!(boost::math::isfinite)(x))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "x argument is %1%, but must be finite !", x, pol);
+          return false;
+        }
+        if ((x < x_min) || (x > x_max))
+        {
+          // std::cout << x_min << ' ' << x << x_max << std::endl;
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "x argument is %1%, but must be x_min < x < x_max !", x, pol);
+          // For example:
+          // Error in function boost::math::pdf(arcsine_distribution<double> const&, double) : x argument is -1.01, but must be x_min < x < x_max !
+          // TODO Perhaps show values of x_min and x_max?
+          return false;
+        }
+        return true;
+      } // bool check_x
+
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& x_min, const RealType& x_max, RealType* result, const Policy& pol)
+      { // Check both x_min and x_max finite, and x_min  < x_max.
+        return check_x_min(function, x_min, result, pol)
+            && check_x_max(function, x_max, result, pol)
+            && check_x_minmax(function, x_min, x_max, result, pol);
+      } // bool check_dist
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_x(const char* function, const RealType& x_min, const RealType& x_max, RealType x, RealType* result, const Policy& pol)
+      {
+        return check_dist(function, x_min, x_max, result, pol)
+          && arcsine_detail::check_x(function, x_min, x_max, x, result, pol);
+      } // bool check_dist_and_x
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_prob(const char* function, const RealType& x_min, const RealType& x_max, RealType p, RealType* result, const Policy& pol)
+      {
+        return check_dist(function, x_min, x_max, result, pol)
+          && check_prob(function, p, result, pol);
+      } // bool check_dist_and_prob
+
+    } // namespace arcsine_detail
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class arcsine_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      arcsine_distribution(RealType x_min = 0, RealType x_max = 1) : m_x_min(x_min), m_x_max(x_max)
+      { // Default beta (alpha = beta = 0.5) is standard arcsine with x_min = 0, x_max = 1.
+        // Generalized to allow x_min and x_max to be specified.
+        RealType result;
+        arcsine_detail::check_dist(
+          "boost::math::arcsine_distribution<%1%>::arcsine_distribution",
+          m_x_min,
+          m_x_max,
+          &result, Policy());
+      } // arcsine_distribution constructor.
+      // Accessor functions:
+      RealType x_min() const
+      {
+        return m_x_min;
+      }
+      RealType x_max() const
+      {
+        return m_x_max;
+      }
+
+    private:
+      RealType m_x_min; // Two x min and x max parameters of the arcsine distribution.
+      RealType m_x_max;
+    }; // template <class RealType, class Policy> class arcsine_distribution
+
+    // Convenient typedef to construct double version.
+    typedef arcsine_distribution<double> arcsine;
+
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const arcsine_distribution<RealType, Policy>&  dist)
+    { // Range of permissible values for random variable x.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(static_cast<RealType>(dist.x_min()), static_cast<RealType>(dist.x_max()));
+    }
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const arcsine_distribution<RealType, Policy>&  dist)
+    { // Range of supported values for random variable x.
+      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+      return std::pair<RealType, RealType>(static_cast<RealType>(dist.x_min()), static_cast<RealType>(dist.x_max()));
+    }
+
+    template <class RealType, class Policy>
+    inline RealType mean(const arcsine_distribution<RealType, Policy>& dist)
+    { // Mean of arcsine distribution .
+      RealType result;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+
+      if (false == arcsine_detail::check_dist(
+        "boost::math::mean(arcsine_distribution<%1%> const&, %1% )",
+        x_min,
+        x_max,
+        &result, Policy())
+        )
+      {
+        return result;
+      }
+      return  (x_min + x_max) / 2;
+    } // mean
+
+    template <class RealType, class Policy>
+    inline RealType variance(const arcsine_distribution<RealType, Policy>& dist)
+    { // Variance of standard arcsine distribution = (1-0)/8 = 0.125.
+      RealType result;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+      if (false == arcsine_detail::check_dist(
+        "boost::math::variance(arcsine_distribution<%1%> const&, %1% )",
+        x_min,
+        x_max,
+        &result, Policy())
+        )
+      {
+        return result;
+      }
+      return  (x_max - x_min) * (x_max - x_min) / 8;
+    } // variance
+
+    template <class RealType, class Policy>
+    inline RealType mode(const arcsine_distribution<RealType, Policy>& /* dist */)
+    { //There are always [*two] values for the mode, at ['x_min] and at ['x_max], default 0 and 1,
+      // so instead we raise the exception domain_error.
+      return policies::raise_domain_error<RealType>(
+        "boost::math::mode(arcsine_distribution<%1%>&)",
+        "The arcsine distribution has two modes at x_min and x_max: "
+        "so the return value is %1%.",
+        std::numeric_limits<RealType>::quiet_NaN(), Policy());
+    } // mode
+
+    template <class RealType, class Policy>
+    inline RealType median(const arcsine_distribution<RealType, Policy>& dist)
+    { // Median of arcsine distribution (a + b) / 2 == mean.
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+      RealType result;
+      if (false == arcsine_detail::check_dist(
+        "boost::math::median(arcsine_distribution<%1%> const&, %1% )",
+        x_min,
+        x_max,
+        &result, Policy())
+        )
+      {
+        return result;
+      }
+      return  (x_min + x_max) / 2;
+    }
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const arcsine_distribution<RealType, Policy>& dist)
+    {
+      RealType result;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+
+      if (false == arcsine_detail::check_dist(
+        "boost::math::skewness(arcsine_distribution<%1%> const&, %1% )",
+        x_min,
+        x_max,
+        &result, Policy())
+        )
+      {
+        return result;
+      }
+      return 0;
+    } // skewness
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const arcsine_distribution<RealType, Policy>& dist)
+    {
+      RealType result;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+
+      if (false == arcsine_detail::check_dist(
+        "boost::math::kurtosis_excess(arcsine_distribution<%1%> const&, %1% )",
+        x_min,
+        x_max,
+        &result, Policy())
+        )
+      {
+        return result;
+      }
+      result = -3;
+      return  result / 2;
+    } // kurtosis_excess
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const arcsine_distribution<RealType, Policy>& dist)
+    {
+      RealType result;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+
+      if (false == arcsine_detail::check_dist(
+        "boost::math::kurtosis(arcsine_distribution<%1%> const&, %1% )",
+        x_min,
+        x_max,
+        &result, Policy())
+        )
+      {
+        return result;
+      }
+
+      return 3 + kurtosis_excess(dist);
+    } // kurtosis
+
+    template <class RealType, class Policy>
+    inline RealType pdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& xx)
+    { // Probability Density/Mass Function arcsine.
+      BOOST_FPU_EXCEPTION_GUARD
+      BOOST_MATH_STD_USING // For ADL of std functions.
+
+      static const char* function = "boost::math::pdf(arcsine_distribution<%1%> const&, %1%)";
+
+      RealType lo = dist.x_min();
+      RealType hi = dist.x_max();
+      RealType x = xx;
+
+      // Argument checks:
+      RealType result = 0; 
+      if (false == arcsine_detail::check_dist_and_x(
+        function,
+        lo, hi, x,
+        &result, Policy()))
+      {
+        return result;
+      }
+      using boost::math::constants::pi;
+      result = static_cast<RealType>(1) / (pi<RealType>() * sqrt((x - lo) * (hi - x)));
+      return result;
+    } // pdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const arcsine_distribution<RealType, Policy>& dist, const RealType& x)
+    { // Cumulative Distribution Function arcsine.
+      BOOST_MATH_STD_USING // For ADL of std functions.
+
+      static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";
+
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+
+      // Argument checks:
+      RealType result = 0;
+      if (false == arcsine_detail::check_dist_and_x(
+        function,
+        x_min, x_max, x,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if (x == x_min)
+      {
+        return 0;
+      }
+      else if (x == x_max)
+      {
+        return 1;
+      }
+      using boost::math::constants::pi;
+      result = static_cast<RealType>(2) * asin(sqrt((x - x_min) / (x_max - x_min))) / pi<RealType>();
+      return result;
+    } // arcsine cdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)
+    { // Complemented Cumulative Distribution Function arcsine.
+      BOOST_MATH_STD_USING // For ADL of std functions.
+      static const char* function = "boost::math::cdf(arcsine_distribution<%1%> const&, %1%)";
+
+      RealType x = c.param;
+      arcsine_distribution<RealType, Policy> const& dist = c.dist;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+
+      // Argument checks:
+      RealType result = 0;
+      if (false == arcsine_detail::check_dist_and_x(
+        function,
+        x_min, x_max, x,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if (x == x_min)
+      {
+        return 0;
+      }
+      else if (x == x_max)
+      {
+        return 1;
+      }
+      using boost::math::constants::pi;
+      // Naive version x = 1 - x;
+      // result = static_cast<RealType>(2) * asin(sqrt((x - x_min) / (x_max - x_min))) / pi<RealType>();
+      // is less accurate, so use acos instead of asin for complement.
+      result = static_cast<RealType>(2) * acos(sqrt((x - x_min) / (x_max - x_min))) / pi<RealType>();
+      return result;
+    } // arcine ccdf
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const arcsine_distribution<RealType, Policy>& dist, const RealType& p)
+    { 
+      // Quantile or Percent Point arcsine function or
+      // Inverse Cumulative probability distribution function CDF.
+      // Return x (0 <= x <= 1),
+      // for a given probability p (0 <= p <= 1).
+      // These functions take a probability as an argument
+      // and return a value such that the probability that a random variable x
+      // will be less than or equal to that value
+      // is whatever probability you supplied as an argument.
+      BOOST_MATH_STD_USING // For ADL of std functions.
+
+      using boost::math::constants::half_pi;
+
+      static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";
+
+      RealType result = 0; // of argument checks:
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+      if (false == arcsine_detail::check_dist_and_prob(
+        function,
+        x_min, x_max, p,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if (p == 0)
+      {
+        return 0;
+      }
+      if (p == 1)
+      {
+        return 1;
+      }
+
+      RealType sin2hpip = sin(half_pi<RealType>() * p);
+      RealType sin2hpip2 = sin2hpip * sin2hpip;
+      result = -x_min * sin2hpip2 + x_min + x_max * sin2hpip2;
+
+      return result;
+    } // quantile
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<arcsine_distribution<RealType, Policy>, RealType>& c)
+    { 
+      // Complement Quantile or Percent Point arcsine function.
+      // Return the number of expected x for a given
+      // complement of the probability q.
+      BOOST_MATH_STD_USING // For ADL of std functions.
+
+      using boost::math::constants::half_pi;
+      static const char* function = "boost::math::quantile(arcsine_distribution<%1%> const&, %1%)";
+
+      // Error checks:
+      RealType q = c.param;
+      const arcsine_distribution<RealType, Policy>& dist = c.dist;
+      RealType result = 0;
+      RealType x_min = dist.x_min();
+      RealType x_max = dist.x_max();
+      if (false == arcsine_detail::check_dist_and_prob(
+        function,
+        x_min,
+        x_max,
+        q,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if (q == 1)
+      {
+        return 0;
+      }
+      if (q == 0)
+      {
+        return 1;
+      }
+      // Naive RealType p = 1 - q; result = sin(half_pi<RealType>() * p); loses accuracy, so use a cos alternative instead.
+      //result = cos(half_pi<RealType>() * q); // for arcsine(0,1)
+      //result = result * result;
+      // For generalized arcsine:
+      RealType cos2hpip = cos(half_pi<RealType>() * q);
+      RealType cos2hpip2 = cos2hpip * cos2hpip;
+      result = -x_min * cos2hpip2 + x_min + x_max * cos2hpip2;
+
+      return result;
+    } // Quantile Complement
+
+  } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#if defined (BOOST_MSVC)
+# pragma warning(pop)
+#endif
+
+#endif // BOOST_MATH_DIST_ARCSINE_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/bernoulli.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,336 @@
+// boost\math\distributions\bernoulli.hpp
+
+// Copyright John Maddock 2006.
+// Copyright Paul A. Bristow 2007.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// http://en.wikipedia.org/wiki/bernoulli_distribution
+// http://mathworld.wolfram.com/BernoulliDistribution.html
+
+// bernoulli distribution is the discrete probability distribution of
+// the number (k) of successes, in a single Bernoulli trials.
+// It is a version of the binomial distribution when n = 1.
+
+// But note that the bernoulli distribution
+// (like others including the poisson, binomial & negative binomial)
+// is strictly defined as a discrete function: only integral values of k are envisaged.
+// However because of the method of calculation using a continuous gamma function,
+// it is convenient to treat it as if a continous function,
+// and permit non-integral values of k.
+// To enforce the strict mathematical model, users should use floor or ceil functions
+// on k outside this function to ensure that k is integral.
+
+#ifndef BOOST_MATH_SPECIAL_BERNOULLI_HPP
+#define BOOST_MATH_SPECIAL_BERNOULLI_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/tools/config.hpp>
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+
+#include <utility>
+
+namespace boost
+{
+  namespace math
+  {
+    namespace bernoulli_detail
+    {
+      // Common error checking routines for bernoulli distribution functions:
+      template <class RealType, class Policy>
+      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& /* pol */)
+      {
+        if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, Policy());
+          return false;
+        }
+        return true;
+      }
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */, const mpl::true_&)
+      {
+        return check_success_fraction(function, p, result, Policy());
+      }
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* , const RealType& , RealType* , const Policy& /* pol */, const mpl::false_&)
+      {
+         return true;
+      }
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */)
+      {
+         return check_dist(function, p, result, Policy(), typename policies::constructor_error_check<Policy>::type());
+      }
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol)
+      {
+        if(check_dist(function, p, result, Policy(), typename policies::method_error_check<Policy>::type()) == false)
+        {
+          return false;
+        }
+        if(!(boost::math::isfinite)(k) || !((k == 0) || (k == 1)))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Number of successes argument is %1%, but must be 0 or 1 !", k, pol);
+          return false;
+        }
+       return true;
+      }
+      template <class RealType, class Policy>
+      inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& /* pol */)
+      {
+        if((check_dist(function, p, result, Policy(), typename policies::method_error_check<Policy>::type()) && detail::check_probability(function, prob, result, Policy())) == false)
+        {
+          return false;
+        }
+        return true;
+      }
+    } // namespace bernoulli_detail
+
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class bernoulli_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      bernoulli_distribution(RealType p = 0.5) : m_p(p)
+      { // Default probability = half suits 'fair' coin tossing
+        // where probability of heads == probability of tails.
+        RealType result; // of checks.
+        bernoulli_detail::check_dist(
+           "boost::math::bernoulli_distribution<%1%>::bernoulli_distribution",
+          m_p,
+          &result, Policy());
+      } // bernoulli_distribution constructor.
+
+      RealType success_fraction() const
+      { // Probability.
+        return m_p;
+      }
+
+    private:
+      RealType m_p; // success_fraction
+    }; // template <class RealType> class bernoulli_distribution
+
+    typedef bernoulli_distribution<double> bernoulli;
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const bernoulli_distribution<RealType, Policy>& /* dist */)
+    { // Range of permissible values for random variable k = {0, 1}.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
+    }
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const bernoulli_distribution<RealType, Policy>& /* dist */)
+    { // Range of supported values for random variable k = {0, 1}.
+      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
+    }
+
+    template <class RealType, class Policy>
+    inline RealType mean(const bernoulli_distribution<RealType, Policy>& dist)
+    { // Mean of bernoulli distribution = p (n = 1).
+      return dist.success_fraction();
+    } // mean
+
+    // Rely on dereived_accessors quantile(half)
+    //template <class RealType>
+    //inline RealType median(const bernoulli_distribution<RealType, Policy>& dist)
+    //{ // Median of bernoulli distribution is not defined.
+    //  return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
+    //} // median
+
+    template <class RealType, class Policy>
+    inline RealType variance(const bernoulli_distribution<RealType, Policy>& dist)
+    { // Variance of bernoulli distribution =p * q.
+      return  dist.success_fraction() * (1 - dist.success_fraction());
+    } // variance
+
+    template <class RealType, class Policy>
+    RealType pdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Probability Density/Mass Function.
+      BOOST_FPU_EXCEPTION_GUARD
+      // Error check:
+      RealType result = 0; // of checks.
+      if(false == bernoulli_detail::check_dist_and_k(
+        "boost::math::pdf(bernoulli_distribution<%1%>, %1%)",
+        dist.success_fraction(), // 0 to 1
+        k, // 0 or 1
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Assume k is integral.
+      if (k == 0)
+      {
+        return 1 - dist.success_fraction(); // 1 - p
+      }
+      else  // k == 1
+      {
+        return dist.success_fraction(); // p
+      }
+    } // pdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Cumulative Distribution Function Bernoulli.
+      RealType p = dist.success_fraction();
+      // Error check:
+      RealType result = 0;
+      if(false == bernoulli_detail::check_dist_and_k(
+        "boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
+        p,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if (k == 0)
+      {
+        return 1 - p;
+      }
+      else
+      { // k == 1
+        return 1;
+      }
+    } // bernoulli cdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c)
+    { // Complemented Cumulative Distribution Function bernoulli.
+      RealType const& k = c.param;
+      bernoulli_distribution<RealType, Policy> const& dist = c.dist;
+      RealType p = dist.success_fraction();
+      // Error checks:
+      RealType result = 0;
+      if(false == bernoulli_detail::check_dist_and_k(
+        "boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
+        p,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if (k == 0)
+      {
+        return p;
+      }
+      else
+      { // k == 1
+        return 0;
+      }
+    } // bernoulli cdf complement
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const bernoulli_distribution<RealType, Policy>& dist, const RealType& p)
+    { // Quantile or Percent Point Bernoulli function.
+      // Return the number of expected successes k either 0 or 1.
+      // for a given probability p.
+
+      RealType result = 0; // of error checks:
+      if(false == bernoulli_detail::check_dist_and_prob(
+        "boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
+        dist.success_fraction(),
+        p,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if (p <= (1 - dist.success_fraction()))
+      { // p <= pdf(dist, 0) == cdf(dist, 0)
+        return 0;
+      }
+      else
+      {
+        return 1;
+      }
+    } // quantile
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c)
+    { // Quantile or Percent Point bernoulli function.
+      // Return the number of expected successes k for a given
+      // complement of the probability q.
+      //
+      // Error checks:
+      RealType q = c.param;
+      const bernoulli_distribution<RealType, Policy>& dist = c.dist;
+      RealType result = 0;
+      if(false == bernoulli_detail::check_dist_and_prob(
+        "boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
+        dist.success_fraction(),
+        q,
+        &result, Policy()))
+      {
+        return result;
+      }
+
+      if (q <= 1 - dist.success_fraction())
+      { // // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
+        return 1;
+      }
+      else
+      {
+        return 0;
+      }
+    } // quantile complemented.
+
+    template <class RealType, class Policy>
+    inline RealType mode(const bernoulli_distribution<RealType, Policy>& dist)
+    {
+      return static_cast<RealType>((dist.success_fraction() <= 0.5) ? 0 : 1); // p = 0.5 can be 0 or 1
+    }
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const bernoulli_distribution<RealType, Policy>& dist)
+    {
+      BOOST_MATH_STD_USING; // Aid ADL for sqrt.
+      RealType p = dist.success_fraction();
+      return (1 - 2 * p) / sqrt(p * (1 - p));
+    }
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const bernoulli_distribution<RealType, Policy>& dist)
+    {
+      RealType p = dist.success_fraction();
+      // Note Wolfram says this is kurtosis in text, but gamma2 is the kurtosis excess,
+      // and Wikipedia also says this is the kurtosis excess formula.
+      // return (6 * p * p - 6 * p + 1) / (p * (1 - p));
+      // But Wolfram kurtosis article gives this simpler formula for kurtosis excess:
+      return 1 / (1 - p) + 1/p -6;
+    }
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const bernoulli_distribution<RealType, Policy>& dist)
+    {
+      RealType p = dist.success_fraction();
+      return 1 / (1 - p) + 1/p -6 + 3;
+      // Simpler than:
+      // return (6 * p * p - 6 * p + 1) / (p * (1 - p)) + 3;
+    }
+
+  } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_BERNOULLI_HPP
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/beta.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,541 @@
+// boost\math\distributions\beta.hpp
+
+// Copyright John Maddock 2006.
+// Copyright Paul A. Bristow 2006.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// http://en.wikipedia.org/wiki/Beta_distribution
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
+// http://mathworld.wolfram.com/BetaDistribution.html
+
+// The Beta Distribution is a continuous probability distribution.
+// The beta distribution is used to model events which are constrained to take place
+// within an interval defined by maxima and minima,
+// so is used extensively in PERT and other project management systems
+// to describe the time to completion.
+// The cdf of the beta distribution is used as a convenient way
+// of obtaining the sum over a set of binomial outcomes.
+// The beta distribution is also used in Bayesian statistics.
+
+#ifndef BOOST_MATH_DIST_BETA_HPP
+#define BOOST_MATH_DIST_BETA_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for beta.
+#include <boost/math/distributions/complement.hpp> // complements.
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+
+#if defined (BOOST_MSVC)
+#  pragma warning(push)
+#  pragma warning(disable: 4702) // unreachable code
+// in domain_error_imp in error_handling
+#endif
+
+#include <utility>
+
+namespace boost
+{
+  namespace math
+  {
+    namespace beta_detail
+    {
+      // Common error checking routines for beta distribution functions:
+      template <class RealType, class Policy>
+      inline bool check_alpha(const char* function, const RealType& alpha, RealType* result, const Policy& pol)
+      {
+        if(!(boost::math::isfinite)(alpha) || (alpha <= 0))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Alpha argument is %1%, but must be > 0 !", alpha, pol);
+          return false;
+        }
+        return true;
+      } // bool check_alpha
+
+      template <class RealType, class Policy>
+      inline bool check_beta(const char* function, const RealType& beta, RealType* result, const Policy& pol)
+      {
+        if(!(boost::math::isfinite)(beta) || (beta <= 0))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Beta argument is %1%, but must be > 0 !", beta, pol);
+          return false;
+        }
+        return true;
+      } // bool check_beta
+
+      template <class RealType, class Policy>
+      inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
+      {
+        if((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
+          return false;
+        }
+        return true;
+      } // bool check_prob
+
+      template <class RealType, class Policy>
+      inline bool check_x(const char* function, const RealType& x, RealType* result, const Policy& pol)
+      {
+        if(!(boost::math::isfinite)(x) || (x < 0) || (x > 1))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "x argument is %1%, but must be >= 0 and <= 1 !", x, pol);
+          return false;
+        }
+        return true;
+      } // bool check_x
+
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& alpha, const RealType& beta, RealType* result, const Policy& pol)
+      { // Check both alpha and beta.
+        return check_alpha(function, alpha, result, pol)
+          && check_beta(function, beta, result, pol);
+      } // bool check_dist
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_x(const char* function, const RealType& alpha, const RealType& beta, RealType x, RealType* result, const Policy& pol)
+      {
+        return check_dist(function, alpha, beta, result, pol)
+          && beta_detail::check_x(function, x, result, pol);
+      } // bool check_dist_and_x
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_prob(const char* function, const RealType& alpha, const RealType& beta, RealType p, RealType* result, const Policy& pol)
+      {
+        return check_dist(function, alpha, beta, result, pol)
+          && check_prob(function, p, result, pol);
+      } // bool check_dist_and_prob
+
+      template <class RealType, class Policy>
+      inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol)
+      {
+        if(!(boost::math::isfinite)(mean) || (mean <= 0))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "mean argument is %1%, but must be > 0 !", mean, pol);
+          return false;
+        }
+        return true;
+      } // bool check_mean
+      template <class RealType, class Policy>
+      inline bool check_variance(const char* function, const RealType& variance, RealType* result, const Policy& pol)
+      {
+        if(!(boost::math::isfinite)(variance) || (variance <= 0))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "variance argument is %1%, but must be > 0 !", variance, pol);
+          return false;
+        }
+        return true;
+      } // bool check_variance
+    } // namespace beta_detail
+
+    // typedef beta_distribution<double> beta;
+    // is deliberately NOT included to avoid a name clash with the beta function.
+    // Use beta_distribution<> mybeta(...) to construct type double.
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class beta_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      beta_distribution(RealType l_alpha = 1, RealType l_beta = 1) : m_alpha(l_alpha), m_beta(l_beta)
+      {
+        RealType result;
+        beta_detail::check_dist(
+           "boost::math::beta_distribution<%1%>::beta_distribution",
+          m_alpha,
+          m_beta,
+          &result, Policy());
+      } // beta_distribution constructor.
+      // Accessor functions:
+      RealType alpha() const
+      {
+        return m_alpha;
+      }
+      RealType beta() const
+      { // .
+        return m_beta;
+      }
+
+      // Estimation of the alpha & beta parameters.
+      // http://en.wikipedia.org/wiki/Beta_distribution
+      // gives formulae in section on parameter estimation.
+      // Also NIST EDA page 3 & 4 give the same.
+      // http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
+      // http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
+
+      static RealType find_alpha(
+        RealType mean, // Expected value of mean.
+        RealType variance) // Expected value of variance.
+      {
+        static const char* function = "boost::math::beta_distribution<%1%>::find_alpha";
+        RealType result = 0; // of error checks.
+        if(false ==
+            (
+              beta_detail::check_mean(function, mean, &result, Policy())
+              && beta_detail::check_variance(function, variance, &result, Policy())
+            )
+          )
+        {
+          return result;
+        }
+        return mean * (( (mean * (1 - mean)) / variance)- 1);
+      } // RealType find_alpha
+
+      static RealType find_beta(
+        RealType mean, // Expected value of mean.
+        RealType variance) // Expected value of variance.
+      {
+        static const char* function = "boost::math::beta_distribution<%1%>::find_beta";
+        RealType result = 0; // of error checks.
+        if(false ==
+            (
+              beta_detail::check_mean(function, mean, &result, Policy())
+              &&
+              beta_detail::check_variance(function, variance, &result, Policy())
+            )
+          )
+        {
+          return result;
+        }
+        return (1 - mean) * (((mean * (1 - mean)) /variance)-1);
+      } //  RealType find_beta
+
+      // Estimate alpha & beta from either alpha or beta, and x and probability.
+      // Uses for these parameter estimators are unclear.
+
+      static RealType find_alpha(
+        RealType beta, // from beta.
+        RealType x, //  x.
+        RealType probability) // cdf
+      {
+        static const char* function = "boost::math::beta_distribution<%1%>::find_alpha";
+        RealType result = 0; // of error checks.
+        if(false ==
+            (
+             beta_detail::check_prob(function, probability, &result, Policy())
+             &&
+             beta_detail::check_beta(function, beta, &result, Policy())
+             &&
+             beta_detail::check_x(function, x, &result, Policy())
+            )
+          )
+        {
+          return result;
+        }
+        return ibeta_inva(beta, x, probability, Policy());
+      } // RealType find_alpha(beta, a, probability)
+
+      static RealType find_beta(
+        // ibeta_invb(T b, T x, T p); (alpha, x, cdf,)
+        RealType alpha, // alpha.
+        RealType x, // probability x.
+        RealType probability) // probability cdf.
+      {
+        static const char* function = "boost::math::beta_distribution<%1%>::find_beta";
+        RealType result = 0; // of error checks.
+        if(false ==
+            (
+              beta_detail::check_prob(function, probability, &result, Policy())
+              &&
+              beta_detail::check_alpha(function, alpha, &result, Policy())
+              &&
+              beta_detail::check_x(function, x, &result, Policy())
+            )
+          )
+        {
+          return result;
+        }
+        return ibeta_invb(alpha, x, probability, Policy());
+      } //  RealType find_beta(alpha, x, probability)
+
+    private:
+      RealType m_alpha; // Two parameters of the beta distribution.
+      RealType m_beta;
+    }; // template <class RealType, class Policy> class beta_distribution
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const beta_distribution<RealType, Policy>& /* dist */)
+    { // Range of permissible values for random variable x.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
+    }
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const beta_distribution<RealType, Policy>&  /* dist */)
+    { // Range of supported values for random variable x.
+      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+      return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
+    }
+
+    template <class RealType, class Policy>
+    inline RealType mean(const beta_distribution<RealType, Policy>& dist)
+    { // Mean of beta distribution = np.
+      return  dist.alpha() / (dist.alpha() + dist.beta());
+    } // mean
+
+    template <class RealType, class Policy>
+    inline RealType variance(const beta_distribution<RealType, Policy>& dist)
+    { // Variance of beta distribution = np(1-p).
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+      return  (a * b) / ((a + b ) * (a + b) * (a + b + 1));
+    } // variance
+
+    template <class RealType, class Policy>
+    inline RealType mode(const beta_distribution<RealType, Policy>& dist)
+    {
+      static const char* function = "boost::math::mode(beta_distribution<%1%> const&)";
+
+      RealType result;
+      if ((dist.alpha() <= 1))
+      {
+        result = policies::raise_domain_error<RealType>(
+          function,
+          "mode undefined for alpha = %1%, must be > 1!", dist.alpha(), Policy());
+        return result;
+      }
+
+      if ((dist.beta() <= 1))
+      {
+        result = policies::raise_domain_error<RealType>(
+          function,
+          "mode undefined for beta = %1%, must be > 1!", dist.beta(), Policy());
+        return result;
+      }
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+      return (a-1) / (a + b - 2);
+    } // mode
+
+    //template <class RealType, class Policy>
+    //inline RealType median(const beta_distribution<RealType, Policy>& dist)
+    //{ // Median of beta distribution is not defined.
+    //  return tools::domain_error<RealType>(function, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
+    //} // median
+
+    //But WILL be provided by the derived accessor as quantile(0.5).
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const beta_distribution<RealType, Policy>& dist)
+    {
+      BOOST_MATH_STD_USING // ADL of std functions.
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+      return (2 * (b-a) * sqrt(a + b + 1)) / ((a + b + 2) * sqrt(a * b));
+    } // skewness
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const beta_distribution<RealType, Policy>& dist)
+    {
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+      RealType a_2 = a * a;
+      RealType n = 6 * (a_2 * a - a_2 * (2 * b - 1) + b * b * (b + 1) - 2 * a * b * (b + 2));
+      RealType d = a * b * (a + b + 2) * (a + b + 3);
+      return  n / d;
+    } // kurtosis_excess
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const beta_distribution<RealType, Policy>& dist)
+    {
+      return 3 + kurtosis_excess(dist);
+    } // kurtosis
+
+    template <class RealType, class Policy>
+    inline RealType pdf(const beta_distribution<RealType, Policy>& dist, const RealType& x)
+    { // Probability Density/Mass Function.
+      BOOST_FPU_EXCEPTION_GUARD
+
+      static const char* function = "boost::math::pdf(beta_distribution<%1%> const&, %1%)";
+
+      BOOST_MATH_STD_USING // for ADL of std functions
+
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+
+      // Argument checks:
+      RealType result = 0;
+      if(false == beta_detail::check_dist_and_x(
+        function,
+        a, b, x,
+        &result, Policy()))
+      {
+        return result;
+      }
+      using boost::math::beta;
+      return ibeta_derivative(a, b, x, Policy());
+    } // pdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const beta_distribution<RealType, Policy>& dist, const RealType& x)
+    { // Cumulative Distribution Function beta.
+      BOOST_MATH_STD_USING // for ADL of std functions
+
+      static const char* function = "boost::math::cdf(beta_distribution<%1%> const&, %1%)";
+
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+
+      // Argument checks:
+      RealType result = 0;
+      if(false == beta_detail::check_dist_and_x(
+        function,
+        a, b, x,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if (x == 0)
+      {
+        return 0;
+      }
+      else if (x == 1)
+      {
+        return 1;
+      }
+      return ibeta(a, b, x, Policy());
+    } // beta cdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const complemented2_type<beta_distribution<RealType, Policy>, RealType>& c)
+    { // Complemented Cumulative Distribution Function beta.
+
+      BOOST_MATH_STD_USING // for ADL of std functions
+
+      static const char* function = "boost::math::cdf(beta_distribution<%1%> const&, %1%)";
+
+      RealType const& x = c.param;
+      beta_distribution<RealType, Policy> const& dist = c.dist;
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+
+      // Argument checks:
+      RealType result = 0;
+      if(false == beta_detail::check_dist_and_x(
+        function,
+        a, b, x,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if (x == 0)
+      {
+        return 1;
+      }
+      else if (x == 1)
+      {
+        return 0;
+      }
+      // Calculate cdf beta using the incomplete beta function.
+      // Use of ibeta here prevents cancellation errors in calculating
+      // 1 - x if x is very small, perhaps smaller than machine epsilon.
+      return ibetac(a, b, x, Policy());
+    } // beta cdf
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const beta_distribution<RealType, Policy>& dist, const RealType& p)
+    { // Quantile or Percent Point beta function or
+      // Inverse Cumulative probability distribution function CDF.
+      // Return x (0 <= x <= 1),
+      // for a given probability p (0 <= p <= 1).
+      // These functions take a probability as an argument
+      // and return a value such that the probability that a random variable x
+      // will be less than or equal to that value
+      // is whatever probability you supplied as an argument.
+
+      static const char* function = "boost::math::quantile(beta_distribution<%1%> const&, %1%)";
+
+      RealType result = 0; // of argument checks:
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+      if(false == beta_detail::check_dist_and_prob(
+        function,
+        a, b, p,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if (p == 0)
+      {
+        return 0;
+      }
+      if (p == 1)
+      {
+        return 1;
+      }
+      return ibeta_inv(a, b, p, static_cast<RealType*>(0), Policy());
+    } // quantile
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<beta_distribution<RealType, Policy>, RealType>& c)
+    { // Complement Quantile or Percent Point beta function .
+      // Return the number of expected x for a given
+      // complement of the probability q.
+
+      static const char* function = "boost::math::quantile(beta_distribution<%1%> const&, %1%)";
+
+      //
+      // Error checks:
+      RealType q = c.param;
+      const beta_distribution<RealType, Policy>& dist = c.dist;
+      RealType result = 0;
+      RealType a = dist.alpha();
+      RealType b = dist.beta();
+      if(false == beta_detail::check_dist_and_prob(
+        function,
+        a,
+        b,
+        q,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if(q == 1)
+      {
+        return 0;
+      }
+      if(q == 0)
+      {
+        return 1;
+      }
+
+      return ibetac_inv(a, b, q, static_cast<RealType*>(0), Policy());
+    } // Quantile Complement
+
+  } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#if defined (BOOST_MSVC)
+# pragma warning(pop)
+#endif
+
+#endif // BOOST_MATH_DIST_BETA_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/binomial.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,728 @@
+// boost\math\distributions\binomial.hpp
+
+// Copyright John Maddock 2006.
+// Copyright Paul A. Bristow 2007.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// http://en.wikipedia.org/wiki/binomial_distribution
+
+// Binomial distribution is the discrete probability distribution of
+// the number (k) of successes, in a sequence of
+// n independent (yes or no, success or failure) Bernoulli trials.
+
+// It expresses the probability of a number of events occurring in a fixed time
+// if these events occur with a known average rate (probability of success),
+// and are independent of the time since the last event.
+
+// The number of cars that pass through a certain point on a road during a given period of time.
+// The number of spelling mistakes a secretary makes while typing a single page.
+// The number of phone calls at a call center per minute.
+// The number of times a web server is accessed per minute.
+// The number of light bulbs that burn out in a certain amount of time.
+// The number of roadkill found per unit length of road
+
+// http://en.wikipedia.org/wiki/binomial_distribution
+
+// Given a sample of N measured values k[i],
+// we wish to estimate the value of the parameter x (mean)
+// of the binomial population from which the sample was drawn.
+// To calculate the maximum likelihood value = 1/N sum i = 1 to N of k[i]
+
+// Also may want a function for EXACTLY k.
+
+// And probability that there are EXACTLY k occurrences is
+// exp(-x) * pow(x, k) / factorial(k)
+// where x is expected occurrences (mean) during the given interval.
+// For example, if events occur, on average, every 4 min,
+// and we are interested in number of events occurring in 10 min,
+// then x = 10/4 = 2.5
+
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm
+
+// The binomial distribution is used when there are
+// exactly two mutually exclusive outcomes of a trial.
+// These outcomes are appropriately labeled "success" and "failure".
+// The binomial distribution is used to obtain
+// the probability of observing x successes in N trials,
+// with the probability of success on a single trial denoted by p.
+// The binomial distribution assumes that p is fixed for all trials.
+
+// P(x, p, n) = n!/(x! * (n-x)!) * p^x * (1-p)^(n-x)
+
+// http://mathworld.wolfram.com/BinomialCoefficient.html
+
+// The binomial coefficient (n; k) is the number of ways of picking
+// k unordered outcomes from n possibilities,
+// also known as a combination or combinatorial number.
+// The symbols _nC_k and (n; k) are used to denote a binomial coefficient,
+// and are sometimes read as "n choose k."
+// (n; k) therefore gives the number of k-subsets  possible out of a set of n distinct items.
+
+// For example:
+//  The 2-subsets of {1,2,3,4} are the six pairs {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}, so (4; 2)==6.
+
+// http://functions.wolfram.com/GammaBetaErf/Binomial/ for evaluation.
+
+// But note that the binomial distribution
+// (like others including the poisson, negative binomial & Bernoulli)
+// is strictly defined as a discrete function: only integral values of k are envisaged.
+// However because of the method of calculation using a continuous gamma function,
+// it is convenient to treat it as if a continous function,
+// and permit non-integral values of k.
+// To enforce the strict mathematical model, users should use floor or ceil functions
+// on k outside this function to ensure that k is integral.
+
+#ifndef BOOST_MATH_SPECIAL_BINOMIAL_HPP
+#define BOOST_MATH_SPECIAL_BINOMIAL_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for incomplete beta.
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+
+#include <utility>
+
+namespace boost
+{
+  namespace math
+  {
+
+     template <class RealType, class Policy>
+     class binomial_distribution;
+
+     namespace binomial_detail{
+        // common error checking routines for binomial distribution functions:
+        template <class RealType, class Policy>
+        inline bool check_N(const char* function, const RealType& N, RealType* result, const Policy& pol)
+        {
+           if((N < 0) || !(boost::math::isfinite)(N))
+           {
+               *result = policies::raise_domain_error<RealType>(
+                  function,
+                  "Number of Trials argument is %1%, but must be >= 0 !", N, pol);
+               return false;
+           }
+           return true;
+        }
+        template <class RealType, class Policy>
+        inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
+        {
+           if((p < 0) || (p > 1) || !(boost::math::isfinite)(p))
+           {
+               *result = policies::raise_domain_error<RealType>(
+                  function,
+                  "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
+               return false;
+           }
+           return true;
+        }
+        template <class RealType, class Policy>
+        inline bool check_dist(const char* function, const RealType& N, const RealType& p, RealType* result, const Policy& pol)
+        {
+           return check_success_fraction(
+              function, p, result, pol)
+              && check_N(
+               function, N, result, pol);
+        }
+        template <class RealType, class Policy>
+        inline bool check_dist_and_k(const char* function, const RealType& N, const RealType& p, RealType k, RealType* result, const Policy& pol)
+        {
+           if(check_dist(function, N, p, result, pol) == false)
+              return false;
+           if((k < 0) || !(boost::math::isfinite)(k))
+           {
+               *result = policies::raise_domain_error<RealType>(
+                  function,
+                  "Number of Successes argument is %1%, but must be >= 0 !", k, pol);
+               return false;
+           }
+           if(k > N)
+           {
+               *result = policies::raise_domain_error<RealType>(
+                  function,
+                  "Number of Successes argument is %1%, but must be <= Number of Trials !", k, pol);
+               return false;
+           }
+           return true;
+        }
+        template <class RealType, class Policy>
+        inline bool check_dist_and_prob(const char* function, const RealType& N, RealType p, RealType prob, RealType* result, const Policy& pol)
+        {
+           if((check_dist(function, N, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
+              return false;
+           return true;
+        }
+
+         template <class T, class Policy>
+         T inverse_binomial_cornish_fisher(T n, T sf, T p, T q, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+            // mean:
+            T m = n * sf;
+            // standard deviation:
+            T sigma = sqrt(n * sf * (1 - sf));
+            // skewness
+            T sk = (1 - 2 * sf) / sigma;
+            // kurtosis:
+            // T k = (1 - 6 * sf * (1 - sf) ) / (n * sf * (1 - sf));
+            // Get the inverse of a std normal distribution:
+            T x = boost::math::erfc_inv(p > q ? 2 * q : 2 * p, pol) * constants::root_two<T>();
+            // Set the sign:
+            if(p < 0.5)
+               x = -x;
+            T x2 = x * x;
+            // w is correction term due to skewness
+            T w = x + sk * (x2 - 1) / 6;
+            /*
+            // Add on correction due to kurtosis.
+            // Disabled for now, seems to make things worse?
+            //
+            if(n >= 10)
+               w += k * x * (x2 - 3) / 24 + sk * sk * x * (2 * x2 - 5) / -36;
+               */
+            w = m + sigma * w;
+            if(w < tools::min_value<T>())
+               return sqrt(tools::min_value<T>());
+            if(w > n)
+               return n;
+            return w;
+         }
+
+      template <class RealType, class Policy>
+      RealType quantile_imp(const binomial_distribution<RealType, Policy>& dist, const RealType& p, const RealType& q, bool comp)
+      { // Quantile or Percent Point Binomial function.
+        // Return the number of expected successes k,
+        // for a given probability p.
+        //
+        // Error checks:
+        BOOST_MATH_STD_USING  // ADL of std names
+        RealType result = 0;
+        RealType trials = dist.trials();
+        RealType success_fraction = dist.success_fraction();
+        if(false == binomial_detail::check_dist_and_prob(
+           "boost::math::quantile(binomial_distribution<%1%> const&, %1%)",
+           trials,
+           success_fraction,
+           p,
+           &result, Policy()))
+        {
+           return result;
+        }
+
+        // Special cases:
+        //
+        if(p == 0)
+        {  // There may actually be no answer to this question,
+           // since the probability of zero successes may be non-zero,
+           // but zero is the best we can do:
+           return 0;
+        }
+        if(p == 1)
+        {  // Probability of n or fewer successes is always one,
+           // so n is the most sensible answer here:
+           return trials;
+        }
+        if (p <= pow(1 - success_fraction, trials))
+        { // p <= pdf(dist, 0) == cdf(dist, 0)
+          return 0; // So the only reasonable result is zero.
+        } // And root finder would fail otherwise.
+        if(success_fraction == 1)
+        {  // our formulae break down in this case:
+           return p > 0.5f ? trials : 0;
+        }
+
+        // Solve for quantile numerically:
+        //
+        RealType guess = binomial_detail::inverse_binomial_cornish_fisher(trials, success_fraction, p, q, Policy());
+        RealType factor = 8;
+        if(trials > 100)
+           factor = 1.01f; // guess is pretty accurate
+        else if((trials > 10) && (trials - 1 > guess) && (guess > 3))
+           factor = 1.15f; // less accurate but OK.
+        else if(trials < 10)
+        {
+           // pretty inaccurate guess in this area:
+           if(guess > trials / 64)
+           {
+              guess = trials / 4;
+              factor = 2;
+           }
+           else
+              guess = trials / 1024;
+        }
+        else
+           factor = 2; // trials largish, but in far tails.
+
+        typedef typename Policy::discrete_quantile_type discrete_quantile_type;
+        boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+        return detail::inverse_discrete_quantile(
+            dist,
+            comp ? q : p,
+            comp,
+            guess,
+            factor,
+            RealType(1),
+            discrete_quantile_type(),
+            max_iter);
+      } // quantile
+
+     }
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class binomial_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      binomial_distribution(RealType n = 1, RealType p = 0.5) : m_n(n), m_p(p)
+      { // Default n = 1 is the Bernoulli distribution
+        // with equal probability of 'heads' or 'tails.
+         RealType r;
+         binomial_detail::check_dist(
+            "boost::math::binomial_distribution<%1%>::binomial_distribution",
+            m_n,
+            m_p,
+            &r, Policy());
+      } // binomial_distribution constructor.
+
+      RealType success_fraction() const
+      { // Probability.
+        return m_p;
+      }
+      RealType trials() const
+      { // Total number of trials.
+        return m_n;
+      }
+
+      enum interval_type{
+         clopper_pearson_exact_interval,
+         jeffreys_prior_interval
+      };
+
+      //
+      // Estimation of the success fraction parameter.
+      // The best estimate is actually simply successes/trials,
+      // these functions are used
+      // to obtain confidence intervals for the success fraction.
+      //
+      static RealType find_lower_bound_on_p(
+         RealType trials,
+         RealType successes,
+         RealType probability,
+         interval_type t = clopper_pearson_exact_interval)
+      {
+        static const char* function = "boost::math::binomial_distribution<%1%>::find_lower_bound_on_p";
+        // Error checks:
+        RealType result = 0;
+        if(false == binomial_detail::check_dist_and_k(
+           function, trials, RealType(0), successes, &result, Policy())
+            &&
+           binomial_detail::check_dist_and_prob(
+           function, trials, RealType(0), probability, &result, Policy()))
+        { return result; }
+
+        if(successes == 0)
+           return 0;
+
+        // NOTE!!! The Clopper Pearson formula uses "successes" not
+        // "successes+1" as usual to get the lower bound,
+        // see http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
+        return (t == clopper_pearson_exact_interval) ? ibeta_inv(successes, trials - successes + 1, probability, static_cast<RealType*>(0), Policy())
+           : ibeta_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());
+      }
+      static RealType find_upper_bound_on_p(
+         RealType trials,
+         RealType successes,
+         RealType probability,
+         interval_type t = clopper_pearson_exact_interval)
+      {
+        static const char* function = "boost::math::binomial_distribution<%1%>::find_upper_bound_on_p";
+        // Error checks:
+        RealType result = 0;
+        if(false == binomial_detail::check_dist_and_k(
+           function, trials, RealType(0), successes, &result, Policy())
+            &&
+           binomial_detail::check_dist_and_prob(
+           function, trials, RealType(0), probability, &result, Policy()))
+        { return result; }
+
+        if(trials == successes)
+           return 1;
+
+        return (t == clopper_pearson_exact_interval) ? ibetac_inv(successes + 1, trials - successes, probability, static_cast<RealType*>(0), Policy())
+           : ibetac_inv(successes + 0.5f, trials - successes + 0.5f, probability, static_cast<RealType*>(0), Policy());
+      }
+      // Estimate number of trials parameter:
+      //
+      // "How many trials do I need to be P% sure of seeing k events?"
+      //    or
+      // "How many trials can I have to be P% sure of seeing fewer than k events?"
+      //
+      static RealType find_minimum_number_of_trials(
+         RealType k,     // number of events
+         RealType p,     // success fraction
+         RealType alpha) // risk level
+      {
+        static const char* function = "boost::math::binomial_distribution<%1%>::find_minimum_number_of_trials";
+        // Error checks:
+        RealType result = 0;
+        if(false == binomial_detail::check_dist_and_k(
+           function, k, p, k, &result, Policy())
+            &&
+           binomial_detail::check_dist_and_prob(
+           function, k, p, alpha, &result, Policy()))
+        { return result; }
+
+        result = ibetac_invb(k + 1, p, alpha, Policy());  // returns n - k
+        return result + k;
+      }
+
+      static RealType find_maximum_number_of_trials(
+         RealType k,     // number of events
+         RealType p,     // success fraction
+         RealType alpha) // risk level
+      {
+        static const char* function = "boost::math::binomial_distribution<%1%>::find_maximum_number_of_trials";
+        // Error checks:
+        RealType result = 0;
+        if(false == binomial_detail::check_dist_and_k(
+           function, k, p, k, &result, Policy())
+            &&
+           binomial_detail::check_dist_and_prob(
+           function, k, p, alpha, &result, Policy()))
+        { return result; }
+
+        result = ibeta_invb(k + 1, p, alpha, Policy());  // returns n - k
+        return result + k;
+      }
+
+    private:
+        RealType m_n; // Not sure if this shouldn't be an int?
+        RealType m_p; // success_fraction
+      }; // template <class RealType, class Policy> class binomial_distribution
+
+      typedef binomial_distribution<> binomial;
+      // typedef binomial_distribution<double> binomial;
+      // IS now included since no longer a name clash with function binomial.
+      //typedef binomial_distribution<double> binomial; // Reserved name of type double.
+
+      template <class RealType, class Policy>
+      const std::pair<RealType, RealType> range(const binomial_distribution<RealType, Policy>& dist)
+      { // Range of permissible values for random variable k.
+        using boost::math::tools::max_value;
+        return std::pair<RealType, RealType>(static_cast<RealType>(0), dist.trials());
+      }
+
+      template <class RealType, class Policy>
+      const std::pair<RealType, RealType> support(const binomial_distribution<RealType, Policy>& dist)
+      { // Range of supported values for random variable k.
+        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+        return std::pair<RealType, RealType>(static_cast<RealType>(0),  dist.trials());
+      }
+
+      template <class RealType, class Policy>
+      inline RealType mean(const binomial_distribution<RealType, Policy>& dist)
+      { // Mean of Binomial distribution = np.
+        return  dist.trials() * dist.success_fraction();
+      } // mean
+
+      template <class RealType, class Policy>
+      inline RealType variance(const binomial_distribution<RealType, Policy>& dist)
+      { // Variance of Binomial distribution = np(1-p).
+        return  dist.trials() * dist.success_fraction() * (1 - dist.success_fraction());
+      } // variance
+
+      template <class RealType, class Policy>
+      RealType pdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
+      { // Probability Density/Mass Function.
+        BOOST_FPU_EXCEPTION_GUARD
+
+        BOOST_MATH_STD_USING // for ADL of std functions
+
+        RealType n = dist.trials();
+
+        // Error check:
+        RealType result = 0; // initialization silences some compiler warnings
+        if(false == binomial_detail::check_dist_and_k(
+           "boost::math::pdf(binomial_distribution<%1%> const&, %1%)",
+           n,
+           dist.success_fraction(),
+           k,
+           &result, Policy()))
+        {
+           return result;
+        }
+
+        // Special cases of success_fraction, regardless of k successes and regardless of n trials.
+        if (dist.success_fraction() == 0)
+        {  // probability of zero successes is 1:
+           return static_cast<RealType>(k == 0 ? 1 : 0);
+        }
+        if (dist.success_fraction() == 1)
+        {  // probability of n successes is 1:
+           return static_cast<RealType>(k == n ? 1 : 0);
+        }
+        // k argument may be integral, signed, or unsigned, or floating point.
+        // If necessary, it has already been promoted from an integral type.
+        if (n == 0)
+        {
+          return 1; // Probability = 1 = certainty.
+        }
+        if (k == 0)
+        { // binomial coeffic (n 0) = 1,
+          // n ^ 0 = 1
+          return pow(1 - dist.success_fraction(), n);
+        }
+        if (k == n)
+        { // binomial coeffic (n n) = 1,
+          // n ^ 0 = 1
+          return pow(dist.success_fraction(), k);  // * pow((1 - dist.success_fraction()), (n - k)) = 1
+        }
+
+        // Probability of getting exactly k successes
+        // if C(n, k) is the binomial coefficient then:
+        //
+        // f(k; n,p) = C(n, k) * p^k * (1-p)^(n-k)
+        //           = (n!/(k!(n-k)!)) * p^k * (1-p)^(n-k)
+        //           = (tgamma(n+1) / (tgamma(k+1)*tgamma(n-k+1))) * p^k * (1-p)^(n-k)
+        //           = p^k (1-p)^(n-k) / (beta(k+1, n-k+1) * (n+1))
+        //           = ibeta_derivative(k+1, n-k+1, p) / (n+1)
+        //
+        using boost::math::ibeta_derivative; // a, b, x
+        return ibeta_derivative(k+1, n-k+1, dist.success_fraction(), Policy()) / (n+1);
+
+      } // pdf
+
+      template <class RealType, class Policy>
+      inline RealType cdf(const binomial_distribution<RealType, Policy>& dist, const RealType& k)
+      { // Cumulative Distribution Function Binomial.
+        // The random variate k is the number of successes in n trials.
+        // k argument may be integral, signed, or unsigned, or floating point.
+        // If necessary, it has already been promoted from an integral type.
+
+        // Returns the sum of the terms 0 through k of the Binomial Probability Density/Mass:
+        //
+        //   i=k
+        //   --  ( n )   i      n-i
+        //   >   |   |  p  (1-p)
+        //   --  ( i )
+        //   i=0
+
+        // The terms are not summed directly instead
+        // the incomplete beta integral is employed,
+        // according to the formula:
+        // P = I[1-p]( n-k, k+1).
+        //   = 1 - I[p](k + 1, n - k)
+
+        BOOST_MATH_STD_USING // for ADL of std functions
+
+        RealType n = dist.trials();
+        RealType p = dist.success_fraction();
+
+        // Error check:
+        RealType result = 0;
+        if(false == binomial_detail::check_dist_and_k(
+           "boost::math::cdf(binomial_distribution<%1%> const&, %1%)",
+           n,
+           p,
+           k,
+           &result, Policy()))
+        {
+           return result;
+        }
+        if (k == n)
+        {
+          return 1;
+        }
+
+        // Special cases, regardless of k.
+        if (p == 0)
+        {  // This need explanation:
+           // the pdf is zero for all cases except when k == 0.
+           // For zero p the probability of zero successes is one.
+           // Therefore the cdf is always 1:
+           // the probability of k or *fewer* successes is always 1
+           // if there are never any successes!
+           return 1;
+        }
+        if (p == 1)
+        { // This is correct but needs explanation:
+          // when k = 1
+          // all the cdf and pdf values are zero *except* when k == n,
+          // and that case has been handled above already.
+          return 0;
+        }
+        //
+        // P = I[1-p](n - k, k + 1)
+        //   = 1 - I[p](k + 1, n - k)
+        // Use of ibetac here prevents cancellation errors in calculating
+        // 1-p if p is very small, perhaps smaller than machine epsilon.
+        //
+        // Note that we do not use a finite sum here, since the incomplete
+        // beta uses a finite sum internally for integer arguments, so
+        // we'll just let it take care of the necessary logic.
+        //
+        return ibetac(k + 1, n - k, p, Policy());
+      } // binomial cdf
+
+      template <class RealType, class Policy>
+      inline RealType cdf(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function Binomial.
+        // The random variate k is the number of successes in n trials.
+        // k argument may be integral, signed, or unsigned, or floating point.
+        // If necessary, it has already been promoted from an integral type.
+
+        // Returns the sum of the terms k+1 through n of the Binomial Probability Density/Mass:
+        //
+        //   i=n
+        //   --  ( n )   i      n-i
+        //   >   |   |  p  (1-p)
+        //   --  ( i )
+        //   i=k+1
+
+        // The terms are not summed directly instead
+        // the incomplete beta integral is employed,
+        // according to the formula:
+        // Q = 1 -I[1-p]( n-k, k+1).
+        //   = I[p](k + 1, n - k)
+
+        BOOST_MATH_STD_USING // for ADL of std functions
+
+        RealType const& k = c.param;
+        binomial_distribution<RealType, Policy> const& dist = c.dist;
+        RealType n = dist.trials();
+        RealType p = dist.success_fraction();
+
+        // Error checks:
+        RealType result = 0;
+        if(false == binomial_detail::check_dist_and_k(
+           "boost::math::cdf(binomial_distribution<%1%> const&, %1%)",
+           n,
+           p,
+           k,
+           &result, Policy()))
+        {
+           return result;
+        }
+
+        if (k == n)
+        { // Probability of greater than n successes is necessarily zero:
+          return 0;
+        }
+
+        // Special cases, regardless of k.
+        if (p == 0)
+        {
+           // This need explanation: the pdf is zero for all
+           // cases except when k == 0.  For zero p the probability
+           // of zero successes is one.  Therefore the cdf is always
+           // 1: the probability of *more than* k successes is always 0
+           // if there are never any successes!
+           return 0;
+        }
+        if (p == 1)
+        {
+          // This needs explanation, when p = 1
+          // we always have n successes, so the probability
+          // of more than k successes is 1 as long as k < n.
+          // The k == n case has already been handled above.
+          return 1;
+        }
+        //
+        // Calculate cdf binomial using the incomplete beta function.
+        // Q = 1 -I[1-p](n - k, k + 1)
+        //   = I[p](k + 1, n - k)
+        // Use of ibeta here prevents cancellation errors in calculating
+        // 1-p if p is very small, perhaps smaller than machine epsilon.
+        //
+        // Note that we do not use a finite sum here, since the incomplete
+        // beta uses a finite sum internally for integer arguments, so
+        // we'll just let it take care of the necessary logic.
+        //
+        return ibeta(k + 1, n - k, p, Policy());
+      } // binomial cdf
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const binomial_distribution<RealType, Policy>& dist, const RealType& p)
+      {
+         return binomial_detail::quantile_imp(dist, p, RealType(1-p), false);
+      } // quantile
+
+      template <class RealType, class Policy>
+      RealType quantile(const complemented2_type<binomial_distribution<RealType, Policy>, RealType>& c)
+      {
+         return binomial_detail::quantile_imp(c.dist, RealType(1-c.param), c.param, true);
+      } // quantile
+
+      template <class RealType, class Policy>
+      inline RealType mode(const binomial_distribution<RealType, Policy>& dist)
+      {
+         BOOST_MATH_STD_USING // ADL of std functions.
+         RealType p = dist.success_fraction();
+         RealType n = dist.trials();
+         return floor(p * (n + 1));
+      }
+
+      template <class RealType, class Policy>
+      inline RealType median(const binomial_distribution<RealType, Policy>& dist)
+      { // Bounds for the median of the negative binomial distribution
+        // VAN DE VEN R. ; WEBER N. C. ;
+        // Univ. Sydney, school mathematics statistics, Sydney N.S.W. 2006, AUSTRALIE
+        // Metrika  (Metrika)  ISSN 0026-1335   CODEN MTRKA8
+        // 1993, vol. 40, no3-4, pp. 185-189 (4 ref.)
+
+        // Bounds for median and 50 percetage point of binomial and negative binomial distribution
+        // Metrika, ISSN   0026-1335 (Print) 1435-926X (Online)
+        // Volume 41, Number 1 / December, 1994, DOI   10.1007/BF01895303
+         BOOST_MATH_STD_USING // ADL of std functions.
+         RealType p = dist.success_fraction();
+         RealType n = dist.trials();
+         // Wikipedia says one of floor(np) -1, floor (np), floor(np) +1
+         return floor(p * n); // Chose the middle value.
+      }
+
+      template <class RealType, class Policy>
+      inline RealType skewness(const binomial_distribution<RealType, Policy>& dist)
+      {
+         BOOST_MATH_STD_USING // ADL of std functions.
+         RealType p = dist.success_fraction();
+         RealType n = dist.trials();
+         return (1 - 2 * p) / sqrt(n * p * (1 - p));
+      }
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis(const binomial_distribution<RealType, Policy>& dist)
+      {
+         RealType p = dist.success_fraction();
+         RealType n = dist.trials();
+         return 3 - 6 / n + 1 / (n * p * (1 - p));
+      }
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis_excess(const binomial_distribution<RealType, Policy>& dist)
+      {
+         RealType p = dist.success_fraction();
+         RealType q = 1 - p;
+         RealType n = dist.trials();
+         return (1 - 6 * p * q) / (n * p * q);
+      }
+
+    } // namespace math
+  } // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_BINOMIAL_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/cauchy.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,362 @@
+// Copyright John Maddock 2006, 2007.
+// Copyright Paul A. Bristow 2007.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_CAUCHY_HPP
+#define BOOST_STATS_CAUCHY_HPP
+
+#ifdef _MSC_VER
+#pragma warning(push)
+#pragma warning(disable : 4127) // conditional expression is constant
+#endif
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/config/no_tr1/cmath.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+
+template <class RealType, class Policy>
+class cauchy_distribution;
+
+namespace detail
+{
+
+template <class RealType, class Policy>
+RealType cdf_imp(const cauchy_distribution<RealType, Policy>& dist, const RealType& x, bool complement)
+{
+   //
+   // This calculates the cdf of the Cauchy distribution and/or its complement.
+   //
+   // The usual formula for the Cauchy cdf is:
+   //
+   // cdf = 0.5 + atan(x)/pi
+   //
+   // But that suffers from cancellation error as x -> -INF.
+   //
+   // Recall that for x < 0:
+   //
+   // atan(x) = -pi/2 - atan(1/x)
+   //
+   // Substituting into the above we get:
+   //
+   // CDF = -atan(1/x)  ; x < 0
+   //
+   // So the proceedure is to calculate the cdf for -fabs(x)
+   // using the above formula, and then subtract from 1 when required
+   // to get the result.
+   //
+   BOOST_MATH_STD_USING // for ADL of std functions
+   static const char* function = "boost::math::cdf(cauchy<%1%>&, %1%)";
+   RealType result = 0;
+   RealType location = dist.location();
+   RealType scale = dist.scale();
+   if(false == detail::check_location(function, location, &result, Policy()))
+   {
+     return result;
+   }
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+      return result;
+   }
+   if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
+   { // cdf +infinity is unity.
+     return static_cast<RealType>((complement) ? 0 : 1);
+   }
+   if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
+   { // cdf -infinity is zero.
+     return static_cast<RealType>((complement) ? 1 : 0);
+   }
+   if(false == detail::check_x(function, x, &result, Policy()))
+   { // Catches x == NaN
+      return result;
+   }
+   RealType mx = -fabs((x - location) / scale); // scale is > 0
+   if(mx > -tools::epsilon<RealType>() / 8)
+   {  // special case first: x extremely close to location.
+      return 0.5;
+   }
+   result = -atan(1 / mx) / constants::pi<RealType>();
+   return (((x > location) != complement) ? 1 - result : result);
+} // cdf
+
+template <class RealType, class Policy>
+RealType quantile_imp(
+      const cauchy_distribution<RealType, Policy>& dist,
+      const RealType& p,
+      bool complement)
+{
+   // This routine implements the quantile for the Cauchy distribution,
+   // the value p may be the probability, or its complement if complement=true.
+   //
+   // The procedure first performs argument reduction on p to avoid error
+   // when calculating the tangent, then calulates the distance from the
+   // mid-point of the distribution.  This is either added or subtracted
+   // from the location parameter depending on whether `complement` is true.
+   //
+   static const char* function = "boost::math::quantile(cauchy<%1%>&, %1%)";
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   RealType result = 0;
+   RealType location = dist.location();
+   RealType scale = dist.scale();
+   if(false == detail::check_location(function, location, &result, Policy()))
+   {
+     return result;
+   }
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_probability(function, p, &result, Policy()))
+   {
+      return result;
+   }
+   // Special cases:
+   if(p == 1)
+   {
+      return (complement ? -1 : 1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+   if(p == 0)
+   {
+      return (complement ? 1 : -1) * policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+
+   RealType P = p - floor(p);   // argument reduction of p:
+   if(P > 0.5)
+   {
+      P = P - 1;
+   }
+   if(P == 0.5)   // special case:
+   {
+      return location;
+   }
+   result = -scale / tan(constants::pi<RealType>() * P);
+   return complement ? RealType(location - result) : RealType(location + result);
+} // quantile
+
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class cauchy_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   cauchy_distribution(RealType l_location = 0, RealType l_scale = 1)
+      : m_a(l_location), m_hg(l_scale)
+   {
+    static const char* function = "boost::math::cauchy_distribution<%1%>::cauchy_distribution";
+     RealType result;
+     detail::check_location(function, l_location, &result, Policy());
+     detail::check_scale(function, l_scale, &result, Policy());
+   } // cauchy_distribution
+
+   RealType location()const
+   {
+      return m_a;
+   }
+   RealType scale()const
+   {
+      return m_hg;
+   }
+
+private:
+   RealType m_a;    // The location, this is the median of the distribution.
+   RealType m_hg;   // The scale )or shape), this is the half width at half height.
+};
+
+typedef cauchy_distribution<double> cauchy;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const cauchy_distribution<RealType, Policy>&)
+{ // Range of permissible values for random variable x.
+  if (std::numeric_limits<RealType>::has_infinity)
+  { 
+     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
+  }
+  else
+  { // Can only use max_value.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max.
+  }
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const cauchy_distribution<RealType, Policy>& )
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+  if (std::numeric_limits<RealType>::has_infinity)
+  { 
+     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
+  }
+  else
+  { // Can only use max_value.
+     using boost::math::tools::max_value;
+     return std::pair<RealType, RealType>(-tools::max_value<RealType>(), max_value<RealType>()); // - to + max.
+  }
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
+{  
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::pdf(cauchy<%1%>&, %1%)";
+   RealType result = 0;
+   RealType location = dist.location();
+   RealType scale = dist.scale();
+   if(false == detail::check_scale("boost::math::pdf(cauchy<%1%>&, %1%)", scale, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_location("boost::math::pdf(cauchy<%1%>&, %1%)", location, &result, Policy()))
+   {
+      return result;
+   }
+   if((boost::math::isinf)(x))
+   {
+     return 0; // pdf + and - infinity is zero.
+   }
+   // These produce MSVC 4127 warnings, so the above used instead.
+   //if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
+   //{ // pdf + and - infinity is zero.
+   //  return 0;
+   //}
+
+   if(false == detail::check_x(function, x, &result, Policy()))
+   { // Catches x = NaN
+      return result;
+   }
+
+   RealType xs = (x - location) / scale;
+   result = 1 / (constants::pi<RealType>() * scale * (1 + xs * xs));
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const cauchy_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   return detail::cdf_imp(dist, x, false);
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const cauchy_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   return detail::quantile_imp(dist, p, false);
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
+{
+   return detail::cdf_imp(c.dist, c.param, true);
+} //  cdf complement
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<cauchy_distribution<RealType, Policy>, RealType>& c)
+{
+   return detail::quantile_imp(c.dist, c.param, true);
+} // quantile complement
+
+template <class RealType, class Policy>
+inline RealType mean(const cauchy_distribution<RealType, Policy>&)
+{  // There is no mean:
+   typedef typename Policy::assert_undefined_type assert_type;
+   BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+   return policies::raise_domain_error<RealType>(
+      "boost::math::mean(cauchy<%1%>&)",
+      "The Cauchy distribution does not have a mean: "
+      "the only possible return value is %1%.",
+      std::numeric_limits<RealType>::quiet_NaN(), Policy());
+}
+
+template <class RealType, class Policy>
+inline RealType variance(const cauchy_distribution<RealType, Policy>& /*dist*/)
+{
+   // There is no variance:
+   typedef typename Policy::assert_undefined_type assert_type;
+   BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+   return policies::raise_domain_error<RealType>(
+      "boost::math::variance(cauchy<%1%>&)",
+      "The Cauchy distribution does not have a variance: "
+      "the only possible return value is %1%.",
+      std::numeric_limits<RealType>::quiet_NaN(), Policy());
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const cauchy_distribution<RealType, Policy>& dist)
+{
+   return dist.location();
+}
+
+template <class RealType, class Policy>
+inline RealType median(const cauchy_distribution<RealType, Policy>& dist)
+{
+   return dist.location();
+}
+template <class RealType, class Policy>
+inline RealType skewness(const cauchy_distribution<RealType, Policy>& /*dist*/)
+{
+   // There is no skewness:
+   typedef typename Policy::assert_undefined_type assert_type;
+   BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+   return policies::raise_domain_error<RealType>(
+      "boost::math::skewness(cauchy<%1%>&)",
+      "The Cauchy distribution does not have a skewness: "
+      "the only possible return value is %1%.",
+      std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const cauchy_distribution<RealType, Policy>& /*dist*/)
+{
+   // There is no kurtosis:
+   typedef typename Policy::assert_undefined_type assert_type;
+   BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+   return policies::raise_domain_error<RealType>(
+      "boost::math::kurtosis(cauchy<%1%>&)",
+      "The Cauchy distribution does not have a kurtosis: "
+      "the only possible return value is %1%.",
+      std::numeric_limits<RealType>::quiet_NaN(), Policy());
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const cauchy_distribution<RealType, Policy>& /*dist*/)
+{
+   // There is no kurtosis excess:
+   typedef typename Policy::assert_undefined_type assert_type;
+   BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+   return policies::raise_domain_error<RealType>(
+      "boost::math::kurtosis_excess(cauchy<%1%>&)",
+      "The Cauchy distribution does not have a kurtosis: "
+      "the only possible return value is %1%.",
+      std::numeric_limits<RealType>::quiet_NaN(), Policy());
+}
+
+} // namespace math
+} // namespace boost
+
+#ifdef _MSC_VER
+#pragma warning(pop)
+#endif
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_CAUCHY_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/chi_squared.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,364 @@
+// Copyright John Maddock 2006, 2007.
+// Copyright Paul A. Bristow 2008, 2010.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP
+#define BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp> // for incomplete beta.
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+template <class RealType = double, class Policy = policies::policy<> >
+class chi_squared_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   chi_squared_distribution(RealType i) : m_df(i)
+   {
+      RealType result;
+      detail::check_df(
+         "boost::math::chi_squared_distribution<%1%>::chi_squared_distribution", m_df, &result, Policy());
+   } // chi_squared_distribution
+
+   RealType degrees_of_freedom()const
+   {
+      return m_df;
+   }
+
+   // Parameter estimation:
+   static RealType find_degrees_of_freedom(
+      RealType difference_from_variance,
+      RealType alpha,
+      RealType beta,
+      RealType variance,
+      RealType hint = 100);
+
+private:
+   //
+   // Data member:
+   //
+   RealType m_df; // degrees of freedom is a positive real number.
+}; // class chi_squared_distribution
+
+typedef chi_squared_distribution<double> chi_squared;
+
+#ifdef BOOST_MSVC
+#pragma warning(push)
+#pragma warning(disable:4127)
+#endif
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const chi_squared_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+  if (std::numeric_limits<RealType>::has_infinity)
+  { 
+    return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()); // 0 to + infinity.
+  }
+  else
+  {
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + max.
+  }
+}
+
+#ifdef BOOST_MSVC
+#pragma warning(pop)
+#endif
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const chi_squared_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity.
+}
+
+template <class RealType, class Policy>
+RealType pdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+   RealType degrees_of_freedom = dist.degrees_of_freedom();
+   // Error check:
+   RealType error_result;
+
+   static const char* function = "boost::math::pdf(const chi_squared_distribution<%1%>&, %1%)";
+
+   if(false == detail::check_df(
+         function, degrees_of_freedom, &error_result, Policy()))
+      return error_result;
+
+   if((chi_square < 0) || !(boost::math::isfinite)(chi_square))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy());
+   }
+
+   if(chi_square == 0)
+   {
+      // Handle special cases:
+      if(degrees_of_freedom < 2)
+      {
+         return policies::raise_overflow_error<RealType>(
+            function, 0, Policy());
+      }
+      else if(degrees_of_freedom == 2)
+      {
+         return 0.5f;
+      }
+      else
+      {
+         return 0;
+      }
+   }
+
+   return gamma_p_derivative(degrees_of_freedom / 2, chi_square / 2, Policy()) / 2;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const chi_squared_distribution<RealType, Policy>& dist, const RealType& chi_square)
+{
+   RealType degrees_of_freedom = dist.degrees_of_freedom();
+   // Error check:
+   RealType error_result;
+   static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)";
+
+   if(false == detail::check_df(
+         function, degrees_of_freedom, &error_result, Policy()))
+      return error_result;
+
+   if((chi_square < 0) || !(boost::math::isfinite)(chi_square))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy());
+   }
+
+   return boost::math::gamma_p(degrees_of_freedom / 2, chi_square / 2, Policy());
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   RealType degrees_of_freedom = dist.degrees_of_freedom();
+   static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)";
+   // Error check:
+   RealType error_result;
+   if(false ==
+     (
+       detail::check_df(function, degrees_of_freedom, &error_result, Policy())
+       && detail::check_probability(function, p, &error_result, Policy()))
+     )
+     return error_result;
+
+   return 2 * boost::math::gamma_p_inv(degrees_of_freedom / 2, p, Policy());
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c)
+{
+   RealType const& degrees_of_freedom = c.dist.degrees_of_freedom();
+   RealType const& chi_square = c.param;
+   static const char* function = "boost::math::cdf(const chi_squared_distribution<%1%>&, %1%)";
+   // Error check:
+   RealType error_result;
+   if(false == detail::check_df(
+         function, degrees_of_freedom, &error_result, Policy()))
+      return error_result;
+
+   if((chi_square < 0) || !(boost::math::isfinite)(chi_square))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Chi Square parameter was %1%, but must be > 0 !", chi_square, Policy());
+   }
+
+   return boost::math::gamma_q(degrees_of_freedom / 2, chi_square / 2, Policy());
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<chi_squared_distribution<RealType, Policy>, RealType>& c)
+{
+   RealType const& degrees_of_freedom = c.dist.degrees_of_freedom();
+   RealType const& q = c.param;
+   static const char* function = "boost::math::quantile(const chi_squared_distribution<%1%>&, %1%)";
+   // Error check:
+   RealType error_result;
+   if(false == (
+     detail::check_df(function, degrees_of_freedom, &error_result, Policy())
+     && detail::check_probability(function, q, &error_result, Policy()))
+     )
+    return error_result;
+
+   return 2 * boost::math::gamma_q_inv(degrees_of_freedom / 2, q, Policy());
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const chi_squared_distribution<RealType, Policy>& dist)
+{ // Mean of Chi-Squared distribution = v.
+  return dist.degrees_of_freedom();
+} // mean
+
+template <class RealType, class Policy>
+inline RealType variance(const chi_squared_distribution<RealType, Policy>& dist)
+{ // Variance of Chi-Squared distribution = 2v.
+  return 2 * dist.degrees_of_freedom();
+} // variance
+
+template <class RealType, class Policy>
+inline RealType mode(const chi_squared_distribution<RealType, Policy>& dist)
+{
+   RealType df = dist.degrees_of_freedom();
+   static const char* function = "boost::math::mode(const chi_squared_distribution<%1%>&)";
+   // Most sources only define mode for df >= 2,
+   // but for 0 <= df <= 2, the pdf maximum actually occurs at random variate = 0;
+   // So one could extend the definition of mode thus:
+   //if(df < 0)
+   //{
+   //   return policies::raise_domain_error<RealType>(
+   //      function,
+   //      "Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.",
+   //      df, Policy());
+   //}
+   //return (df <= 2) ? 0 : df - 2;
+
+   if(df < 2)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.",
+         df, Policy());
+   return df - 2;
+}
+
+//template <class RealType, class Policy>
+//inline RealType median(const chi_squared_distribution<RealType, Policy>& dist)
+//{ // Median is given by Quantile[dist, 1/2]
+//   RealType df = dist.degrees_of_freedom();
+//   if(df <= 1)
+//      return tools::domain_error<RealType>(
+//         BOOST_CURRENT_FUNCTION,
+//         "The Chi-Squared distribution only has a mode for degrees of freedom >= 2, but got degrees of freedom = %1%.",
+//         df);
+//   return df - RealType(2)/3;
+//}
+// Now implemented via quantile(half) in derived accessors.
+
+template <class RealType, class Policy>
+inline RealType skewness(const chi_squared_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING // For ADL
+   RealType df = dist.degrees_of_freedom();
+   return sqrt (8 / df);  // == 2 * sqrt(2 / df);
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const chi_squared_distribution<RealType, Policy>& dist)
+{
+   RealType df = dist.degrees_of_freedom();
+   return 3 + 12 / df;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const chi_squared_distribution<RealType, Policy>& dist)
+{
+   RealType df = dist.degrees_of_freedom();
+   return 12 / df;
+}
+
+//
+// Parameter estimation comes last:
+//
+namespace detail
+{
+
+template <class RealType, class Policy>
+struct df_estimator
+{
+   df_estimator(RealType a, RealType b, RealType variance, RealType delta)
+      : alpha(a), beta(b), ratio(delta/variance)
+   { // Constructor
+   }
+
+   RealType operator()(const RealType& df)
+   {
+      if(df <= tools::min_value<RealType>())
+         return 1;
+      chi_squared_distribution<RealType, Policy> cs(df);
+
+      RealType result;
+      if(ratio > 0)
+      {
+         RealType r = 1 + ratio;
+         result = cdf(cs, quantile(complement(cs, alpha)) / r) - beta;
+      }
+      else
+      { // ratio <= 0
+         RealType r = 1 + ratio;
+         result = cdf(complement(cs, quantile(cs, alpha) / r)) - beta;
+      }
+      return result;
+   }
+private:
+   RealType alpha;
+   RealType beta;
+   RealType ratio; // Difference from variance / variance, so fractional.
+};
+
+} // namespace detail
+
+template <class RealType, class Policy>
+RealType chi_squared_distribution<RealType, Policy>::find_degrees_of_freedom(
+   RealType difference_from_variance,
+   RealType alpha,
+   RealType beta,
+   RealType variance,
+   RealType hint)
+{
+   static const char* function = "boost::math::chi_squared_distribution<%1%>::find_degrees_of_freedom(%1%,%1%,%1%,%1%,%1%)";
+   // Check for domain errors:
+   RealType error_result;
+   if(false ==
+     detail::check_probability(function, alpha, &error_result, Policy())
+     && detail::check_probability(function, beta, &error_result, Policy()))
+   { // Either probability is outside 0 to 1.
+      return error_result;
+   }
+
+   if(hint <= 0)
+   { // No hint given, so guess df = 1.
+      hint = 1;
+   }
+
+   detail::df_estimator<RealType, Policy> f(alpha, beta, variance, difference_from_variance);
+   tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+   boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+   std::pair<RealType, RealType> r =
+     tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy());
+   RealType result = r.first + (r.second - r.first) / 2;
+   if(max_iter >= policies::get_max_root_iterations<Policy>())
+   {
+      policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+         " either there is no answer to how many degrees of freedom are required"
+         " or the answer is infinite.  Current best guess is %1%", result, Policy());
+   }
+   return result;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_DISTRIBUTIONS_CHI_SQUARED_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/complement.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,195 @@
+//  (C) Copyright John Maddock 2006.
+//  (C) Copyright Paul A. Bristow 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_COMPLEMENT_HPP
+#define BOOST_STATS_COMPLEMENT_HPP
+
+//
+// This code really defines our own tuple type.
+// It would be nice to reuse boost::math::tuple
+// while retaining our own type safety, but it's
+// not clear if that's possible.  In any case this
+// code is *very* lightweight.
+//
+namespace boost{ namespace math{
+
+template <class Dist, class RealType>
+struct complemented2_type
+{
+   complemented2_type(
+      const Dist& d, 
+      const RealType& p1)
+      : dist(d), 
+        param(p1) {}
+
+   const Dist& dist;
+   const RealType& param;
+
+private:
+   complemented2_type& operator=(const complemented2_type&);
+};
+
+template <class Dist, class RealType1, class RealType2>
+struct complemented3_type
+{
+   complemented3_type(
+      const Dist& d, 
+      const RealType1& p1,
+      const RealType2& p2)
+      : dist(d), 
+        param1(p1), 
+        param2(p2) {}
+
+   const Dist& dist;
+   const RealType1& param1;
+   const RealType2& param2;
+private:
+   complemented3_type& operator=(const complemented3_type&);
+};
+
+template <class Dist, class RealType1, class RealType2, class RealType3>
+struct complemented4_type
+{
+   complemented4_type(
+      const Dist& d, 
+      const RealType1& p1,
+      const RealType2& p2,
+      const RealType3& p3)
+      : dist(d), 
+        param1(p1), 
+        param2(p2), 
+        param3(p3) {}
+
+   const Dist& dist;
+   const RealType1& param1;
+   const RealType2& param2;
+   const RealType3& param3;
+private:
+   complemented4_type& operator=(const complemented4_type&);
+};
+
+template <class Dist, class RealType1, class RealType2, class RealType3, class RealType4>
+struct complemented5_type
+{
+   complemented5_type(
+      const Dist& d, 
+      const RealType1& p1,
+      const RealType2& p2,
+      const RealType3& p3,
+      const RealType4& p4)
+      : dist(d), 
+        param1(p1), 
+        param2(p2), 
+        param3(p3), 
+        param4(p4) {}
+
+   const Dist& dist;
+   const RealType1& param1;
+   const RealType2& param2;
+   const RealType3& param3;
+   const RealType4& param4;
+private:
+   complemented5_type& operator=(const complemented5_type&);
+};
+
+template <class Dist, class RealType1, class RealType2, class RealType3, class RealType4, class RealType5>
+struct complemented6_type
+{
+   complemented6_type(
+      const Dist& d, 
+      const RealType1& p1,
+      const RealType2& p2,
+      const RealType3& p3,
+      const RealType4& p4,
+      const RealType5& p5)
+      : dist(d), 
+        param1(p1), 
+        param2(p2), 
+        param3(p3), 
+        param4(p4), 
+        param5(p5) {}
+
+   const Dist& dist;
+   const RealType1& param1;
+   const RealType2& param2;
+   const RealType3& param3;
+   const RealType4& param4;
+   const RealType5& param5;
+private:
+   complemented6_type& operator=(const complemented6_type&);
+};
+
+template <class Dist, class RealType1, class RealType2, class RealType3, class RealType4, class RealType5, class RealType6>
+struct complemented7_type
+{
+   complemented7_type(
+      const Dist& d, 
+      const RealType1& p1,
+      const RealType2& p2,
+      const RealType3& p3,
+      const RealType4& p4,
+      const RealType5& p5,
+      const RealType6& p6)
+      : dist(d), 
+        param1(p1), 
+        param2(p2), 
+        param3(p3), 
+        param4(p4), 
+        param5(p5), 
+        param6(p6) {}
+
+   const Dist& dist;
+   const RealType1& param1;
+   const RealType2& param2;
+   const RealType3& param3;
+   const RealType4& param4;
+   const RealType5& param5;
+   const RealType6& param6;
+private:
+   complemented7_type& operator=(const complemented7_type&);
+};
+
+template <class Dist, class RealType>
+inline complemented2_type<Dist, RealType> complement(const Dist& d, const RealType& r)
+{
+   return complemented2_type<Dist, RealType>(d, r);
+}
+
+template <class Dist, class RealType1, class RealType2>
+inline complemented3_type<Dist, RealType1, RealType2> complement(const Dist& d, const RealType1& r1, const RealType2& r2)
+{
+   return complemented3_type<Dist, RealType1, RealType2>(d, r1, r2);
+}
+
+template <class Dist, class RealType1, class RealType2, class RealType3>
+inline complemented4_type<Dist, RealType1, RealType2, RealType3> complement(const Dist& d, const RealType1& r1, const RealType2& r2, const RealType3& r3)
+{
+   return complemented4_type<Dist, RealType1, RealType2, RealType3>(d, r1, r2, r3);
+}
+
+template <class Dist, class RealType1, class RealType2, class RealType3, class RealType4>
+inline complemented5_type<Dist, RealType1, RealType2, RealType3, RealType4> complement(const Dist& d, const RealType1& r1, const RealType2& r2, const RealType3& r3, const RealType4& r4)
+{
+   return complemented5_type<Dist, RealType1, RealType2, RealType3, RealType4>(d, r1, r2, r3, r4);
+}
+
+template <class Dist, class RealType1, class RealType2, class RealType3, class RealType4, class RealType5>
+inline complemented6_type<Dist, RealType1, RealType2, RealType3, RealType4, RealType5> complement(const Dist& d, const RealType1& r1, const RealType2& r2, const RealType3& r3, const RealType4& r4, const RealType5& r5)
+{
+   return complemented6_type<Dist, RealType1, RealType2, RealType3, RealType4, RealType5>(d, r1, r2, r3, r4, r5);
+}
+
+template <class Dist, class RealType1, class RealType2, class RealType3, class RealType4, class RealType5, class RealType6>
+inline complemented7_type<Dist, RealType1, RealType2, RealType3, RealType4, RealType5, RealType6> complement(const Dist& d, const RealType1& r1, const RealType2& r2, const RealType3& r3, const RealType4& r4, const RealType5& r5, const RealType6& r6)
+{
+   return complemented7_type<Dist, RealType1, RealType2, RealType3, RealType4, RealType5, RealType6>(d, r1, r2, r3, r4, r5, r6);
+}
+
+} // namespace math
+} // namespace boost
+
+#endif // BOOST_STATS_COMPLEMENT_HPP
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/common_error_handling.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,223 @@
+// Copyright John Maddock 2006, 2007.
+// Copyright Paul A. Bristow 2006, 2007, 2012.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_COMMON_ERROR_HANDLING_HPP
+#define BOOST_MATH_DISTRIBUTIONS_COMMON_ERROR_HANDLING_HPP
+
+#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/special_functions/fpclassify.hpp>
+// using boost::math::isfinite;
+// using boost::math::isnan;
+
+#ifdef BOOST_MSVC
+# pragma warning(push)
+# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
+#endif
+
+namespace boost{ namespace math{ namespace detail
+{
+
+template <class RealType, class Policy>
+inline bool check_probability(const char* function, RealType const& prob, RealType* result, const Policy& pol)
+{
+   if((prob < 0) || (prob > 1) || !(boost::math::isfinite)(prob))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Probability argument is %1%, but must be >= 0 and <= 1 !", prob, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_df(const char* function, RealType const& df, RealType* result, const Policy& pol)
+{ //  df > 0 but NOT +infinity allowed.
+   if((df <= 0) || !(boost::math::isfinite)(df))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Degrees of freedom argument is %1%, but must be > 0 !", df, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_df_gt0_to_inf(const char* function, RealType const& df, RealType* result, const Policy& pol)
+{  // df > 0 or +infinity are allowed.
+   if( (df <= 0) || (boost::math::isnan)(df) )
+   { // is bad df <= 0 or NaN or -infinity.
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Degrees of freedom argument is %1%, but must be > 0 !", df, pol);
+      return false;
+   }
+   return true;
+} // check_df_gt0_to_inf
+
+
+template <class RealType, class Policy>
+inline bool check_scale(
+      const char* function,
+      RealType scale,
+      RealType* result,
+      const Policy& pol)
+{
+   if((scale <= 0) || !(boost::math::isfinite)(scale))
+   { // Assume scale == 0 is NOT valid for any distribution.
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Scale parameter is %1%, but must be > 0 !", scale, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_location(
+      const char* function,
+      RealType location,
+      RealType* result,
+      const Policy& pol)
+{
+   if(!(boost::math::isfinite)(location))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Location parameter is %1%, but must be finite!", location, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_x(
+      const char* function,
+      RealType x,
+      RealType* result,
+      const Policy& pol)
+{
+   // Note that this test catches both infinity and NaN.
+   // Some distributions permit x to be infinite, so these must be tested 1st and return,
+   // leaving this test to catch any NaNs.
+   // See Normal, Logistic, Laplace and Cauchy for example.
+   if(!(boost::math::isfinite)(x))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Random variate x is %1%, but must be finite!", x, pol);
+      return false;
+   }
+   return true;
+} // bool check_x
+
+template <class RealType, class Policy>
+inline bool check_x_not_NaN(
+  const char* function,
+  RealType x,
+  RealType* result,
+  const Policy& pol)
+{
+  // Note that this test catches only NaN.
+  // Some distributions permit x to be infinite, leaving this test to catch any NaNs.
+  // See Normal, Logistic, Laplace and Cauchy for example.
+  if ((boost::math::isnan)(x))
+  {
+    *result = policies::raise_domain_error<RealType>(
+      function,
+      "Random variate x is %1%, but must be finite or + or - infinity!", x, pol);
+    return false;
+  }
+  return true;
+} // bool check_x_not_NaN
+
+template <class RealType, class Policy>
+inline bool check_x_gt0(
+      const char* function,
+      RealType x,
+      RealType* result,
+      const Policy& pol)
+{
+   if(x <= 0)
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Random variate x is %1%, but must be > 0!", x, pol);
+      return false;
+   }
+
+   return true;
+   // Note that this test catches both infinity and NaN.
+   // Some special cases permit x to be infinite, so these must be tested 1st,
+   // leaving this test to catch any NaNs.  See Normal and cauchy for example.
+} // bool check_x_gt0
+
+template <class RealType, class Policy>
+inline bool check_positive_x(
+      const char* function,
+      RealType x,
+      RealType* result,
+      const Policy& pol)
+{
+   if(!(boost::math::isfinite)(x) || (x < 0))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Random variate x is %1%, but must be finite and >= 0!", x, pol);
+      return false;
+   }
+   return true;
+   // Note that this test catches both infinity and NaN.
+   // Some special cases permit x to be infinite, so these must be tested 1st,
+   // leaving this test to catch any NaNs.  see Normal and cauchy for example.
+}
+
+template <class RealType, class Policy>
+inline bool check_non_centrality(
+      const char* function,
+      RealType ncp,
+      RealType* result,
+      const Policy& pol)
+{
+   if((ncp < 0) || !(boost::math::isfinite)(ncp))
+   { // Assume scale == 0 is NOT valid for any distribution.
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Non centrality parameter is %1%, but must be > 0 !", ncp, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_finite(
+      const char* function,
+      RealType x,
+      RealType* result,
+      const Policy& pol)
+{
+   if(!(boost::math::isfinite)(x))
+   { // Assume scale == 0 is NOT valid for any distribution.
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Parameter is %1%, but must be finite !", x, pol);
+      return false;
+   }
+   return true;
+}
+
+} // namespace detail
+} // namespace math
+} // namespace boost
+
+#ifdef BOOST_MSVC
+#  pragma warning(pop)
+#endif
+
+#endif // BOOST_MATH_DISTRIBUTIONS_COMMON_ERROR_HANDLING_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/derived_accessors.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,163 @@
+//  Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_DERIVED_HPP
+#define BOOST_STATS_DERIVED_HPP
+
+// This file implements various common properties of distributions
+// that can be implemented in terms of other properties:
+// variance OR standard deviation (see note below),
+// hazard, cumulative hazard (chf), coefficient_of_variation.
+//
+// Note that while both variance and standard_deviation are provided
+// here, each distribution MUST SPECIALIZE AT LEAST ONE OF THESE
+// otherwise these two versions will just call each other over and over
+// until stack space runs out ...
+
+// Of course there may be more efficient means of implementing these
+// that are specific to a particular distribution, but these generic
+// versions give these properties "for free" with most distributions.
+//
+// In order to make use of this header, it must be included AT THE END
+// of the distribution header, AFTER the distribution and its core
+// property accessors have been defined: this is so that compilers
+// that implement 2-phase lookup and early-type-checking of templates
+// can find the definitions refered to herein.
+//
+
+#include <boost/type_traits/is_same.hpp>
+#include <boost/static_assert.hpp>
+
+#ifdef BOOST_MSVC
+# pragma warning(push)
+# pragma warning(disable: 4723) // potential divide by 0
+// Suppressing spurious warning in coefficient_of_variation
+#endif
+
+namespace boost{ namespace math{
+
+template <class Distribution>
+typename Distribution::value_type variance(const Distribution& dist);
+
+template <class Distribution>
+inline typename Distribution::value_type standard_deviation(const Distribution& dist)
+{
+   BOOST_MATH_STD_USING  // ADL of sqrt.
+   return sqrt(variance(dist));
+}
+
+template <class Distribution>
+inline typename Distribution::value_type variance(const Distribution& dist)
+{
+   typename Distribution::value_type result = standard_deviation(dist);
+   return result * result;
+}
+
+template <class Distribution, class RealType>
+inline typename Distribution::value_type hazard(const Distribution& dist, const RealType& x)
+{ // hazard function
+  // http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#HAZ
+   typedef typename Distribution::value_type value_type;
+   typedef typename Distribution::policy_type policy_type;
+   value_type p = cdf(complement(dist, x));
+   value_type d = pdf(dist, x);
+   if(d > p * tools::max_value<value_type>())
+      return policies::raise_overflow_error<value_type>(
+      "boost::math::hazard(const Distribution&, %1%)", 0, policy_type());
+   if(d == 0)
+   {
+      // This protects against 0/0, but is it the right thing to do?
+      return 0;
+   }
+   return d / p;
+}
+
+template <class Distribution, class RealType>
+inline typename Distribution::value_type chf(const Distribution& dist, const RealType& x)
+{ // cumulative hazard function.
+  // http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#HAZ
+   BOOST_MATH_STD_USING
+   return -log(cdf(complement(dist, x)));
+}
+
+template <class Distribution>
+inline typename Distribution::value_type coefficient_of_variation(const Distribution& dist)
+{
+   typedef typename Distribution::value_type value_type;
+   typedef typename Distribution::policy_type policy_type;
+
+   using std::abs;
+
+   value_type m = mean(dist);
+   value_type d = standard_deviation(dist);
+   if((abs(m) < 1) && (d > abs(m) * tools::max_value<value_type>()))
+   { // Checks too that m is not zero,
+      return policies::raise_overflow_error<value_type>("boost::math::coefficient_of_variation(const Distribution&, %1%)", 0, policy_type());
+   }
+   return d / m; // so MSVC warning on zerodivide is spurious, and suppressed.
+}
+//
+// Next follow overloads of some of the standard accessors with mixed
+// argument types. We just use a typecast to forward on to the "real"
+// implementation with all arguments of the same type:
+//
+template <class Distribution, class RealType>
+inline typename Distribution::value_type pdf(const Distribution& dist, const RealType& x)
+{
+   typedef typename Distribution::value_type value_type;
+   return pdf(dist, static_cast<value_type>(x));
+}
+template <class Distribution, class RealType>
+inline typename Distribution::value_type cdf(const Distribution& dist, const RealType& x)
+{
+   typedef typename Distribution::value_type value_type;
+   return cdf(dist, static_cast<value_type>(x));
+}
+template <class Distribution, class RealType>
+inline typename Distribution::value_type quantile(const Distribution& dist, const RealType& x)
+{
+   typedef typename Distribution::value_type value_type;
+   return quantile(dist, static_cast<value_type>(x));
+}
+/*
+template <class Distribution, class RealType>
+inline typename Distribution::value_type chf(const Distribution& dist, const RealType& x)
+{
+   typedef typename Distribution::value_type value_type;
+   return chf(dist, static_cast<value_type>(x));
+}
+*/
+template <class Distribution, class RealType>
+inline typename Distribution::value_type cdf(const complemented2_type<Distribution, RealType>& c)
+{
+   typedef typename Distribution::value_type value_type;
+   return cdf(complement(c.dist, static_cast<value_type>(c.param)));
+}
+
+template <class Distribution, class RealType>
+inline typename Distribution::value_type quantile(const complemented2_type<Distribution, RealType>& c)
+{
+   typedef typename Distribution::value_type value_type;
+   return quantile(complement(c.dist, static_cast<value_type>(c.param)));
+}
+
+template <class Dist>
+inline typename Dist::value_type median(const Dist& d)
+{ // median - default definition for those distributions for which a
+  // simple closed form is not known,
+  // and for which a domain_error and/or NaN generating function is NOT defined.
+  typedef typename Dist::value_type value_type;
+  return quantile(d, static_cast<value_type>(0.5f));
+}
+
+} // namespace math
+} // namespace boost
+
+
+#ifdef BOOST_MSVC
+# pragma warning(pop)
+#endif
+
+#endif // BOOST_STATS_DERIVED_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/generic_mode.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,149 @@
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_MODE_HPP
+#define BOOST_MATH_DISTRIBUTIONS_DETAIL_MODE_HPP
+
+#include <boost/math/tools/minima.hpp> // function minimization for mode
+#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/distributions/fwd.hpp>
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class Dist>
+struct pdf_minimizer
+{
+   pdf_minimizer(const Dist& d)
+      : dist(d) {}
+
+   typename Dist::value_type operator()(const typename Dist::value_type& x)
+   {
+      return -pdf(dist, x);
+   }
+private:
+   Dist dist;
+};
+
+template <class Dist>
+typename Dist::value_type generic_find_mode(const Dist& dist, typename Dist::value_type guess, const char* function, typename Dist::value_type step = 0)
+{
+   BOOST_MATH_STD_USING
+   typedef typename Dist::value_type value_type;
+   typedef typename Dist::policy_type policy_type;
+   //
+   // Need to begin by bracketing the maxima of the PDF:
+   //
+   value_type maxval;
+   value_type upper_bound = guess;
+   value_type lower_bound;
+   value_type v = pdf(dist, guess);
+   if(v == 0)
+   {
+      //
+      // Oops we don't know how to handle this, or even in which
+      // direction we should move in, treat as an evaluation error:
+      //
+      return policies::raise_evaluation_error(
+         function, 
+         "Could not locate a starting location for the search for the mode, original guess was %1%", guess, policy_type());
+   }
+   do
+   {
+      maxval = v;
+      if(step != 0)
+         upper_bound += step;
+      else
+         upper_bound *= 2;
+      v = pdf(dist, upper_bound);
+   }while(maxval < v);
+
+   lower_bound = upper_bound;
+   do
+   {
+      maxval = v;
+      if(step != 0)
+         lower_bound -= step;
+      else
+         lower_bound /= 2;
+      v = pdf(dist, lower_bound);
+   }while(maxval < v);
+
+   boost::uintmax_t max_iter = policies::get_max_root_iterations<policy_type>();
+
+   value_type result = tools::brent_find_minima(
+      pdf_minimizer<Dist>(dist), 
+      lower_bound, 
+      upper_bound, 
+      policies::digits<value_type, policy_type>(), 
+      max_iter).first;
+   if(max_iter >= policies::get_max_root_iterations<policy_type>())
+   {
+      return policies::raise_evaluation_error<value_type>(
+         function, 
+         "Unable to locate solution in a reasonable time:"
+         " either there is no answer to the mode of the distribution"
+         " or the answer is infinite.  Current best guess is %1%", result, policy_type());
+   }
+   return result;
+}
+//
+// As above,but confined to the interval [0,1]:
+//
+template <class Dist>
+typename Dist::value_type generic_find_mode_01(const Dist& dist, typename Dist::value_type guess, const char* function)
+{
+   BOOST_MATH_STD_USING
+   typedef typename Dist::value_type value_type;
+   typedef typename Dist::policy_type policy_type;
+   //
+   // Need to begin by bracketing the maxima of the PDF:
+   //
+   value_type maxval;
+   value_type upper_bound = guess;
+   value_type lower_bound;
+   value_type v = pdf(dist, guess);
+   do
+   {
+      maxval = v;
+      upper_bound = 1 - (1 - upper_bound) / 2;
+      if(upper_bound == 1)
+         return 1;
+      v = pdf(dist, upper_bound);
+   }while(maxval < v);
+
+   lower_bound = upper_bound;
+   do
+   {
+      maxval = v;
+      lower_bound /= 2;
+      if(lower_bound < tools::min_value<value_type>())
+         return 0;
+      v = pdf(dist, lower_bound);
+   }while(maxval < v);
+
+   boost::uintmax_t max_iter = policies::get_max_root_iterations<policy_type>();
+
+   value_type result = tools::brent_find_minima(
+      pdf_minimizer<Dist>(dist), 
+      lower_bound, 
+      upper_bound, 
+      policies::digits<value_type, policy_type>(), 
+      max_iter).first;
+   if(max_iter >= policies::get_max_root_iterations<policy_type>())
+   {
+      return policies::raise_evaluation_error<value_type>(
+         function, 
+         "Unable to locate solution in a reasonable time:"
+         " either there is no answer to the mode of the distribution"
+         " or the answer is infinite.  Current best guess is %1%", result, policy_type());
+   }
+   return result;
+}
+
+}}} // namespaces
+
+#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_MODE_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/generic_quantile.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,91 @@
+//  Copyright John Maddock 2008.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTIBUTIONS_DETAIL_GENERIC_QUANTILE_HPP
+#define BOOST_MATH_DISTIBUTIONS_DETAIL_GENERIC_QUANTILE_HPP
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class Dist>
+struct generic_quantile_finder
+{
+   typedef typename Dist::value_type value_type;
+   typedef typename Dist::policy_type policy_type;
+
+   generic_quantile_finder(const Dist& d, value_type t, bool c)
+      : dist(d), target(t), comp(c) {}
+
+   value_type operator()(const value_type& x)
+   {
+      return comp ?
+         value_type(target - cdf(complement(dist, x)))
+         : value_type(cdf(dist, x) - target);
+   }
+
+private:
+   Dist dist;
+   value_type target;
+   bool comp;
+};
+
+template <class T, class Policy>
+inline T check_range_result(const T& x, const Policy& pol, const char* function)
+{
+   if((x >= 0) && (x < tools::min_value<T>()))
+      return policies::raise_underflow_error<T>(function, 0, pol);
+   if(x <= -tools::max_value<T>())
+      return -policies::raise_overflow_error<T>(function, 0, pol);
+   if(x >= tools::max_value<T>())
+      return policies::raise_overflow_error<T>(function, 0, pol);
+   return x;
+}
+
+template <class Dist>
+typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function)
+{
+   typedef typename Dist::value_type value_type;
+   typedef typename Dist::policy_type policy_type;
+   typedef typename policies::normalise<
+      policy_type, 
+      policies::promote_float<false>, 
+      policies::promote_double<false>, 
+      policies::discrete_quantile<>,
+      policies::assert_undefined<> >::type forwarding_policy;
+
+   //
+   // Special cases first:
+   //
+   if(p == 0)
+   {
+      return comp
+      ? check_range_result(range(dist).second, forwarding_policy(), function)
+      : check_range_result(range(dist).first, forwarding_policy(), function);
+   }
+   if(p == 1)
+   {
+      return !comp
+      ? check_range_result(range(dist).second, forwarding_policy(), function)
+      : check_range_result(range(dist).first, forwarding_policy(), function);
+   }
+
+   generic_quantile_finder<Dist> f(dist, p, comp);
+   tools::eps_tolerance<value_type> tol(policies::digits<value_type, forwarding_policy>() - 3);
+   boost::uintmax_t max_iter = policies::get_max_root_iterations<forwarding_policy>();
+   std::pair<value_type, value_type> ir = tools::bracket_and_solve_root(
+      f, guess, value_type(2), true, tol, max_iter, forwarding_policy());
+   value_type result = ir.first + (ir.second - ir.first) / 2;
+   if(max_iter >= policies::get_max_root_iterations<forwarding_policy>())
+   {
+      return policies::raise_evaluation_error<value_type>(function, "Unable to locate solution in a reasonable time:"
+         " either there is no answer to quantile"
+         " or the answer is infinite.  Current best guess is %1%", result, forwarding_policy());
+   }
+   return result;
+}
+
+}}} // namespaces
+
+#endif // BOOST_MATH_DISTIBUTIONS_DETAIL_GENERIC_QUANTILE_HPP
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/hypergeometric_cdf.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,100 @@
+// Copyright 2008 John Maddock
+//
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_CDF_HPP
+#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_CDF_HPP
+
+#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/distributions/detail/hypergeometric_pdf.hpp>
+
+namespace boost{ namespace math{ namespace detail{
+
+   template <class T, class Policy>
+   T hypergeometric_cdf_imp(unsigned x, unsigned r, unsigned n, unsigned N, bool invert, const Policy& pol)
+   {
+#ifdef BOOST_MSVC
+#  pragma warning(push)
+#  pragma warning(disable:4267)
+#endif
+      BOOST_MATH_STD_USING
+      T result = 0;
+      T mode = floor(T(r + 1) * T(n + 1) / (N + 2));
+      if(x < mode)
+      {
+         result = hypergeometric_pdf<T>(x, r, n, N, pol);
+         T diff = result;
+         unsigned lower_limit = static_cast<unsigned>((std::max)(0, (int)(n + r) - (int)(N)));
+         while(diff > (invert ? T(1) : result) * tools::epsilon<T>())
+         {
+            diff = T(x) * T((N + x) - n - r) * diff / (T(1 + n - x) * T(1 + r - x));
+            result += diff;
+            BOOST_MATH_INSTRUMENT_VARIABLE(x);
+            BOOST_MATH_INSTRUMENT_VARIABLE(diff);
+            BOOST_MATH_INSTRUMENT_VARIABLE(result);
+            if(x == lower_limit)
+               break;
+            --x;
+         }
+      }
+      else
+      {
+         invert = !invert;
+         unsigned upper_limit = (std::min)(r, n);
+         if(x != upper_limit)
+         {
+            ++x;
+            result = hypergeometric_pdf<T>(x, r, n, N, pol);
+            T diff = result;
+            while((x <= upper_limit) && (diff > (invert ? T(1) : result) * tools::epsilon<T>()))
+            {
+               diff = T(n - x) * T(r - x) * diff / (T(x + 1) * T((N + x + 1) - n - r));
+               result += diff;
+               ++x;
+               BOOST_MATH_INSTRUMENT_VARIABLE(x);
+               BOOST_MATH_INSTRUMENT_VARIABLE(diff);
+               BOOST_MATH_INSTRUMENT_VARIABLE(result);
+            }
+         }
+      }
+      if(invert)
+         result = 1 - result;
+      return result;
+#ifdef BOOST_MSVC
+#  pragma warning(pop)
+#endif
+   }
+
+   template <class T, class Policy>
+   inline T hypergeometric_cdf(unsigned x, unsigned r, unsigned n, unsigned N, bool invert, const Policy&)
+   {
+      BOOST_FPU_EXCEPTION_GUARD
+      typedef typename tools::promote_args<T>::type result_type;
+      typedef typename policies::evaluation<result_type, Policy>::type value_type;
+      typedef typename policies::normalise<
+         Policy, 
+         policies::promote_float<false>, 
+         policies::promote_double<false>, 
+         policies::discrete_quantile<>,
+         policies::assert_undefined<> >::type forwarding_policy;
+
+      value_type result;
+      result = detail::hypergeometric_cdf_imp<value_type>(x, r, n, N, invert, forwarding_policy());
+      if(result > 1)
+      {
+         result  = 1;
+      }
+      if(result < 0)
+      {
+         result = 0;
+      }
+      return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_cdf<%1%>(%1%,%1%,%1%,%1%)");
+   }
+
+}}} // namespaces
+
+#endif
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/hypergeometric_pdf.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,488 @@
+// Copyright 2008 Gautam Sewani
+// Copyright 2008 John Maddock
+//
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
+#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
+
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/special_functions/lanczos.hpp>
+#include <boost/math/special_functions/gamma.hpp>
+#include <boost/math/special_functions/pow.hpp>
+#include <boost/math/special_functions/prime.hpp>
+#include <boost/math/policies/error_handling.hpp>
+
+#ifdef BOOST_MATH_INSTRUMENT
+#include <typeinfo>
+#endif
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class T, class Func>
+void bubble_down_one(T* first, T* last, Func f)
+{
+   using std::swap;
+   T* next = first;
+   ++next;
+   while((next != last) && (!f(*first, *next)))
+   {
+      swap(*first, *next);
+      ++first;
+      ++next;
+   }
+}
+
+template <class T>
+struct sort_functor
+{
+   sort_functor(const T* exponents) : m_exponents(exponents){}
+   bool operator()(int i, int j)
+   {
+      return m_exponents[i] > m_exponents[j];
+   }
+private:
+   const T* m_exponents;
+};
+
+template <class T, class Lanczos, class Policy>
+T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&)
+{
+   BOOST_MATH_STD_USING
+
+   BOOST_MATH_INSTRUMENT_FPU
+   BOOST_MATH_INSTRUMENT_VARIABLE(x);
+   BOOST_MATH_INSTRUMENT_VARIABLE(r);
+   BOOST_MATH_INSTRUMENT_VARIABLE(n);
+   BOOST_MATH_INSTRUMENT_VARIABLE(N);
+   BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
+
+   T bases[9] = {
+      T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
+      T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
+      T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
+      T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
+      1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
+      1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
+      1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
+      1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
+      1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
+   };
+   T exponents[9] = {
+      n + T(0.5f),
+      r + T(0.5f),
+      N - n + T(0.5f),
+      N - r + T(0.5f),
+      N + T(0.5f),
+      x + T(0.5f),
+      n - x + T(0.5f),
+      r - x + T(0.5f),
+      N - n - r + x + T(0.5f)
+   };
+   int base_e_factors[9] = {
+      -1, -1, -1, -1, 1, 1, 1, 1, 1
+   };
+   int sorted_indexes[9] = {
+      0, 1, 2, 3, 4, 5, 6, 7, 8
+   };
+#ifdef BOOST_MATH_INSTRUMENT
+   BOOST_MATH_INSTRUMENT_FPU
+   for(unsigned i = 0; i < 9; ++i)
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(i);
+      BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
+   }
+#endif
+   std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
+#ifdef BOOST_MATH_INSTRUMENT
+   BOOST_MATH_INSTRUMENT_FPU
+   for(unsigned i = 0; i < 9; ++i)
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(i);
+      BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
+   }
+#endif
+
+   do{
+      exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
+      bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
+      if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
+      {
+         return 0;
+      }
+      base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
+      bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
+
+#ifdef BOOST_MATH_INSTRUMENT
+      for(unsigned i = 0; i < 9; ++i)
+      {
+         BOOST_MATH_INSTRUMENT_VARIABLE(i);
+         BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
+         BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
+         BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
+         BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
+      }
+#endif
+   }while(exponents[sorted_indexes[1]] > 1);
+
+   //
+   // Combine equal powers:
+   //
+   int j = 8;
+   while(exponents[sorted_indexes[j]] == 0) --j;
+   while(j)
+   {
+      while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
+      {
+         bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
+         exponents[sorted_indexes[j]] = 0;
+         base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
+         bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
+         --j;
+      }
+      --j;
+
+#ifdef BOOST_MATH_INSTRUMENT
+      BOOST_MATH_INSTRUMENT_VARIABLE(j);
+      for(unsigned i = 0; i < 9; ++i)
+      {
+         BOOST_MATH_INSTRUMENT_VARIABLE(i);
+         BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
+         BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
+         BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
+         BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
+      }
+#endif
+   }
+
+#ifdef BOOST_MATH_INSTRUMENT
+   BOOST_MATH_INSTRUMENT_FPU
+   for(unsigned i = 0; i < 9; ++i)
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(i);
+      BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
+      BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
+   }
+#endif
+
+   T result;
+   BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
+   BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
+   {
+      BOOST_FPU_EXCEPTION_GUARD
+      result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
+   }
+   BOOST_MATH_INSTRUMENT_VARIABLE(result);
+   for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
+   {
+      BOOST_FPU_EXCEPTION_GUARD
+      if(result < tools::min_value<T>())
+         return 0; // short circuit further evaluation
+      if(exponents[sorted_indexes[i]] == 1)
+         result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
+      else if(exponents[sorted_indexes[i]] == 0.5f)
+         result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
+      else
+         result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
+   
+      BOOST_MATH_INSTRUMENT_VARIABLE(result);
+   }
+
+   result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
+      * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
+      * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
+      * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
+      / 
+      ( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
+         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
+         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
+         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
+         * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
+   
+   BOOST_MATH_INSTRUMENT_VARIABLE(result);
+   return result;
+}
+
+template <class T, class Policy>
+T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
+{
+   BOOST_MATH_STD_USING
+   return exp(
+      boost::math::lgamma(T(n + 1), pol)
+      + boost::math::lgamma(T(r + 1), pol)
+      + boost::math::lgamma(T(N - n + 1), pol)
+      + boost::math::lgamma(T(N - r + 1), pol)
+      - boost::math::lgamma(T(N + 1), pol)
+      - boost::math::lgamma(T(x + 1), pol)
+      - boost::math::lgamma(T(n - x + 1), pol)
+      - boost::math::lgamma(T(r - x + 1), pol)
+      - boost::math::lgamma(T(N - n - r + x + 1), pol));
+}
+
+template <class T>
+inline T integer_power(const T& x, int ex)
+{
+   if(ex < 0)
+      return 1 / integer_power(x, -ex);
+   switch(ex)
+   {
+   case 0:
+      return 1;
+   case 1:
+      return x;
+   case 2:
+      return x * x;
+   case 3:
+      return x * x * x;
+   case 4:
+      return boost::math::pow<4>(x);
+   case 5:
+      return boost::math::pow<5>(x);
+   case 6:
+      return boost::math::pow<6>(x);
+   case 7:
+      return boost::math::pow<7>(x);
+   case 8:
+      return boost::math::pow<8>(x);
+   }
+   BOOST_MATH_STD_USING
+#ifdef __SUNPRO_CC
+   return pow(x, T(ex));
+#else
+   return pow(x, ex);
+#endif
+}
+template <class T>
+struct hypergeometric_pdf_prime_loop_result_entry
+{
+   T value;
+   const hypergeometric_pdf_prime_loop_result_entry* next;
+};
+
+#ifdef BOOST_MSVC
+#pragma warning(push)
+#pragma warning(disable:4510 4512 4610)
+#endif
+
+struct hypergeometric_pdf_prime_loop_data
+{
+   const unsigned x;
+   const unsigned r;
+   const unsigned n;
+   const unsigned N;
+   unsigned prime_index;
+   unsigned current_prime;
+};
+
+#ifdef BOOST_MSVC
+#pragma warning(pop)
+#endif
+
+template <class T>
+T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
+{
+   while(data.current_prime <= data.N)
+   {
+      unsigned base = data.current_prime;
+      int prime_powers = 0;
+      while(base <= data.N)
+      {
+         prime_powers += data.n / base;
+         prime_powers += data.r / base;
+         prime_powers += (data.N - data.n) / base;
+         prime_powers += (data.N - data.r) / base;
+         prime_powers -= data.N / base;
+         prime_powers -= data.x / base;
+         prime_powers -= (data.n - data.x) / base;
+         prime_powers -= (data.r - data.x) / base;
+         prime_powers -= (data.N - data.n - data.r + data.x) / base;
+         base *= data.current_prime;
+      }
+      if(prime_powers)
+      {
+         T p = integer_power<T>(static_cast<T>(data.current_prime), prime_powers);
+         if((p > 1) && (tools::max_value<T>() / p < result.value))
+         {
+            //
+            // The next calculation would overflow, use recursion
+            // to sidestep the issue:
+            //
+            hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
+            data.current_prime = prime(++data.prime_index);
+            return hypergeometric_pdf_prime_loop_imp<T>(data, t);
+         }
+         if((p < 1) && (tools::min_value<T>() / p > result.value))
+         {
+            //
+            // The next calculation would underflow, use recursion
+            // to sidestep the issue:
+            //
+            hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
+            data.current_prime = prime(++data.prime_index);
+            return hypergeometric_pdf_prime_loop_imp<T>(data, t);
+         }
+         result.value *= p;
+      }
+      data.current_prime = prime(++data.prime_index);
+   }
+   //
+   // When we get to here we have run out of prime factors,
+   // the overall result is the product of all the partial
+   // results we have accumulated on the stack so far, these
+   // are in a linked list starting with "data.head" and ending
+   // with "result".
+   //
+   // All that remains is to multiply them together, taking
+   // care not to overflow or underflow.
+   //
+   // Enumerate partial results >= 1 in variable i
+   // and partial results < 1 in variable j:
+   //
+   hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
+   i = &result;
+   while(i && i->value < 1)
+      i = i->next;
+   j = &result;
+   while(j && j->value >= 1)
+      j = j->next;
+
+   T prod = 1;
+
+   while(i || j)
+   {
+      while(i && ((prod <= 1) || (j == 0)))
+      {
+         prod *= i->value;
+         i = i->next;
+         while(i && i->value < 1)
+            i = i->next;
+      }
+      while(j && ((prod >= 1) || (i == 0)))
+      {
+         prod *= j->value;
+         j = j->next;
+         while(j && j->value >= 1)
+            j = j->next;
+      }
+   }
+
+   return prod;
+}
+
+template <class T, class Policy>
+inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
+{
+   hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
+   hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
+   return hypergeometric_pdf_prime_loop_imp<T>(data, result);
+}
+
+template <class T, class Policy>
+T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
+{
+   BOOST_MATH_STD_USING
+   BOOST_ASSERT(N <= boost::math::max_factorial<T>::value);
+   T result = boost::math::unchecked_factorial<T>(n);
+   T num[3] = {
+      boost::math::unchecked_factorial<T>(r),
+      boost::math::unchecked_factorial<T>(N - n),
+      boost::math::unchecked_factorial<T>(N - r)
+   };
+   T denom[5] = {
+      boost::math::unchecked_factorial<T>(N),
+      boost::math::unchecked_factorial<T>(x),
+      boost::math::unchecked_factorial<T>(n - x),
+      boost::math::unchecked_factorial<T>(r - x),
+      boost::math::unchecked_factorial<T>(N - n - r + x)
+   };
+   int i = 0;
+   int j = 0;
+   while((i < 3) || (j < 5))
+   {
+      while((j < 5) && ((result >= 1) || (i >= 3)))
+      {
+         result /= denom[j];
+         ++j;
+      }
+      while((i < 3) && ((result <= 1) || (j >= 5)))
+      {
+         result *= num[i];
+         ++i;
+      }
+   }
+   return result;
+}
+
+
+template <class T, class Policy>
+inline typename tools::promote_args<T>::type 
+   hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
+{
+   BOOST_FPU_EXCEPTION_GUARD
+   typedef typename tools::promote_args<T>::type result_type;
+   typedef typename policies::evaluation<result_type, Policy>::type value_type;
+   typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
+   typedef typename policies::normalise<
+      Policy, 
+      policies::promote_float<false>, 
+      policies::promote_double<false>, 
+      policies::discrete_quantile<>,
+      policies::assert_undefined<> >::type forwarding_policy;
+
+   value_type result;
+   if(N <= boost::math::max_factorial<value_type>::value)
+   {
+      //
+      // If N is small enough then we can evaluate the PDF via the factorials
+      // directly: table lookup of the factorials gives the best performance
+      // of the methods available:
+      //
+      result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
+   }
+   else if(N <= boost::math::prime(boost::math::max_prime - 1))
+   {
+      //
+      // If N is no larger than the largest prime number in our lookup table
+      // (104729) then we can use prime factorisation to evaluate the PDF,
+      // this is slow but accurate:
+      //
+      result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
+   }
+   else
+   {
+      //
+      // Catch all case - use the lanczos approximation - where available - 
+      // to evaluate the ratio of factorials.  This is reasonably fast
+      // (almost as quick as using logarithmic evaluation in terms of lgamma)
+      // but only a few digits better in accuracy than using lgamma:
+      //
+      result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
+   }
+
+   if(result > 1)
+   {
+      result = 1;
+   }
+   if(result < 0)
+   {
+      result = 0;
+   }
+
+   return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
+}
+
+}}} // namespaces
+
+#endif
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/hypergeometric_quantile.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,245 @@
+// Copyright 2008 John Maddock
+//
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_QUANTILE_HPP
+#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_QUANTILE_HPP
+
+#include <boost/math/policies/error_handling.hpp>
+#include <boost/math/distributions/detail/hypergeometric_pdf.hpp>
+
+namespace boost{ namespace math{ namespace detail{
+
+template <class T>
+inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_down>&)
+{
+   if((p < cum * fudge_factor) && (x != lbound))
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(x-1);
+      return --x;
+   }
+   return x;
+}
+
+template <class T>
+inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned /*lbound*/, unsigned ubound, const policies::discrete_quantile<policies::integer_round_up>&)
+{
+   if((cum < p * fudge_factor) && (x != ubound))
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(x+1);
+      return ++x;
+   }
+   return x;
+}
+
+template <class T>
+inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_inwards>&)
+{
+   if(p >= 0.5)
+      return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
+   return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
+}
+
+template <class T>
+inline unsigned round_x_from_p(unsigned x, T p, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_outwards>&)
+{
+   if(p >= 0.5)
+      return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
+   return round_x_from_p(x, p, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
+}
+
+template <class T>
+inline unsigned round_x_from_p(unsigned x, T /*p*/, T /*cum*/, T /*fudge_factor*/, unsigned /*lbound*/, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_nearest>&)
+{
+   return x;
+}
+
+template <class T>
+inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_down>&)
+{
+   if((q * fudge_factor > cum) && (x != lbound))
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(x-1);
+      return --x;
+   }
+   return x;
+}
+
+template <class T>
+inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned /*lbound*/, unsigned ubound, const policies::discrete_quantile<policies::integer_round_up>&)
+{
+   if((q < cum * fudge_factor) && (x != ubound))
+   {
+      BOOST_MATH_INSTRUMENT_VARIABLE(x+1);
+      return ++x;
+   }
+   return x;
+}
+
+template <class T>
+inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_inwards>&)
+{
+   if(q < 0.5)
+      return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
+   return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
+}
+
+template <class T>
+inline unsigned round_x_from_q(unsigned x, T q, T cum, T fudge_factor, unsigned lbound, unsigned ubound, const policies::discrete_quantile<policies::integer_round_outwards>&)
+{
+   if(q >= 0.5)
+      return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_down>());
+   return round_x_from_q(x, q, cum, fudge_factor, lbound, ubound, policies::discrete_quantile<policies::integer_round_up>());
+}
+
+template <class T>
+inline unsigned round_x_from_q(unsigned x, T /*q*/, T /*cum*/, T /*fudge_factor*/, unsigned /*lbound*/, unsigned /*ubound*/, const policies::discrete_quantile<policies::integer_round_nearest>&)
+{
+   return x;
+}
+
+template <class T, class Policy>
+unsigned hypergeometric_quantile_imp(T p, T q, unsigned r, unsigned n, unsigned N, const Policy& pol)
+{
+#ifdef BOOST_MSVC
+#  pragma warning(push)
+#  pragma warning(disable:4267)
+#endif
+   typedef typename Policy::discrete_quantile_type discrete_quantile_type;
+   BOOST_MATH_STD_USING
+   BOOST_FPU_EXCEPTION_GUARD
+   T result;
+   T fudge_factor = 1 + tools::epsilon<T>() * ((N <= boost::math::prime(boost::math::max_prime - 1)) ? 50 : 2 * N);
+   unsigned base = static_cast<unsigned>((std::max)(0, (int)(n + r) - (int)(N)));
+   unsigned lim = (std::min)(r, n);
+
+   BOOST_MATH_INSTRUMENT_VARIABLE(p);
+   BOOST_MATH_INSTRUMENT_VARIABLE(q);
+   BOOST_MATH_INSTRUMENT_VARIABLE(r);
+   BOOST_MATH_INSTRUMENT_VARIABLE(n);
+   BOOST_MATH_INSTRUMENT_VARIABLE(N);
+   BOOST_MATH_INSTRUMENT_VARIABLE(fudge_factor);
+   BOOST_MATH_INSTRUMENT_VARIABLE(base);
+   BOOST_MATH_INSTRUMENT_VARIABLE(lim);
+
+   if(p <= 0.5)
+   {
+      unsigned x = base;
+      result = hypergeometric_pdf<T>(x, r, n, N, pol);
+      T diff = result;
+      if (diff == 0)
+      {
+         ++x;
+         // We want to skip through x values as fast as we can until we start getting non-zero values,
+         // otherwise we're just making lots of expensive PDF calls:
+         T log_pdf = boost::math::lgamma(static_cast<T>(n + 1), pol)
+            + boost::math::lgamma(static_cast<T>(r + 1), pol)
+            + boost::math::lgamma(static_cast<T>(N - n + 1), pol)
+            + boost::math::lgamma(static_cast<T>(N - r + 1), pol)
+            - boost::math::lgamma(static_cast<T>(N + 1), pol)
+            - boost::math::lgamma(static_cast<T>(x + 1), pol)
+            - boost::math::lgamma(static_cast<T>(n - x + 1), pol)
+            - boost::math::lgamma(static_cast<T>(r - x + 1), pol)
+            - boost::math::lgamma(static_cast<T>(N - n - r + x + 1), pol);
+         while (log_pdf < tools::log_min_value<T>())
+         {
+            log_pdf += -log(static_cast<T>(x + 1)) + log(static_cast<T>(n - x)) + log(static_cast<T>(r - x)) - log(static_cast<T>(N - n - r + x + 1));
+            ++x;
+         }
+         // By the time we get here, log_pdf may be fairly inaccurate due to
+         // roundoff errors, get a fresh PDF calculation before proceding:
+         diff = hypergeometric_pdf<T>(x, r, n, N, pol);
+      }
+      while(result < p)
+      {
+         diff = (diff > tools::min_value<T>() * 8) 
+            ? T(n - x) * T(r - x) * diff / (T(x + 1) * T(N + x + 1 - n - r))
+            : hypergeometric_pdf<T>(x + 1, r, n, N, pol);
+         if(result + diff / 2 > p)
+            break;
+         ++x;
+         result += diff;
+#ifdef BOOST_MATH_INSTRUMENT
+         if(diff != 0)
+         {
+            BOOST_MATH_INSTRUMENT_VARIABLE(x);
+            BOOST_MATH_INSTRUMENT_VARIABLE(diff);
+            BOOST_MATH_INSTRUMENT_VARIABLE(result);
+         }
+#endif
+      }
+      return round_x_from_p(x, p, result, fudge_factor, base, lim, discrete_quantile_type());
+   }
+   else
+   {
+      unsigned x = lim;
+      result = 0;
+      T diff = hypergeometric_pdf<T>(x, r, n, N, pol);
+      if (diff == 0)
+      {
+         // We want to skip through x values as fast as we can until we start getting non-zero values,
+         // otherwise we're just making lots of expensive PDF calls:
+         --x;
+         T log_pdf = boost::math::lgamma(static_cast<T>(n + 1), pol)
+            + boost::math::lgamma(static_cast<T>(r + 1), pol)
+            + boost::math::lgamma(static_cast<T>(N - n + 1), pol)
+            + boost::math::lgamma(static_cast<T>(N - r + 1), pol)
+            - boost::math::lgamma(static_cast<T>(N + 1), pol)
+            - boost::math::lgamma(static_cast<T>(x + 1), pol)
+            - boost::math::lgamma(static_cast<T>(n - x + 1), pol)
+            - boost::math::lgamma(static_cast<T>(r - x + 1), pol)
+            - boost::math::lgamma(static_cast<T>(N - n - r + x + 1), pol);
+         while (log_pdf < tools::log_min_value<T>())
+         {
+            log_pdf += log(static_cast<T>(x)) - log(static_cast<T>(n - x + 1)) - log(static_cast<T>(r - x + 1)) + log(static_cast<T>(N - n - r + x));
+            --x;
+         }
+         // By the time we get here, log_pdf may be fairly inaccurate due to
+         // roundoff errors, get a fresh PDF calculation before proceding:
+         diff = hypergeometric_pdf<T>(x, r, n, N, pol);
+      }
+      while(result + diff / 2 < q)
+      {
+         result += diff;
+         diff = (diff > tools::min_value<T>() * 8)
+            ? x * T(N + x - n - r) * diff / (T(1 + n - x) * T(1 + r - x))
+            : hypergeometric_pdf<T>(x - 1, r, n, N, pol);
+         --x;
+#ifdef BOOST_MATH_INSTRUMENT
+         if(diff != 0)
+         {
+            BOOST_MATH_INSTRUMENT_VARIABLE(x);
+            BOOST_MATH_INSTRUMENT_VARIABLE(diff);
+            BOOST_MATH_INSTRUMENT_VARIABLE(result);
+         }
+#endif
+      }
+      return round_x_from_q(x, q, result, fudge_factor, base, lim, discrete_quantile_type());
+   }
+#ifdef BOOST_MSVC
+#  pragma warning(pop)
+#endif
+}
+
+template <class T, class Policy>
+inline unsigned hypergeometric_quantile(T p, T q, unsigned r, unsigned n, unsigned N, const Policy&)
+{
+   BOOST_FPU_EXCEPTION_GUARD
+   typedef typename tools::promote_args<T>::type result_type;
+   typedef typename policies::evaluation<result_type, Policy>::type value_type;
+   typedef typename policies::normalise<
+      Policy, 
+      policies::promote_float<false>, 
+      policies::promote_double<false>, 
+      policies::assert_undefined<> >::type forwarding_policy;
+
+   return detail::hypergeometric_quantile_imp<value_type>(p, q, r, n, N, forwarding_policy());
+}
+
+}}} // namespaces
+
+#endif
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/detail/inv_discrete_quantile.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,571 @@
+//  Copyright John Maddock 2007.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
+#define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
+
+#include <algorithm>
+
+namespace boost{ namespace math{ namespace detail{
+
+//
+// Functor for root finding algorithm:
+//
+template <class Dist>
+struct distribution_quantile_finder
+{
+   typedef typename Dist::value_type value_type;
+   typedef typename Dist::policy_type policy_type;
+
+   distribution_quantile_finder(const Dist d, value_type p, bool c)
+      : dist(d), target(p), comp(c) {}
+
+   value_type operator()(value_type const& x)
+   {
+      return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
+   }
+
+private:
+   Dist dist;
+   value_type target;
+   bool comp;
+};
+//
+// The purpose of adjust_bounds, is to toggle the last bit of the
+// range so that both ends round to the same integer, if possible.
+// If they do both round the same then we terminate the search
+// for the root *very* quickly when finding an integer result.
+// At the point that this function is called we know that "a" is
+// below the root and "b" above it, so this change can not result
+// in the root no longer being bracketed.
+//
+template <class Real, class Tol>
+void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
+
+template <class Real>
+void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
+{
+   BOOST_MATH_STD_USING
+   b -= tools::epsilon<Real>() * b;
+}
+
+template <class Real>
+void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
+{
+   BOOST_MATH_STD_USING
+   a += tools::epsilon<Real>() * a;
+}
+
+template <class Real>
+void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
+{
+   BOOST_MATH_STD_USING
+   a += tools::epsilon<Real>() * a;
+   b -= tools::epsilon<Real>() * b;
+}
+//
+// This is where all the work is done:
+//
+template <class Dist, class Tolerance>
+typename Dist::value_type 
+   do_inverse_discrete_quantile(
+      const Dist& dist,
+      const typename Dist::value_type& p,
+      bool comp,
+      typename Dist::value_type guess,
+      const typename Dist::value_type& multiplier,
+      typename Dist::value_type adder,
+      const Tolerance& tol,
+      boost::uintmax_t& max_iter)
+{
+   typedef typename Dist::value_type value_type;
+   typedef typename Dist::policy_type policy_type;
+
+   static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
+
+   BOOST_MATH_STD_USING
+
+   distribution_quantile_finder<Dist> f(dist, p, comp);
+   //
+   // Max bounds of the distribution:
+   //
+   value_type min_bound, max_bound;
+   boost::math::tie(min_bound, max_bound) = support(dist);
+
+   if(guess > max_bound)
+      guess = max_bound;
+   if(guess < min_bound)
+      guess = min_bound;
+
+   value_type fa = f(guess);
+   boost::uintmax_t count = max_iter - 1;
+   value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
+
+   if(fa == 0)
+      return guess;
+
+   //
+   // For small expected results, just use a linear search:
+   //
+   if(guess < 10)
+   {
+      b = a;
+      while((a < 10) && (fa * fb >= 0))
+      {
+         if(fb <= 0)
+         {
+            a = b;
+            b = a + 1;
+            if(b > max_bound)
+               b = max_bound;
+            fb = f(b);
+            --count;
+            if(fb == 0)
+               return b;
+            if(a == b)
+               return b; // can't go any higher!
+         }
+         else
+         {
+            b = a;
+            a = (std::max)(value_type(b - 1), value_type(0));
+            if(a < min_bound)
+               a = min_bound;
+            fa = f(a);
+            --count;
+            if(fa == 0)
+               return a;
+            if(a == b)
+               return a;  //  We can't go any lower than this!
+         }
+      }
+   }
+   //
+   // Try and bracket using a couple of additions first, 
+   // we're assuming that "guess" is likely to be accurate
+   // to the nearest int or so:
+   //
+   else if(adder != 0)
+   {
+      //
+      // If we're looking for a large result, then bump "adder" up
+      // by a bit to increase our chances of bracketing the root:
+      //
+      //adder = (std::max)(adder, 0.001f * guess);
+      if(fa < 0)
+      {
+         b = a + adder;
+         if(b > max_bound)
+            b = max_bound;
+      }
+      else
+      {
+         b = (std::max)(value_type(a - adder), value_type(0));
+         if(b < min_bound)
+            b = min_bound;
+      }
+      fb = f(b);
+      --count;
+      if(fb == 0)
+         return b;
+      if(count && (fa * fb >= 0))
+      {
+         //
+         // We didn't bracket the root, try 
+         // once more:
+         //
+         a = b;
+         fa = fb;
+         if(fa < 0)
+         {
+            b = a + adder;
+            if(b > max_bound)
+               b = max_bound;
+         }
+         else
+         {
+            b = (std::max)(value_type(a - adder), value_type(0));
+            if(b < min_bound)
+               b = min_bound;
+         }
+         fb = f(b);
+         --count;
+      }
+      if(a > b)
+      {
+         using std::swap;
+         swap(a, b);
+         swap(fa, fb);
+      }
+   }
+   //
+   // If the root hasn't been bracketed yet, try again
+   // using the multiplier this time:
+   //
+   if((boost::math::sign)(fb) == (boost::math::sign)(fa))
+   {
+      if(fa < 0)
+      {
+         //
+         // Zero is to the right of x2, so walk upwards
+         // until we find it:
+         //
+         while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
+         {
+            if(count == 0)
+               return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
+            a = b;
+            fa = fb;
+            b *= multiplier;
+            if(b > max_bound)
+               b = max_bound;
+            fb = f(b);
+            --count;
+            BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
+         }
+      }
+      else
+      {
+         //
+         // Zero is to the left of a, so walk downwards
+         // until we find it:
+         //
+         while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
+         {
+            if(fabs(a) < tools::min_value<value_type>())
+            {
+               // Escape route just in case the answer is zero!
+               max_iter -= count;
+               max_iter += 1;
+               return 0;
+            }
+            if(count == 0)
+               return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type());
+            b = a;
+            fb = fa;
+            a /= multiplier;
+            if(a < min_bound)
+               a = min_bound;
+            fa = f(a);
+            --count;
+            BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
+         }
+      }
+   }
+   max_iter -= count;
+   if(fa == 0)
+      return a;
+   if(fb == 0)
+      return b;
+   if(a == b)
+      return b;  // Ran out of bounds trying to bracket - there is no answer!
+   //
+   // Adjust bounds so that if we're looking for an integer
+   // result, then both ends round the same way:
+   //
+   adjust_bounds(a, b, tol);
+   //
+   // We don't want zero or denorm lower bounds:
+   //
+   if(a < tools::min_value<value_type>())
+      a = tools::min_value<value_type>();
+   //
+   // Go ahead and find the root:
+   //
+   std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
+   max_iter += count;
+   BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
+   return (r.first + r.second) / 2;
+}
+//
+// Some special routine for rounding up and down:
+// We want to check and see if we are very close to an integer, and if so test to see if
+// that integer is an exact root of the cdf.  We do this because our root finder only
+// guarantees to find *a root*, and there can sometimes be many consecutive floating
+// point values which are all roots.  This is especially true if the target probability
+// is very close 1.
+//
+template <class Dist>
+inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
+{
+   BOOST_MATH_STD_USING
+   typename Dist::value_type cc = ceil(result);
+   typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
+   if(pp == p)
+      result = cc;
+   else
+      result = floor(result);
+   //
+   // Now find the smallest integer <= result for which we get an exact root:
+   //
+   while(result != 0)
+   {
+      cc = result - 1;
+      if(cc < support(d).first)
+         break;
+      pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
+      if(pp == p)
+         result = cc;
+      else if(c ? pp > p : pp < p)
+         break;
+      result -= 1;
+   }
+
+   return result;
+}
+
+#ifdef BOOST_MSVC
+#pragma warning(push)
+#pragma warning(disable:4127)
+#endif
+
+template <class Dist>
+inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
+{
+   BOOST_MATH_STD_USING
+   typename Dist::value_type cc = floor(result);
+   typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
+   if(pp == p)
+      result = cc;
+   else
+      result = ceil(result);
+   //
+   // Now find the largest integer >= result for which we get an exact root:
+   //
+   while(true)
+   {
+      cc = result + 1;
+      if(cc > support(d).second)
+         break;
+      pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
+      if(pp == p)
+         result = cc;
+      else if(c ? pp < p : pp > p)
+         break;
+      result += 1;
+   }
+
+   return result;
+}
+
+#ifdef BOOST_MSVC
+#pragma warning(pop)
+#endif
+//
+// Now finally are the public API functions.
+// There is one overload for each policy,
+// each one is responsible for selecting the correct
+// termination condition, and rounding the result
+// to an int where required.
+//
+template <class Dist>
+inline typename Dist::value_type 
+   inverse_discrete_quantile(
+      const Dist& dist,
+      typename Dist::value_type p,
+      bool c,
+      const typename Dist::value_type& guess,
+      const typename Dist::value_type& multiplier,
+      const typename Dist::value_type& adder,
+      const policies::discrete_quantile<policies::real>&,
+      boost::uintmax_t& max_iter)
+{
+   if(p > 0.5)
+   {
+      p = 1 - p;
+      c = !c;
+   }
+   typename Dist::value_type pp = c ? 1 - p : p;
+   if(pp <= pdf(dist, 0))
+      return 0;
+   return do_inverse_discrete_quantile(
+      dist, 
+      p, 
+      c,
+      guess, 
+      multiplier, 
+      adder, 
+      tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
+      max_iter);
+}
+
+template <class Dist>
+inline typename Dist::value_type 
+   inverse_discrete_quantile(
+      const Dist& dist,
+      const typename Dist::value_type& p,
+      bool c,
+      const typename Dist::value_type& guess,
+      const typename Dist::value_type& multiplier,
+      const typename Dist::value_type& adder,
+      const policies::discrete_quantile<policies::integer_round_outwards>&,
+      boost::uintmax_t& max_iter)
+{
+   typedef typename Dist::value_type value_type;
+   BOOST_MATH_STD_USING
+   typename Dist::value_type pp = c ? 1 - p : p;
+   if(pp <= pdf(dist, 0))
+      return 0;
+   //
+   // What happens next depends on whether we're looking for an 
+   // upper or lower quantile:
+   //
+   if(pp < 0.5f)
+      return round_to_floor(dist, do_inverse_discrete_quantile(
+         dist, 
+         p, 
+         c,
+         (guess < 1 ? value_type(1) : (value_type)floor(guess)), 
+         multiplier, 
+         adder, 
+         tools::equal_floor(),
+         max_iter), p, c);
+   // else:
+   return round_to_ceil(dist, do_inverse_discrete_quantile(
+      dist, 
+      p, 
+      c,
+      (value_type)ceil(guess), 
+      multiplier, 
+      adder, 
+      tools::equal_ceil(),
+      max_iter), p, c);
+}
+
+template <class Dist>
+inline typename Dist::value_type 
+   inverse_discrete_quantile(
+      const Dist& dist,
+      const typename Dist::value_type& p,
+      bool c,
+      const typename Dist::value_type& guess,
+      const typename Dist::value_type& multiplier,
+      const typename Dist::value_type& adder,
+      const policies::discrete_quantile<policies::integer_round_inwards>&,
+      boost::uintmax_t& max_iter)
+{
+   typedef typename Dist::value_type value_type;
+   BOOST_MATH_STD_USING
+   typename Dist::value_type pp = c ? 1 - p : p;
+   if(pp <= pdf(dist, 0))
+      return 0;
+   //
+   // What happens next depends on whether we're looking for an 
+   // upper or lower quantile:
+   //
+   if(pp < 0.5f)
+      return round_to_ceil(dist, do_inverse_discrete_quantile(
+         dist, 
+         p, 
+         c,
+         ceil(guess), 
+         multiplier, 
+         adder, 
+         tools::equal_ceil(),
+         max_iter), p, c);
+   // else:
+   return round_to_floor(dist, do_inverse_discrete_quantile(
+      dist, 
+      p, 
+      c,
+      (guess < 1 ? value_type(1) : floor(guess)), 
+      multiplier, 
+      adder, 
+      tools::equal_floor(),
+      max_iter), p, c);
+}
+
+template <class Dist>
+inline typename Dist::value_type 
+   inverse_discrete_quantile(
+      const Dist& dist,
+      const typename Dist::value_type& p,
+      bool c,
+      const typename Dist::value_type& guess,
+      const typename Dist::value_type& multiplier,
+      const typename Dist::value_type& adder,
+      const policies::discrete_quantile<policies::integer_round_down>&,
+      boost::uintmax_t& max_iter)
+{
+   typedef typename Dist::value_type value_type;
+   BOOST_MATH_STD_USING
+   typename Dist::value_type pp = c ? 1 - p : p;
+   if(pp <= pdf(dist, 0))
+      return 0;
+   return round_to_floor(dist, do_inverse_discrete_quantile(
+      dist, 
+      p, 
+      c,
+      (guess < 1 ? value_type(1) : floor(guess)), 
+      multiplier, 
+      adder, 
+      tools::equal_floor(),
+      max_iter), p, c);
+}
+
+template <class Dist>
+inline typename Dist::value_type 
+   inverse_discrete_quantile(
+      const Dist& dist,
+      const typename Dist::value_type& p,
+      bool c,
+      const typename Dist::value_type& guess,
+      const typename Dist::value_type& multiplier,
+      const typename Dist::value_type& adder,
+      const policies::discrete_quantile<policies::integer_round_up>&,
+      boost::uintmax_t& max_iter)
+{
+   BOOST_MATH_STD_USING
+   typename Dist::value_type pp = c ? 1 - p : p;
+   if(pp <= pdf(dist, 0))
+      return 0;
+   return round_to_ceil(dist, do_inverse_discrete_quantile(
+      dist, 
+      p, 
+      c,
+      ceil(guess), 
+      multiplier, 
+      adder, 
+      tools::equal_ceil(),
+      max_iter), p, c);
+}
+
+template <class Dist>
+inline typename Dist::value_type 
+   inverse_discrete_quantile(
+      const Dist& dist,
+      const typename Dist::value_type& p,
+      bool c,
+      const typename Dist::value_type& guess,
+      const typename Dist::value_type& multiplier,
+      const typename Dist::value_type& adder,
+      const policies::discrete_quantile<policies::integer_round_nearest>&,
+      boost::uintmax_t& max_iter)
+{
+   typedef typename Dist::value_type value_type;
+   BOOST_MATH_STD_USING
+   typename Dist::value_type pp = c ? 1 - p : p;
+   if(pp <= pdf(dist, 0))
+      return 0;
+   //
+   // Note that we adjust the guess to the nearest half-integer:
+   // this increase the chances that we will bracket the root
+   // with two results that both round to the same integer quickly.
+   //
+   return round_to_floor(dist, do_inverse_discrete_quantile(
+      dist, 
+      p, 
+      c,
+      (guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f), 
+      multiplier, 
+      adder, 
+      tools::equal_nearest_integer(),
+      max_iter) + 0.5f, p, c);
+}
+
+}}} // namespaces
+
+#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/exponential.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,275 @@
+//  Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_EXPONENTIAL_HPP
+#define BOOST_STATS_EXPONENTIAL_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/special_functions/log1p.hpp>
+#include <boost/math/special_functions/expm1.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/config/no_tr1/cmath.hpp>
+
+#ifdef BOOST_MSVC
+# pragma warning(push)
+# pragma warning(disable: 4127) // conditional expression is constant
+# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
+#endif
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+namespace detail{
+//
+// Error check:
+//
+template <class RealType, class Policy>
+inline bool verify_lambda(const char* function, RealType l, RealType* presult, const Policy& pol)
+{
+   if((l <= 0) || !(boost::math::isfinite)(l))
+   {
+      *presult = policies::raise_domain_error<RealType>(
+         function,
+         "The scale parameter \"lambda\" must be > 0, but was: %1%.", l, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool verify_exp_x(const char* function, RealType x, RealType* presult, const Policy& pol)
+{
+   if((x < 0) || (boost::math::isnan)(x))
+   {
+      *presult = policies::raise_domain_error<RealType>(
+         function,
+         "The random variable must be >= 0, but was: %1%.", x, pol);
+      return false;
+   }
+   return true;
+}
+
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class exponential_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   exponential_distribution(RealType l_lambda = 1)
+      : m_lambda(l_lambda)
+   {
+      RealType err;
+      detail::verify_lambda("boost::math::exponential_distribution<%1%>::exponential_distribution", l_lambda, &err, Policy());
+   } // exponential_distribution
+
+   RealType lambda()const { return m_lambda; }
+
+private:
+   RealType m_lambda;
+};
+
+typedef exponential_distribution<double> exponential;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const exponential_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+  if (std::numeric_limits<RealType>::has_infinity)
+  { 
+    return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::infinity()); // 0 to + infinity.
+  }
+  else
+  {
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + max
+  }
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const exponential_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   using boost::math::tools::min_value;
+   return std::pair<RealType, RealType>(min_value<RealType>(),  max_value<RealType>());
+   // min_value<RealType>() to avoid a discontinuity at x = 0.
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const exponential_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::pdf(const exponential_distribution<%1%>&, %1%)";
+
+   RealType lambda = dist.lambda();
+   RealType result = 0;
+   if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
+      return result;
+   if(0 == detail::verify_exp_x(function, x, &result, Policy()))
+      return result;
+   // Workaround for VC11/12 bug:
+   if ((boost::math::isinf)(x))
+      return 0;
+   result = lambda * exp(-lambda * x);
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const exponential_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const exponential_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   RealType lambda = dist.lambda();
+   if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
+      return result;
+   if(0 == detail::verify_exp_x(function, x, &result, Policy()))
+      return result;
+   result = -boost::math::expm1(-x * lambda, Policy());
+
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const exponential_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const exponential_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   RealType lambda = dist.lambda();
+   if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
+      return result;
+   if(0 == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   if(p == 0)
+      return 0;
+   if(p == 1)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = -boost::math::log1p(-p, Policy()) / lambda;
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<exponential_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const exponential_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   RealType lambda = c.dist.lambda();
+   if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
+      return result;
+   if(0 == detail::verify_exp_x(function, c.param, &result, Policy()))
+      return result;
+   // Workaround for VC11/12 bug:
+   if (c.param >= tools::max_value<RealType>())
+      return 0;
+   result = exp(-c.param * lambda);
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<exponential_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const exponential_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   RealType lambda = c.dist.lambda();
+   if(0 == detail::verify_lambda(function, lambda, &result, Policy()))
+      return result;
+
+   RealType q = c.param;
+   if(0 == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+   if(q == 1)
+      return 0;
+   if(q == 0)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = -log(q) / lambda;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const exponential_distribution<RealType, Policy>& dist)
+{
+   RealType result = 0;
+   RealType lambda = dist.lambda();
+   if(0 == detail::verify_lambda("boost::math::mean(const exponential_distribution<%1%>&)", lambda, &result, Policy()))
+      return result;
+   return 1 / lambda;
+}
+
+template <class RealType, class Policy>
+inline RealType standard_deviation(const exponential_distribution<RealType, Policy>& dist)
+{
+   RealType result = 0;
+   RealType lambda = dist.lambda();
+   if(0 == detail::verify_lambda("boost::math::standard_deviation(const exponential_distribution<%1%>&)", lambda, &result, Policy()))
+      return result;
+   return 1 / lambda;
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const exponential_distribution<RealType, Policy>& /*dist*/)
+{
+   return 0;
+}
+
+template <class RealType, class Policy>
+inline RealType median(const exponential_distribution<RealType, Policy>& dist)
+{
+   using boost::math::constants::ln_two;
+   return ln_two<RealType>() / dist.lambda(); // ln(2) / lambda
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const exponential_distribution<RealType, Policy>& /*dist*/)
+{
+   return 2;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const exponential_distribution<RealType, Policy>& /*dist*/)
+{
+   return 9;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const exponential_distribution<RealType, Policy>& /*dist*/)
+{
+   return 6;
+}
+
+} // namespace math
+} // namespace boost
+
+#ifdef BOOST_MSVC
+# pragma warning(pop)
+#endif
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_EXPONENTIAL_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/extreme_value.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,300 @@
+//  Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_EXTREME_VALUE_HPP
+#define BOOST_STATS_EXTREME_VALUE_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/special_functions/log1p.hpp>
+#include <boost/math/special_functions/expm1.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/config/no_tr1/cmath.hpp>
+
+//
+// This is the maximum extreme value distribution, see
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366g.htm
+// and http://mathworld.wolfram.com/ExtremeValueDistribution.html
+// Also known as a Fisher-Tippett distribution, a log-Weibull
+// distribution or a Gumbel distribution.
+
+#include <utility>
+
+#ifdef BOOST_MSVC
+# pragma warning(push)
+# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
+#endif
+
+namespace boost{ namespace math{
+
+namespace detail{
+//
+// Error check:
+//
+template <class RealType, class Policy>
+inline bool verify_scale_b(const char* function, RealType b, RealType* presult, const Policy& pol)
+{
+   if((b <= 0) || !(boost::math::isfinite)(b))
+   {
+      *presult = policies::raise_domain_error<RealType>(
+         function,
+         "The scale parameter \"b\" must be finite and > 0, but was: %1%.", b, pol);
+      return false;
+   }
+   return true;
+}
+
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class extreme_value_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   extreme_value_distribution(RealType a = 0, RealType b = 1)
+      : m_a(a), m_b(b)
+   {
+      RealType err;
+      detail::verify_scale_b("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", b, &err, Policy());
+      detail::check_finite("boost::math::extreme_value_distribution<%1%>::extreme_value_distribution", a, &err, Policy());
+   } // extreme_value_distribution
+
+   RealType location()const { return m_a; }
+   RealType scale()const { return m_b; }
+
+private:
+   RealType m_a, m_b;
+};
+
+typedef extreme_value_distribution<double> extreme_value;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const extreme_value_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(
+      std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(), 
+      std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const extreme_value_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(-max_value<RealType>(),  max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::pdf(const extreme_value_distribution<%1%>&, %1%)";
+
+   RealType a = dist.location();
+   RealType b = dist.scale();
+   RealType result = 0;
+   if(0 == detail::verify_scale_b(function, b, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite(function, a, &result, Policy()))
+      return result;
+   if((boost::math::isinf)(x))
+      return 0.0f;
+   if(0 == detail::check_x(function, x, &result, Policy()))
+      return result;
+   RealType e = (a - x) / b;
+   if(e < tools::log_max_value<RealType>())
+      result = exp(e) * exp(-exp(e)) / b;
+   // else.... result *must* be zero since exp(e) is infinite...
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const extreme_value_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)";
+
+   if((boost::math::isinf)(x))
+      return x < 0 ? 0.0f : 1.0f;
+   RealType a = dist.location();
+   RealType b = dist.scale();
+   RealType result = 0;
+   if(0 == detail::verify_scale_b(function, b, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite(function, a, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite(function, a, &result, Policy()))
+      return result;
+   if(0 == detail::check_x("boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)", x, &result, Policy()))
+      return result;
+
+   result = exp(-exp((a-x)/b));
+
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+RealType quantile(const extreme_value_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)";
+
+   RealType a = dist.location();
+   RealType b = dist.scale();
+   RealType result = 0;
+   if(0 == detail::verify_scale_b(function, b, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite(function, a, &result, Policy()))
+      return result;
+   if(0 == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   if(p == 0)
+      return -policies::raise_overflow_error<RealType>(function, 0, Policy());
+   if(p == 1)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = a - log(-log(p)) * b;
+
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const extreme_value_distribution<%1%>&, %1%)";
+
+   if((boost::math::isinf)(c.param))
+      return c.param < 0 ? 1.0f : 0.0f;
+   RealType a = c.dist.location();
+   RealType b = c.dist.scale();
+   RealType result = 0;
+   if(0 == detail::verify_scale_b(function, b, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite(function, a, &result, Policy()))
+      return result;
+   if(0 == detail::check_x(function, c.param, &result, Policy()))
+      return result;
+
+   result = -boost::math::expm1(-exp((a-c.param)/b), Policy());
+
+   return result;
+}
+
+template <class RealType, class Policy>
+RealType quantile(const complemented2_type<extreme_value_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const extreme_value_distribution<%1%>&, %1%)";
+
+   RealType a = c.dist.location();
+   RealType b = c.dist.scale();
+   RealType q = c.param;
+   RealType result = 0;
+   if(0 == detail::verify_scale_b(function, b, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite(function, a, &result, Policy()))
+      return result;
+   if(0 == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+   if(q == 0)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   if(q == 1)
+      return -policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = a - log(-boost::math::log1p(-q, Policy())) * b;
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const extreme_value_distribution<RealType, Policy>& dist)
+{
+   RealType a = dist.location();
+   RealType b = dist.scale();
+   RealType result = 0;
+   if(0 == detail::verify_scale_b("boost::math::mean(const extreme_value_distribution<%1%>&)", b, &result, Policy()))
+      return result;
+   if (0 == detail::check_finite("boost::math::mean(const extreme_value_distribution<%1%>&)", a, &result, Policy()))
+      return result;
+   return a + constants::euler<RealType>() * b;
+}
+
+template <class RealType, class Policy>
+inline RealType standard_deviation(const extreme_value_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions.
+
+   RealType b = dist.scale();
+   RealType result = 0;
+   if(0 == detail::verify_scale_b("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", b, &result, Policy()))
+      return result;
+   if(0 == detail::check_finite("boost::math::standard_deviation(const extreme_value_distribution<%1%>&)", dist.location(), &result, Policy()))
+      return result;
+   return constants::pi<RealType>() * b / sqrt(static_cast<RealType>(6));
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const extreme_value_distribution<RealType, Policy>& dist)
+{
+   return dist.location();
+}
+
+template <class RealType, class Policy>
+inline RealType median(const extreme_value_distribution<RealType, Policy>& dist)
+{
+  using constants::ln_ln_two;
+   return dist.location() - dist.scale() * ln_ln_two<RealType>();
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const extreme_value_distribution<RealType, Policy>& /*dist*/)
+{
+   //
+   // This is 12 * sqrt(6) * zeta(3) / pi^3:
+   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
+   //
+   return static_cast<RealType>(1.1395470994046486574927930193898461120875997958366L);
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const extreme_value_distribution<RealType, Policy>& /*dist*/)
+{
+   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
+   return RealType(27) / 5;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const extreme_value_distribution<RealType, Policy>& /*dist*/)
+{
+   // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
+   return RealType(12) / 5;
+}
+
+
+} // namespace math
+} // namespace boost
+
+#ifdef BOOST_MSVC
+# pragma warning(pop)
+#endif
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_EXTREME_VALUE_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/find_location.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,146 @@
+//  Copyright John Maddock 2007.
+//  Copyright Paul A. Bristow 2007.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_FIND_LOCATION_HPP
+#define BOOST_STATS_FIND_LOCATION_HPP
+
+#include <boost/math/distributions/fwd.hpp> // for all distribution signatures.
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/policies/policy.hpp>
+#include <boost/math/tools/traits.hpp>
+#include <boost/static_assert.hpp>
+#include <boost/math/special_functions/fpclassify.hpp>
+#include <boost/math/policies/error_handling.hpp>
+// using boost::math::policies::policy;
+// using boost::math::complement; // will be needed by users who want complement,
+// but NOT placed here to avoid putting it in global scope.
+
+namespace boost
+{
+  namespace math
+  {
+  // Function to find location of random variable z
+  // to give probability p (given scale)
+  // Applies to normal, lognormal, extreme value, Cauchy, (and symmetrical triangular),
+  // enforced by BOOST_STATIC_ASSERT below.
+
+    template <class Dist, class Policy>
+    inline
+      typename Dist::value_type find_location( // For example, normal mean.
+      typename Dist::value_type z, // location of random variable z to give probability, P(X > z) == p.
+      // For example, a nominal minimum acceptable z, so that p * 100 % are > z
+      typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
+      typename Dist::value_type scale, // scale parameter, for example, normal standard deviation.
+      const Policy& pol 
+      )
+    {
+#if !defined(BOOST_NO_SFINAE) && !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
+      // Will fail to compile here if try to use with a distribution without scale & location,
+      // for example pareto, and many others.  These tests are disabled by the pp-logic
+      // above if the compiler doesn't support the SFINAE tricks used in the traits class.
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_distribution<Dist>::value); 
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_scaled_distribution<Dist>::value);
+#endif
+      static const char* function = "boost::math::find_location<Dist, Policy>&, %1%)";
+
+      if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "Probability parameter was %1%, but must be >= 0 and <= 1!", p, pol);
+      }
+      if(!(boost::math::isfinite)(z))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "z parameter was %1%, but must be finite!", z, pol);
+      }
+      if(!(boost::math::isfinite)(scale))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "scale parameter was %1%, but must be finite!", scale, pol);
+      }
+        
+      //cout << "z " << z << ", p " << p << ",  quantile(Dist(), p) "
+      //  << quantile(Dist(), p) << ", quan * scale " << quantile(Dist(), p) * scale << endl;
+      return z - (quantile(Dist(), p) * scale);
+    } // find_location
+
+    template <class Dist>
+    inline // with default policy.
+      typename Dist::value_type find_location( // For example, normal mean.
+      typename Dist::value_type z, // location of random variable z to give probability, P(X > z) == p.
+      // For example, a nominal minimum acceptable z, so that p * 100 % are > z
+      typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
+      typename Dist::value_type scale) // scale parameter, for example, normal standard deviation.
+    { // Forward to find_location with default policy.
+       return (find_location<Dist>(z, p, scale, policies::policy<>()));
+    } // find_location
+
+    // So the user can start from the complement q = (1 - p) of the probability p,
+    // for example, l = find_location<normal>(complement(z, q, sd));
+
+    template <class Dist, class Real1, class Real2, class Real3>
+    inline typename Dist::value_type find_location( // Default policy.
+      complemented3_type<Real1, Real2, Real3> const& c)
+    {
+      static const char* function = "boost::math::find_location<Dist, Policy>&, %1%)";
+
+      typename Dist::value_type p = c.param1;
+      if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "Probability parameter was %1%, but must be >= 0 and <= 1!", p, policies::policy<>());
+      }
+      typename Dist::value_type z = c.dist;
+      if(!(boost::math::isfinite)(z))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "z parameter was %1%, but must be finite!", z, policies::policy<>());
+      }
+      typename Dist::value_type scale = c.param2;
+      if(!(boost::math::isfinite)(scale))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "scale parameter was %1%, but must be finite!", scale, policies::policy<>());
+      }
+       // cout << "z " << c.dist << ", quantile (Dist(), " << c.param1 << ") * scale " << c.param2 << endl;
+       return z - quantile(Dist(), p) * scale;
+    } // find_location complement
+
+
+    template <class Dist, class Real1, class Real2, class Real3, class Real4>
+    inline typename Dist::value_type find_location( // Explicit policy.
+      complemented4_type<Real1, Real2, Real3, Real4> const& c)
+    {
+      static const char* function = "boost::math::find_location<Dist, Policy>&, %1%)";
+
+      typename Dist::value_type p = c.param1;
+      if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "Probability parameter was %1%, but must be >= 0 and <= 1!", p, c.param3);
+      }
+      typename Dist::value_type z = c.dist;
+      if(!(boost::math::isfinite)(z))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "z parameter was %1%, but must be finite!", z, c.param3);
+      }
+      typename Dist::value_type scale = c.param2;
+      if(!(boost::math::isfinite)(scale))
+      {
+       return policies::raise_domain_error<typename Dist::value_type>(
+           function, "scale parameter was %1%, but must be finite!", scale, c.param3);
+      }
+       // cout << "z " << c.dist << ", quantile (Dist(), " << c.param1 << ") * scale " << c.param2 << endl;
+       return z - quantile(Dist(), p) * scale;
+    } // find_location complement
+
+  } // namespace boost
+} // namespace math
+
+#endif // BOOST_STATS_FIND_LOCATION_HPP
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/find_scale.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,211 @@
+//  Copyright John Maddock 2007.
+//  Copyright Paul A. Bristow 2007.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_FIND_SCALE_HPP
+#define BOOST_STATS_FIND_SCALE_HPP
+
+#include <boost/math/distributions/fwd.hpp> // for all distribution signatures.
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/policies/policy.hpp>
+// using boost::math::policies::policy;
+#include <boost/math/tools/traits.hpp>
+#include <boost/static_assert.hpp>
+#include <boost/math/special_functions/fpclassify.hpp>
+#include <boost/math/policies/error_handling.hpp>
+// using boost::math::complement; // will be needed by users who want complement,
+// but NOT placed here to avoid putting it in global scope.
+
+namespace boost
+{
+  namespace math
+  {
+    // Function to find location of random variable z
+    // to give probability p (given scale)
+    // Applies to normal, lognormal, extreme value, Cauchy, (and symmetrical triangular),
+    // distributions that have scale.
+    // BOOST_STATIC_ASSERTs, see below, are used to enforce this.
+
+    template <class Dist, class Policy>
+    inline
+      typename Dist::value_type find_scale( // For example, normal mean.
+      typename Dist::value_type z, // location of random variable z to give probability, P(X > z) == p.
+      // For example, a nominal minimum acceptable weight z, so that p * 100 % are > z
+      typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
+      typename Dist::value_type location, // location parameter, for example, normal distribution mean.
+      const Policy& pol 
+      )
+    {
+#if !defined(BOOST_NO_SFINAE) && !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_distribution<Dist>::value); 
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_scaled_distribution<Dist>::value); 
+#endif
+      static const char* function = "boost::math::find_scale<Dist, Policy>(%1%, %1%, %1%, Policy)";
+
+      if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "Probability parameter was %1%, but must be >= 0 and <= 1!", p, pol);
+      }
+      if(!(boost::math::isfinite)(z))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "find_scale z parameter was %1%, but must be finite!", z, pol);
+      }
+      if(!(boost::math::isfinite)(location))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "find_scale location parameter was %1%, but must be finite!", location, pol);
+      }
+
+      //cout << "z " << z << ", p " << p << ",  quantile(Dist(), p) "
+      //<< quantile(Dist(), p) << ", z - mean " << z - location 
+      //<<", sd " << (z - location)  / quantile(Dist(), p) << endl;
+
+      //quantile(N01, 0.001) -3.09023
+      //quantile(N01, 0.01) -2.32635
+      //quantile(N01, 0.05) -1.64485
+      //quantile(N01, 0.333333) -0.430728
+      //quantile(N01, 0.5) 0  
+      //quantile(N01, 0.666667) 0.430728
+      //quantile(N01, 0.9) 1.28155
+      //quantile(N01, 0.95) 1.64485
+      //quantile(N01, 0.99) 2.32635
+      //quantile(N01, 0.999) 3.09023
+
+      typename Dist::value_type result = 
+        (z - location)  // difference between desired x and current location.
+        / quantile(Dist(), p); // standard distribution.
+
+      if (result <= 0)
+      { // If policy isn't to throw, return the scale <= 0.
+        policies::raise_evaluation_error<typename Dist::value_type>(function,
+          "Computed scale (%1%) is <= 0!" " Was the complement intended?",
+          result, Policy());
+      }
+      return result;
+    } // template <class Dist, class Policy> find_scale
+
+    template <class Dist>
+    inline // with default policy.
+      typename Dist::value_type find_scale( // For example, normal mean.
+      typename Dist::value_type z, // location of random variable z to give probability, P(X > z) == p.
+      // For example, a nominal minimum acceptable z, so that p * 100 % are > z
+      typename Dist::value_type p, // probability value desired at x, say 0.95 for 95% > z.
+      typename Dist::value_type location) // location parameter, for example, mean.
+    { // Forward to find_scale using the default policy.
+      return (find_scale<Dist>(z, p, location, policies::policy<>()));
+    } // find_scale
+
+    template <class Dist, class Real1, class Real2, class Real3, class Policy>
+    inline typename Dist::value_type find_scale(
+      complemented4_type<Real1, Real2, Real3, Policy> const& c)
+    {
+      //cout << "cparam1 q " << c.param1 // q
+      //  << ", c.dist z " << c.dist // z
+      //  << ", c.param2 l " << c.param2 // l
+      //  << ", quantile (Dist(), c.param1 = q) "
+      //  << quantile(Dist(), c.param1) //q
+      //  << endl;
+
+#if !defined(BOOST_NO_SFINAE) && !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_distribution<Dist>::value); 
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_scaled_distribution<Dist>::value); 
+#endif
+      static const char* function = "boost::math::find_scale<Dist, Policy>(complement(%1%, %1%, %1%, Policy))";
+
+      // Checks on arguments, as not complemented version,
+      // Explicit policy.
+      typename Dist::value_type q = c.param1;
+      if(!(boost::math::isfinite)(q) || (q < 0) || (q > 1))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "Probability parameter was %1%, but must be >= 0 and <= 1!", q, c.param3);
+      }
+      typename Dist::value_type z = c.dist;
+      if(!(boost::math::isfinite)(z))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "find_scale z parameter was %1%, but must be finite!", z, c.param3);
+      }
+      typename Dist::value_type location = c.param2;
+      if(!(boost::math::isfinite)(location))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "find_scale location parameter was %1%, but must be finite!", location, c.param3);
+      }
+
+      typename Dist::value_type result = 
+        (c.dist - c.param2)  // difference between desired x and current location.
+        / quantile(complement(Dist(), c.param1));
+      //     (  z    - location) / (quantile(complement(Dist(),  q)) 
+      if (result <= 0)
+      { // If policy isn't to throw, return the scale <= 0.
+        policies::raise_evaluation_error<typename Dist::value_type>(function,
+          "Computed scale (%1%) is <= 0!" " Was the complement intended?",
+          result, Policy());
+      }
+      return result;
+    } // template <class Dist, class Policy, class Real1, class Real2, class Real3> typename Dist::value_type find_scale
+
+    // So the user can start from the complement q = (1 - p) of the probability p,
+    // for example, s = find_scale<normal>(complement(z, q, l));
+
+    template <class Dist, class Real1, class Real2, class Real3>
+    inline typename Dist::value_type find_scale(
+      complemented3_type<Real1, Real2, Real3> const& c)
+    {
+      //cout << "cparam1 q " << c.param1 // q
+      //  << ", c.dist z " << c.dist // z
+      //  << ", c.param2 l " << c.param2 // l
+      //  << ", quantile (Dist(), c.param1 = q) "
+      //  << quantile(Dist(), c.param1) //q
+      //  << endl;
+
+#if !defined(BOOST_NO_SFINAE) && !BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x590))
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_distribution<Dist>::value); 
+      BOOST_STATIC_ASSERT(::boost::math::tools::is_scaled_distribution<Dist>::value); 
+#endif
+      static const char* function = "boost::math::find_scale<Dist, Policy>(complement(%1%, %1%, %1%, Policy))";
+
+      // Checks on arguments, as not complemented version,
+      // default policy policies::policy<>().
+      typename Dist::value_type q = c.param1;
+      if(!(boost::math::isfinite)(q) || (q < 0) || (q > 1))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "Probability parameter was %1%, but must be >= 0 and <= 1!", q, policies::policy<>());
+      }
+      typename Dist::value_type z = c.dist;
+      if(!(boost::math::isfinite)(z))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "find_scale z parameter was %1%, but must be finite!", z, policies::policy<>());
+      }
+      typename Dist::value_type location = c.param2;
+      if(!(boost::math::isfinite)(location))
+      {
+        return policies::raise_domain_error<typename Dist::value_type>(
+          function, "find_scale location parameter was %1%, but must be finite!", location, policies::policy<>());
+      }
+
+      typename Dist::value_type result = 
+        (z - location)  // difference between desired x and current location.
+        / quantile(complement(Dist(), q));
+      //     (  z    - location) / (quantile(complement(Dist(),  q)) 
+      if (result <= 0)
+      { // If policy isn't to throw, return the scale <= 0.
+        policies::raise_evaluation_error<typename Dist::value_type>(function,
+          "Computed scale (%1%) is <= 0!" " Was the complement intended?",
+          result, policies::policy<>()); // This is only the default policy - also Want a version with Policy here.
+      }
+      return result;
+    } // template <class Dist, class Real1, class Real2, class Real3> typename Dist::value_type find_scale
+
+  } // namespace boost
+} // namespace math
+
+#endif // BOOST_STATS_FIND_SCALE_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/fisher_f.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,387 @@
+// Copyright John Maddock 2006.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
+#define BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for incomplete beta.
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+template <class RealType = double, class Policy = policies::policy<> >
+class fisher_f_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   fisher_f_distribution(const RealType& i, const RealType& j) : m_df1(i), m_df2(j)
+   {
+      static const char* function = "fisher_f_distribution<%1%>::fisher_f_distribution";
+      RealType result;
+      detail::check_df(
+         function, m_df1, &result, Policy());
+      detail::check_df(
+         function, m_df2, &result, Policy());
+   } // fisher_f_distribution
+
+   RealType degrees_of_freedom1()const
+   {
+      return m_df1;
+   }
+   RealType degrees_of_freedom2()const
+   {
+      return m_df2;
+   }
+
+private:
+   //
+   // Data members:
+   //
+   RealType m_df1;  // degrees of freedom are a real number.
+   RealType m_df2;  // degrees of freedom are a real number.
+};
+
+typedef fisher_f_distribution<double> fisher_f;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const fisher_f_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const fisher_f_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+RealType pdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   static const char* function = "boost::math::pdf(fisher_f_distribution<%1%> const&, %1%)";
+   if(false == (detail::check_df(
+         function, df1, &error_result, Policy())
+         && detail::check_df(
+         function, df2, &error_result, Policy())))
+      return error_result;
+
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Random variable parameter was %1%, but must be > 0 !", x, Policy());
+   }
+
+   if(x == 0)
+   {
+      // special cases:
+      if(df1 < 2)
+         return policies::raise_overflow_error<RealType>(
+            function, 0, Policy());
+      else if(df1 == 2)
+         return 1;
+      else
+         return 0;
+   }
+
+   //
+   // You reach this formula by direct differentiation of the
+   // cdf expressed in terms of the incomplete beta.
+   //
+   // There are two versions so we don't pass a value of z
+   // that is very close to 1 to ibeta_derivative: for some values
+   // of df1 and df2, all the change takes place in this area.
+   //
+   RealType v1x = df1 * x;
+   RealType result;
+   if(v1x > df2)
+   {
+      result = (df2 * df1) / ((df2 + v1x) * (df2 + v1x));
+      result *= ibeta_derivative(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy());
+   }
+   else
+   {
+      result = df2 + df1 * x;
+      result = (result * df1 - x * df1 * df1) / (result * result);
+      result *= ibeta_derivative(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
+   }
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const fisher_f_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)";
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+         function, df1, &error_result, Policy())
+         && detail::check_df(
+         function, df2, &error_result, Policy()))
+      return error_result;
+
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
+   }
+
+   RealType v1x = df1 * x;
+   //
+   // There are two equivalent formulas used here, the aim is
+   // to prevent the final argument to the incomplete beta
+   // from being too close to 1: for some values of df1 and df2
+   // the rate of change can be arbitrarily large in this area,
+   // whilst the value we're passing will have lost information
+   // content as a result of being 0.999999something.  Better
+   // to switch things around so we're passing 1-z instead.
+   //
+   return v1x > df2
+      ? boost::math::ibetac(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy())
+      : boost::math::ibeta(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const fisher_f_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)";
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == (detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy())
+         && detail::check_probability(
+            function, p, &error_result, Policy())))
+      return error_result;
+
+   // With optimizations turned on, gcc wrongly warns about y being used
+   // uninitializated unless we initialize it to something:
+   RealType x, y(0);
+
+   x = boost::math::ibeta_inv(df1 / 2, df2 / 2, p, &y, Policy());
+
+   return df2 * x / (df1 * y);
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c)
+{
+   static const char* function = "boost::math::cdf(fisher_f_distribution<%1%> const&, %1%)";
+   RealType df1 = c.dist.degrees_of_freedom1();
+   RealType df2 = c.dist.degrees_of_freedom2();
+   RealType x = c.param;
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+         function, df1, &error_result, Policy())
+         && detail::check_df(
+         function, df2, &error_result, Policy()))
+      return error_result;
+
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
+   }
+
+   RealType v1x = df1 * x;
+   //
+   // There are two equivalent formulas used here, the aim is
+   // to prevent the final argument to the incomplete beta
+   // from being too close to 1: for some values of df1 and df2
+   // the rate of change can be arbitrarily large in this area,
+   // whilst the value we're passing will have lost information
+   // content as a result of being 0.999999something.  Better
+   // to switch things around so we're passing 1-z instead.
+   //
+   return v1x > df2
+      ? boost::math::ibeta(df2 / 2, df1 / 2, df2 / (df2 + v1x), Policy())
+      : boost::math::ibetac(df1 / 2, df2 / 2, v1x / (df2 + v1x), Policy());
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<fisher_f_distribution<RealType, Policy>, RealType>& c)
+{
+   static const char* function = "boost::math::quantile(fisher_f_distribution<%1%> const&, %1%)";
+   RealType df1 = c.dist.degrees_of_freedom1();
+   RealType df2 = c.dist.degrees_of_freedom2();
+   RealType p = c.param;
+   // Error check:
+   RealType error_result = 0;
+   if(false == (detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy())
+         && detail::check_probability(
+            function, p, &error_result, Policy())))
+      return error_result;
+
+   RealType x, y;
+
+   x = boost::math::ibetac_inv(df1 / 2, df2 / 2, p, &y, Policy());
+
+   return df2 * x / (df1 * y);
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const fisher_f_distribution<RealType, Policy>& dist)
+{ // Mean of F distribution = v.
+   static const char* function = "boost::math::mean(fisher_f_distribution<%1%> const&)";
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy()))
+      return error_result;
+   if(df2 <= 2)
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mean.", df2, Policy());
+   }
+   return df2 / (df2 - 2);
+} // mean
+
+template <class RealType, class Policy>
+inline RealType variance(const fisher_f_distribution<RealType, Policy>& dist)
+{ // Variance of F distribution.
+   static const char* function = "boost::math::variance(fisher_f_distribution<%1%> const&)";
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy()))
+      return error_result;
+   if(df2 <= 4)
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Second degree of freedom was %1% but must be > 4 in order for the distribution to have a valid variance.", df2, Policy());
+   }
+   return 2 * df2 * df2 * (df1 + df2 - 2) / (df1 * (df2 - 2) * (df2 - 2) * (df2 - 4));
+} // variance
+
+template <class RealType, class Policy>
+inline RealType mode(const fisher_f_distribution<RealType, Policy>& dist)
+{
+   static const char* function = "boost::math::mode(fisher_f_distribution<%1%> const&)";
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy()))
+      return error_result;
+   if(df2 <= 2)
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Second degree of freedom was %1% but must be > 2 in order for the distribution to have a mode.", df2, Policy());
+   }
+   return df2 * (df1 - 2) / (df1 * (df2 + 2));
+}
+
+//template <class RealType, class Policy>
+//inline RealType median(const fisher_f_distribution<RealType, Policy>& dist)
+//{ // Median of Fisher F distribution is not defined.
+//  return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
+//  } // median
+
+// Now implemented via quantile(half) in derived accessors.
+
+template <class RealType, class Policy>
+inline RealType skewness(const fisher_f_distribution<RealType, Policy>& dist)
+{
+   static const char* function = "boost::math::skewness(fisher_f_distribution<%1%> const&)";
+   BOOST_MATH_STD_USING // ADL of std names
+   // See http://mathworld.wolfram.com/F-Distribution.html
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy()))
+      return error_result;
+   if(df2 <= 6)
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Second degree of freedom was %1% but must be > 6 in order for the distribution to have a skewness.", df2, Policy());
+   }
+   return 2 * (df2 + 2 * df1 - 2) * sqrt((2 * df2 - 8) / (df1 * (df2 + df1 - 2))) / (df2 - 6);
+}
+
+template <class RealType, class Policy>
+RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist);
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const fisher_f_distribution<RealType, Policy>& dist)
+{
+   return 3 + kurtosis_excess(dist);
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const fisher_f_distribution<RealType, Policy>& dist)
+{
+   static const char* function = "boost::math::kurtosis_excess(fisher_f_distribution<%1%> const&)";
+   // See http://mathworld.wolfram.com/F-Distribution.html
+   RealType df1 = dist.degrees_of_freedom1();
+   RealType df2 = dist.degrees_of_freedom2();
+   // Error check:
+   RealType error_result = 0;
+   if(false == detail::check_df(
+            function, df1, &error_result, Policy())
+         && detail::check_df(
+            function, df2, &error_result, Policy()))
+      return error_result;
+   if(df2 <= 8)
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "Second degree of freedom was %1% but must be > 8 in order for the distribution to have a kutosis.", df2, Policy());
+   }
+   RealType df2_2 = df2 * df2;
+   RealType df1_2 = df1 * df1;
+   RealType n = -16 + 20 * df2 - 8 * df2_2 + df2_2 * df2 + 44 * df1 - 32 * df2 * df1 + 5 * df2_2 * df1 - 22 * df1_2 + 5 * df2 * df1_2;
+   n *= 12;
+   RealType d = df1 * (df2 - 6) * (df2 - 8) * (df1 + df2 - 2);
+   return n / d;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_DISTRIBUTIONS_FISHER_F_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/fwd.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,153 @@
+// fwd.hpp Forward declarations of Boost.Math distributions.
+
+// Copyright Paul A. Bristow 2007, 2010, 2012, 2014.
+// Copyright John Maddock 2007.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_FWD_HPP
+#define BOOST_MATH_DISTRIBUTIONS_FWD_HPP
+
+// 33 distributions at Boost 1.9.1 after adding hyperexpon and arcsine
+
+namespace boost{ namespace math{
+
+template <class RealType, class Policy>
+class arcsine_distribution;
+
+template <class RealType, class Policy>
+class bernoulli_distribution;
+
+template <class RealType, class Policy>
+class beta_distribution;
+
+template <class RealType, class Policy>
+class binomial_distribution;
+
+template <class RealType, class Policy>
+class cauchy_distribution;
+
+template <class RealType, class Policy>
+class chi_squared_distribution;
+
+template <class RealType, class Policy>
+class exponential_distribution;
+
+template <class RealType, class Policy>
+class extreme_value_distribution;
+
+template <class RealType, class Policy>
+class fisher_f_distribution;
+
+template <class RealType, class Policy>
+class gamma_distribution;
+
+template <class RealType, class Policy>
+class geometric_distribution;
+
+template <class RealType, class Policy>
+class hyperexponential_distribution;
+
+template <class RealType, class Policy>
+class hypergeometric_distribution;
+
+template <class RealType, class Policy>
+class inverse_chi_squared_distribution;
+
+template <class RealType, class Policy>
+class inverse_gamma_distribution;
+
+template <class RealType, class Policy>
+class inverse_gaussian_distribution;
+
+template <class RealType, class Policy>
+class laplace_distribution;
+
+template <class RealType, class Policy>
+class logistic_distribution;
+
+template <class RealType, class Policy>
+class lognormal_distribution;
+
+template <class RealType, class Policy>
+class negative_binomial_distribution;
+
+template <class RealType, class Policy>
+class non_central_beta_distribution;
+
+template <class RealType, class Policy>
+class non_central_chi_squared_distribution;
+
+template <class RealType, class Policy>
+class non_central_f_distribution;
+
+template <class RealType, class Policy>
+class non_central_t_distribution;
+
+template <class RealType, class Policy>
+class normal_distribution;
+
+template <class RealType, class Policy>
+class pareto_distribution;
+
+template <class RealType, class Policy>
+class poisson_distribution;
+
+template <class RealType, class Policy>
+class rayleigh_distribution;
+
+template <class RealType, class Policy>
+class skew_normal_distribution;
+
+template <class RealType, class Policy>
+class students_t_distribution;
+
+template <class RealType, class Policy>
+class triangular_distribution;
+
+template <class RealType, class Policy>
+class uniform_distribution;
+
+template <class RealType, class Policy>
+class weibull_distribution;
+
+}} // namespaces
+
+#define BOOST_MATH_DECLARE_DISTRIBUTIONS(Type, Policy)\
+   typedef boost::math::arcsine_distribution<Type, Policy> arcsine;\
+   typedef boost::math::bernoulli_distribution<Type, Policy> bernoulli;\
+   typedef boost::math::beta_distribution<Type, Policy> beta;\
+   typedef boost::math::binomial_distribution<Type, Policy> binomial;\
+   typedef boost::math::cauchy_distribution<Type, Policy> cauchy;\
+   typedef boost::math::chi_squared_distribution<Type, Policy> chi_squared;\
+   typedef boost::math::exponential_distribution<Type, Policy> exponential;\
+   typedef boost::math::extreme_value_distribution<Type, Policy> extreme_value;\
+   typedef boost::math::fisher_f_distribution<Type, Policy> fisher_f;\
+   typedef boost::math::gamma_distribution<Type, Policy> gamma;\
+   typedef boost::math::geometric_distribution<Type, Policy> geometric;\
+   typedef boost::math::hypergeometric_distribution<Type, Policy> hypergeometric;\
+   typedef boost::math::inverse_chi_squared_distribution<Type, Policy> inverse_chi_squared;\
+   typedef boost::math::inverse_gaussian_distribution<Type, Policy> inverse_gaussian;\
+   typedef boost::math::inverse_gamma_distribution<Type, Policy> inverse_gamma;\
+   typedef boost::math::laplace_distribution<Type, Policy> laplace;\
+   typedef boost::math::logistic_distribution<Type, Policy> logistic;\
+   typedef boost::math::lognormal_distribution<Type, Policy> lognormal;\
+   typedef boost::math::negative_binomial_distribution<Type, Policy> negative_binomial;\
+   typedef boost::math::non_central_beta_distribution<Type, Policy> non_central_beta;\
+   typedef boost::math::non_central_chi_squared_distribution<Type, Policy> non_central_chi_squared;\
+   typedef boost::math::non_central_f_distribution<Type, Policy> non_central_f;\
+   typedef boost::math::non_central_t_distribution<Type, Policy> non_central_t;\
+   typedef boost::math::normal_distribution<Type, Policy> normal;\
+   typedef boost::math::pareto_distribution<Type, Policy> pareto;\
+   typedef boost::math::poisson_distribution<Type, Policy> poisson;\
+   typedef boost::math::rayleigh_distribution<Type, Policy> rayleigh;\
+   typedef boost::math::skew_normal_distribution<Type, Policy> skew_normal;\
+   typedef boost::math::students_t_distribution<Type, Policy> students_t;\
+   typedef boost::math::triangular_distribution<Type, Policy> triangular;\
+   typedef boost::math::uniform_distribution<Type, Policy> uniform;\
+   typedef boost::math::weibull_distribution<Type, Policy> weibull;
+
+#endif // BOOST_MATH_DISTRIBUTIONS_FWD_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/gamma.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,349 @@
+//  Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_GAMMA_HPP
+#define BOOST_STATS_GAMMA_HPP
+
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm
+// http://mathworld.wolfram.com/GammaDistribution.html
+// http://en.wikipedia.org/wiki/Gamma_distribution
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+namespace detail
+{
+
+template <class RealType, class Policy>
+inline bool check_gamma_shape(
+      const char* function,
+      RealType shape,
+      RealType* result, const Policy& pol)
+{
+   if((shape <= 0) || !(boost::math::isfinite)(shape))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Shape parameter is %1%, but must be > 0 !", shape, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_gamma_x(
+      const char* function,
+      RealType const& x,
+      RealType* result, const Policy& pol)
+{
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Random variate is %1% but must be >= 0 !", x, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_gamma(
+      const char* function,
+      RealType scale,
+      RealType shape,
+      RealType* result, const Policy& pol)
+{
+   return check_scale(function, scale, result, pol) && check_gamma_shape(function, shape, result, pol);
+}
+
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class gamma_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   gamma_distribution(RealType l_shape, RealType l_scale = 1)
+      : m_shape(l_shape), m_scale(l_scale)
+   {
+      RealType result;
+      detail::check_gamma("boost::math::gamma_distribution<%1%>::gamma_distribution", l_scale, l_shape, &result, Policy());
+   }
+
+   RealType shape()const
+   {
+      return m_shape;
+   }
+
+   RealType scale()const
+   {
+      return m_scale;
+   }
+private:
+   //
+   // Data members:
+   //
+   RealType m_shape;     // distribution shape
+   RealType m_scale;     // distribution scale
+};
+
+// NO typedef because of clash with name of gamma function.
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const gamma_distribution<RealType, Policy>& /* dist */)
+{ // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const gamma_distribution<RealType, Policy>& /* dist */)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   using boost::math::tools::min_value;
+   return std::pair<RealType, RealType>(min_value<RealType>(),  max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const gamma_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::pdf(const gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_gamma_x(function, x, &result, Policy()))
+      return result;
+
+   if(x == 0)
+   {
+      return 0;
+   }
+   result = gamma_p_derivative(shape, x / scale, Policy()) / scale;
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const gamma_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_gamma_x(function, x, &result, Policy()))
+      return result;
+
+   result = boost::math::gamma_p(shape, x / scale, Policy());
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const gamma_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   if(p == 1)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = gamma_p_inv(shape, p, Policy()) * scale;
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<gamma_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = c.dist.shape();
+   RealType scale = c.dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_gamma_x(function, c.param, &result, Policy()))
+      return result;
+
+   result = gamma_q(shape, c.param / scale, Policy());
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<gamma_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = c.dist.shape();
+   RealType scale = c.dist.scale();
+   RealType q = c.param;
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+   if(q == 0)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = gamma_q_inv(shape, q, Policy()) * scale;
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::mean(const gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+
+   result = shape * scale;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType variance(const gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::variance(const gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+
+   result = shape * scale * scale;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::mode(const gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+
+   if(shape < 1)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "The mode of the gamma distribution is only defined for values of the shape parameter >= 1, but got %1%.",
+         shape, Policy());
+
+   result = (shape - 1) * scale;
+   return result;
+}
+
+//template <class RealType, class Policy>
+//inline RealType median(const gamma_distribution<RealType, Policy>& dist)
+//{  // Rely on default definition in derived accessors.
+//}
+
+template <class RealType, class Policy>
+inline RealType skewness(const gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::skewness(const gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+
+   result = 2 / sqrt(shape);
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::kurtosis_excess(const gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_gamma(function, scale, shape, &result, Policy()))
+      return result;
+
+   result = 6 / shape;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const gamma_distribution<RealType, Policy>& dist)
+{
+   return kurtosis_excess(dist) + 3;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_GAMMA_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/geometric.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,516 @@
+// boost\math\distributions\geometric.hpp
+
+// Copyright John Maddock 2010.
+// Copyright Paul A. Bristow 2010.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// geometric distribution is a discrete probability distribution.
+// It expresses the probability distribution of the number (k) of
+// events, occurrences, failures or arrivals before the first success.
+// supported on the set {0, 1, 2, 3...}
+
+// Note that the set includes zero (unlike some definitions that start at one).
+
+// The random variate k is the number of events, occurrences or arrivals.
+// k argument may be integral, signed, or unsigned, or floating point.
+// If necessary, it has already been promoted from an integral type.
+
+// Note that the geometric distribution
+// (like others including the binomial, geometric & Bernoulli)
+// is strictly defined as a discrete function:
+// only integral values of k are envisaged.
+// However because the method of calculation uses a continuous gamma function,
+// it is convenient to treat it as if a continous function,
+// and permit non-integral values of k.
+// To enforce the strict mathematical model, users should use floor or ceil functions
+// on k outside this function to ensure that k is integral.
+
+// See http://en.wikipedia.org/wiki/geometric_distribution
+// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
+// http://mathworld.wolfram.com/GeometricDistribution.html
+
+#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
+#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
+#include <boost/math/distributions/complement.hpp> // complement.
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
+
+#include <boost/type_traits/is_floating_point.hpp>
+#include <boost/type_traits/is_integral.hpp>
+#include <boost/type_traits/is_same.hpp>
+#include <boost/mpl/if.hpp>
+
+#include <limits> // using std::numeric_limits;
+#include <utility>
+
+#if defined (BOOST_MSVC)
+#  pragma warning(push)
+// This believed not now necessary, so commented out.
+//#  pragma warning(disable: 4702) // unreachable code.
+// in domain_error_imp in error_handling.
+#endif
+
+namespace boost
+{
+  namespace math
+  {
+    namespace geometric_detail
+    {
+      // Common error checking routines for geometric distribution function:
+      template <class RealType, class Policy>
+      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
+      {
+        if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
+          return false;
+        }
+        return true;
+      }
+
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)
+      {
+        return check_success_fraction(function, p, result, pol);
+      }
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_k(const char* function,  const RealType& p, RealType k, RealType* result, const Policy& pol)
+      {
+        if(check_dist(function, p, result, pol) == false)
+        {
+          return false;
+        }
+        if( !(boost::math::isfinite)(k) || (k < 0) )
+        { // Check k failures.
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Number of failures argument is %1%, but must be >= 0 !", k, pol);
+          return false;
+        }
+        return true;
+      } // Check_dist_and_k
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)
+      {
+        if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
+        {
+          return false;
+        }
+        return true;
+      } // check_dist_and_prob
+    } //  namespace geometric_detail
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class geometric_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      geometric_distribution(RealType p) : m_p(p)
+      { // Constructor stores success_fraction p.
+        RealType result;
+        geometric_detail::check_dist(
+          "geometric_distribution<%1%>::geometric_distribution",
+          m_p, // Check success_fraction 0 <= p <= 1.
+          &result, Policy());
+      } // geometric_distribution constructor.
+
+      // Private data getter class member functions.
+      RealType success_fraction() const
+      { // Probability of success as fraction in range 0 to 1.
+        return m_p;
+      }
+      RealType successes() const
+      { // Total number of successes r = 1 (for compatibility with negative binomial?).
+        return 1;
+      }
+
+      // Parameter estimation.
+      // (These are copies of negative_binomial distribution with successes = 1).
+      static RealType find_lower_bound_on_p(
+        RealType trials,
+        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
+      {
+        static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";
+        RealType result = 0;  // of error checks.
+        RealType successes = 1;
+        RealType failures = trials - successes;
+        if(false == detail::check_probability(function, alpha, &result, Policy())
+          && geometric_detail::check_dist_and_k(
+          function, RealType(0), failures, &result, Policy()))
+        {
+          return result;
+        }
+        // Use complement ibeta_inv function for lower bound.
+        // This is adapted from the corresponding binomial formula
+        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
+        // This is a Clopper-Pearson interval, and may be overly conservative,
+        // see also "A Simple Improved Inferential Method for Some
+        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
+        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
+        //
+        return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
+      } // find_lower_bound_on_p
+
+      static RealType find_upper_bound_on_p(
+        RealType trials,
+        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
+      {
+        static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";
+        RealType result = 0;  // of error checks.
+        RealType successes = 1;
+        RealType failures = trials - successes;
+        if(false == geometric_detail::check_dist_and_k(
+          function, RealType(0), failures, &result, Policy())
+          && detail::check_probability(function, alpha, &result, Policy()))
+        {
+          return result;
+        }
+        if(failures == 0)
+        {
+           return 1;
+        }// Use complement ibetac_inv function for upper bound.
+        // Note adjusted failures value: *not* failures+1 as usual.
+        // This is adapted from the corresponding binomial formula
+        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
+        // This is a Clopper-Pearson interval, and may be overly conservative,
+        // see also "A Simple Improved Inferential Method for Some
+        // Discrete Distributions" Yong CAI and K. Krishnamoorthy
+        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
+        //
+        return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
+      } // find_upper_bound_on_p
+
+      // Estimate number of trials :
+      // "How many trials do I need to be P% sure of seeing k or fewer failures?"
+
+      static RealType find_minimum_number_of_trials(
+        RealType k,     // number of failures (k >= 0).
+        RealType p,     // success fraction 0 <= p <= 1.
+        RealType alpha) // risk level threshold 0 <= alpha <= 1.
+      {
+        static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";
+        // Error checks:
+        RealType result = 0;
+        if(false == geometric_detail::check_dist_and_k(
+          function, p, k, &result, Policy())
+          && detail::check_probability(function, alpha, &result, Policy()))
+        {
+          return result;
+        }
+        result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
+        return result + k;
+      } // RealType find_number_of_failures
+
+      static RealType find_maximum_number_of_trials(
+        RealType k,     // number of failures (k >= 0).
+        RealType p,     // success fraction 0 <= p <= 1.
+        RealType alpha) // risk level threshold 0 <= alpha <= 1.
+      {
+        static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";
+        // Error checks:
+        RealType result = 0;
+        if(false == geometric_detail::check_dist_and_k(
+          function, p, k, &result, Policy())
+          &&  detail::check_probability(function, alpha, &result, Policy()))
+        { 
+          return result;
+        }
+        result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
+        return result + k;
+      } // RealType find_number_of_trials complemented
+
+    private:
+      //RealType m_r; // successes fixed at unity.
+      RealType m_p; // success_fraction
+    }; // template <class RealType, class Policy> class geometric_distribution
+
+    typedef geometric_distribution<double> geometric; // Reserved name of type double.
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)
+    { // Range of permissible values for random variable k.
+       using boost::math::tools::max_value;
+       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
+    }
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)
+    { // Range of supported values for random variable k.
+       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+       using boost::math::tools::max_value;
+       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
+    }
+
+    template <class RealType, class Policy>
+    inline RealType mean(const geometric_distribution<RealType, Policy>& dist)
+    { // Mean of geometric distribution = (1-p)/p.
+      return (1 - dist.success_fraction() ) / dist.success_fraction();
+    } // mean
+
+    // median implemented via quantile(half) in derived accessors.
+
+    template <class RealType, class Policy>
+    inline RealType mode(const geometric_distribution<RealType, Policy>&)
+    { // Mode of geometric distribution = zero.
+      BOOST_MATH_STD_USING // ADL of std functions.
+      return 0;
+    } // mode
+    
+    template <class RealType, class Policy>
+    inline RealType variance(const geometric_distribution<RealType, Policy>& dist)
+    { // Variance of Binomial distribution = (1-p) / p^2.
+      return  (1 - dist.success_fraction())
+        / (dist.success_fraction() * dist.success_fraction());
+    } // variance
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)
+    { // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
+      BOOST_MATH_STD_USING // ADL of std functions.
+      RealType p = dist.success_fraction();
+      return (2 - p) / sqrt(1 - p);
+    } // skewness
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)
+    { // kurtosis of geometric distribution
+      // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
+      RealType p = dist.success_fraction();
+      return 3 + (p*p - 6*p + 6) / (1 - p);
+    } // kurtosis
+
+     template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)
+    { // kurtosis excess of geometric distribution
+      // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
+      RealType p = dist.success_fraction();
+      return (p*p - 6*p + 6) / (1 - p);
+    } // kurtosis_excess
+
+    // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
+    // standard_deviation provided by derived accessors.
+    // RealType hazard(const geometric_distribution<RealType, Policy>& dist)
+    // hazard of geometric distribution provided by derived accessors.
+    // RealType chf(const geometric_distribution<RealType, Policy>& dist)
+    // chf of geometric distribution provided by derived accessors.
+
+    template <class RealType, class Policy>
+    inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Probability Density/Mass Function.
+      BOOST_FPU_EXCEPTION_GUARD
+      BOOST_MATH_STD_USING  // For ADL of math functions.
+      static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";
+
+      RealType p = dist.success_fraction();
+      RealType result = 0;
+      if(false == geometric_detail::check_dist_and_k(
+        function,
+        p,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if (k == 0)
+      {
+        return p; // success_fraction
+      }
+      RealType q = 1 - p;  // Inaccurate for small p?
+      // So try to avoid inaccuracy for large or small p.
+      // but has little effect > last significant bit.
+      //cout << "p *  pow(q, k) " << result << endl; // seems best whatever p
+      //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
+      //if (p < 0.5)
+      //{
+      //  result = p *  pow(q, k);
+      //}
+      //else
+      //{
+      //  result = p * exp(k * log1p(-p));
+      //}
+      result = p * pow(q, k);
+      return result;
+    } // geometric_pdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Cumulative Distribution Function of geometric.
+      static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
+
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // If necessary, it has already been promoted from an integral type.
+      RealType p = dist.success_fraction();
+      // Error check:
+      RealType result = 0;
+      if(false == geometric_detail::check_dist_and_k(
+        function,
+        p,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      if(k == 0)
+      {
+        return p; // success_fraction
+      }
+      //RealType q = 1 - p;  // Bad for small p
+      //RealType probability = 1 - std::pow(q, k+1);
+
+      RealType z = boost::math::log1p(-p, Policy()) * (k + 1);
+      RealType probability = -boost::math::expm1(z, Policy());
+
+      return probability;
+    } // cdf Cumulative Distribution Function geometric.
+
+      template <class RealType, class Policy>
+      inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function geometric.
+      BOOST_MATH_STD_USING
+      static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // If necessary, it has already been promoted from an integral type.
+      RealType const& k = c.param;
+      geometric_distribution<RealType, Policy> const& dist = c.dist;
+      RealType p = dist.success_fraction();
+      // Error check:
+      RealType result = 0;
+      if(false == geometric_detail::check_dist_and_k(
+        function,
+        p,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      RealType z = boost::math::log1p(-p, Policy()) * (k+1);
+      RealType probability = exp(z);
+      return probability;
+    } // cdf Complemented Cumulative Distribution Function geometric.
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)
+    { // Quantile, percentile/100 or Percent Point geometric function.
+      // Return the number of expected failures k for a given probability p.
+
+      // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
+      // k argument may be integral, signed, or unsigned, or floating point.
+
+      static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
+      BOOST_MATH_STD_USING // ADL of std functions.
+
+      RealType success_fraction = dist.success_fraction();
+      // Check dist and x.
+      RealType result = 0;
+      if(false == geometric_detail::check_dist_and_prob
+        (function, success_fraction, x, &result, Policy()))
+      {
+        return result;
+      }
+
+      // Special cases.
+      if (x == 1)
+      {  // Would need +infinity failures for total confidence.
+        result = policies::raise_overflow_error<RealType>(
+            function,
+            "Probability argument is 1, which implies infinite failures !", Policy());
+        return result;
+       // usually means return +std::numeric_limits<RealType>::infinity();
+       // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
+      }
+      if (x == 0)
+      { // No failures are expected if P = 0.
+        return 0; // Total trials will be just dist.successes.
+      }
+      // if (P <= pow(dist.success_fraction(), 1))
+      if (x <= success_fraction)
+      { // p <= pdf(dist, 0) == cdf(dist, 0)
+        return 0;
+      }
+      if (x == 1)
+      {
+        return 0;
+      }
+   
+      // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
+      result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1;
+      // Subtract a few epsilons here too?
+      // to make sure it doesn't slip over, so ceil would be one too many.
+      return result;
+    } // RealType quantile(const geometric_distribution dist, p)
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
+    {  // Quantile or Percent Point Binomial function.
+       // Return the number of expected failures k for a given
+       // complement of the probability Q = 1 - P.
+       static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
+       BOOST_MATH_STD_USING
+       // Error checks:
+       RealType x = c.param;
+       const geometric_distribution<RealType, Policy>& dist = c.dist;
+       RealType success_fraction = dist.success_fraction();
+       RealType result = 0;
+       if(false == geometric_detail::check_dist_and_prob(
+          function,
+          success_fraction,
+          x,
+          &result, Policy()))
+       {
+          return result;
+       }
+
+       // Special cases:
+       if(x == 1)
+       {  // There may actually be no answer to this question,
+          // since the probability of zero failures may be non-zero,
+          return 0; // but zero is the best we can do:
+       }
+       if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
+       {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
+          return 0; //
+       }
+       if(x == 0)
+       {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
+          // Would need +infinity failures for total confidence.
+          result = policies::raise_overflow_error<RealType>(
+             function,
+             "Probability argument complement is 0, which implies infinite failures !", Policy());
+          return result;
+          // usually means return +std::numeric_limits<RealType>::infinity();
+          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
+       }
+       // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
+       result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1;
+      return result;
+
+    } // quantile complement
+
+ } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#if defined (BOOST_MSVC)
+# pragma warning(pop)
+#endif
+
+#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/hyperexponential.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,634 @@
+//  Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com)
+//
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// This module implements the Hyper-Exponential distribution.
+//
+// References:
+// - "Queueing Theory in Manufacturing Systems Analysis and Design" by H.T. Papadopolous, C. Heavey and J. Browne (Chapman & Hall/CRC, 1993)
+// - http://reference.wolfram.com/language/ref/HyperexponentialDistribution.html
+// - http://en.wikipedia.org/wiki/Hyperexponential_distribution
+//
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
+#define BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL_HPP
+
+
+#include <boost/config.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/exponential.hpp>
+#include <boost/math/policies/policy.hpp>
+#include <boost/math/special_functions/fpclassify.hpp>
+#include <boost/math/tools/precision.hpp>
+#include <boost/math/tools/roots.hpp>
+#include <boost/range/begin.hpp>
+#include <boost/range/end.hpp>
+#include <boost/range/size.hpp>
+#include <boost/type_traits/has_pre_increment.hpp>
+#include <cstddef>
+#include <iterator>
+#include <limits>
+#include <numeric>
+#include <utility>
+#include <vector>
+
+#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
+# include <initializer_list>
+#endif
+
+#ifdef _MSC_VER
+# pragma warning (push)
+# pragma warning(disable:4127) // conditional expression is constant
+# pragma warning(disable:4389) // '==' : signed/unsigned mismatch in test_tools
+#endif // _MSC_VER
+
+namespace boost { namespace math {
+
+namespace detail {
+
+template <typename Dist>
+typename Dist::value_type generic_quantile(const Dist& dist, const typename Dist::value_type& p, const typename Dist::value_type& guess, bool comp, const char* function);
+
+} // Namespace detail
+
+
+template <typename RealT, typename PolicyT>
+class hyperexponential_distribution;
+
+
+namespace /*<unnamed>*/ { namespace hyperexp_detail {
+
+template <typename T>
+void normalize(std::vector<T>& v)
+{
+   if(!v.size())
+      return;  // Our error handlers will get this later
+    const T sum = std::accumulate(v.begin(), v.end(), static_cast<T>(0));
+    T final_sum = 0;
+    const typename std::vector<T>::iterator end = --v.end();
+    for (typename std::vector<T>::iterator it = v.begin();
+         it != end;
+         ++it)
+    {
+        *it /= sum;
+        final_sum += *it;
+    }
+    *end = 1 - final_sum;  // avoids round off errors, ensures the probs really do sum to 1.
+}
+
+template <typename RealT, typename PolicyT>
+bool check_probabilities(char const* function, std::vector<RealT> const& probabilities, RealT* presult, PolicyT const& pol)
+{
+    BOOST_MATH_STD_USING
+    const std::size_t n = probabilities.size();
+    RealT sum = 0;
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        if (probabilities[i] < 0
+            || probabilities[i] > 1
+            || !(boost::math::isfinite)(probabilities[i]))
+        {
+            *presult = policies::raise_domain_error<RealT>(function,
+                                                           "The elements of parameter \"probabilities\" must be >= 0 and <= 1, but at least one of them was: %1%.",
+                                                           probabilities[i],
+                                                           pol);
+            return false;
+        }
+        sum += probabilities[i];
+    }
+
+    //
+    // We try to keep phase probabilities correctly normalized in the distribution constructors,
+    // however in practice we have to allow for a very slight divergence from a sum of exactly 1:
+    //
+    if (fabs(sum - 1) > tools::epsilon<RealT>() * 2)
+    {
+        *presult = policies::raise_domain_error<RealT>(function,
+                                                       "The elements of parameter \"probabilities\" must sum to 1, but their sum is: %1%.",
+                                                       sum,
+                                                       pol);
+        return false;
+    }
+
+    return true;
+}
+
+template <typename RealT, typename PolicyT>
+bool check_rates(char const* function, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
+{
+    const std::size_t n = rates.size();
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        if (rates[i] <= 0
+            || !(boost::math::isfinite)(rates[i]))
+        {
+            *presult = policies::raise_domain_error<RealT>(function,
+                                                           "The elements of parameter \"rates\" must be > 0, but at least one of them is: %1%.",
+                                                           rates[i],
+                                                           pol);
+            return false;
+        }
+    }
+    return true;
+}
+
+template <typename RealT, typename PolicyT>
+bool check_dist(char const* function, std::vector<RealT> const& probabilities, std::vector<RealT> const& rates, RealT* presult, PolicyT const& pol)
+{
+    BOOST_MATH_STD_USING
+    if (probabilities.size() != rates.size())
+    {
+        *presult = policies::raise_domain_error<RealT>(function,
+                                                       "The parameters \"probabilities\" and \"rates\" must have the same length, but their size differ by: %1%.",
+                                                       fabs(static_cast<RealT>(probabilities.size())-static_cast<RealT>(rates.size())),
+                                                       pol);
+        return false;
+    }
+
+    return check_probabilities(function, probabilities, presult, pol)
+           && check_rates(function, rates, presult, pol);
+}
+
+template <typename RealT, typename PolicyT>
+bool check_x(char const* function, RealT x, RealT* presult, PolicyT const& pol)
+{
+    if (x < 0 || (boost::math::isnan)(x))
+    {
+        *presult = policies::raise_domain_error<RealT>(function, "The random variable must be >= 0, but is: %1%.", x, pol);
+        return false;
+    }
+    return true;
+}
+
+template <typename RealT, typename PolicyT>
+bool check_probability(char const* function, RealT p, RealT* presult, PolicyT const& pol)
+{
+    if (p < 0 || p > 1 || (boost::math::isnan)(p))
+    {
+        *presult = policies::raise_domain_error<RealT>(function, "The probability be >= 0 and <= 1, but is: %1%.", p, pol);
+        return false;
+    }
+    return true;
+}
+
+template <typename RealT, typename PolicyT>
+RealT quantile_impl(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p, bool comp)
+{
+    // Don't have a closed form so try to numerically solve the inverse CDF...
+
+    typedef typename policies::evaluation<RealT, PolicyT>::type value_type;
+    typedef typename policies::normalise<PolicyT,
+                                         policies::promote_float<false>,
+                                         policies::promote_double<false>,
+                                         policies::discrete_quantile<>,
+                                         policies::assert_undefined<> >::type forwarding_policy;
+
+    static const char* function = comp ? "boost::math::quantile(const boost::math::complemented2_type<boost::math::hyperexponential_distribution<%1%>, %1%>&)"
+                                       : "boost::math::quantile(const boost::math::hyperexponential_distribution<%1%>&, %1%)";
+
+    RealT result = 0;
+
+    if (!check_probability(function, p, &result, PolicyT()))
+    {
+        return result;
+    }
+
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    // A possible (but inaccurate) approximation is given below, where the
+    // quantile is given by the weighted sum of exponential quantiles:
+    RealT guess = 0;
+    if (comp)
+    {
+        for (std::size_t i = 0; i < n; ++i)
+        {
+            const exponential_distribution<RealT,PolicyT> exp(rates[i]);
+
+            guess += probs[i]*quantile(complement(exp, p));
+        }
+    }
+    else
+    {
+        for (std::size_t i = 0; i < n; ++i)
+        {
+            const exponential_distribution<RealT,PolicyT> exp(rates[i]);
+
+            guess += probs[i]*quantile(exp, p);
+        }
+    }
+
+    // Fast return in case the Hyper-Exponential is essentially an Exponential
+    if (n == 1)
+    {
+        return guess;
+    }
+
+    value_type q;
+    q = detail::generic_quantile(hyperexponential_distribution<RealT,forwarding_policy>(probs, rates),
+                                 p,
+                                 guess,
+                                 comp,
+                                 function);
+
+    result = policies::checked_narrowing_cast<RealT,forwarding_policy>(q, function);
+
+    return result;
+}
+
+}} // Namespace <unnamed>::hyperexp_detail
+
+
+template <typename RealT = double, typename PolicyT = policies::policy<> >
+class hyperexponential_distribution
+{
+    public: typedef RealT value_type;
+    public: typedef PolicyT policy_type;
+
+
+    public: hyperexponential_distribution()
+    : probs_(1, 1),
+      rates_(1, 1)
+    {
+        RealT err;
+        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+                                    probs_,
+                                    rates_,
+                                    &err,
+                                    PolicyT());
+    }
+
+    // Four arg constructor: no ambiguity here, the arguments must be two pairs of iterators:
+    public: template <typename ProbIterT, typename RateIterT>
+            hyperexponential_distribution(ProbIterT prob_first, ProbIterT prob_last,
+                                          RateIterT rate_first, RateIterT rate_last)
+    : probs_(prob_first, prob_last),
+      rates_(rate_first, rate_last)
+    {
+        hyperexp_detail::normalize(probs_);
+        RealT err;
+        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+                                    probs_,
+                                    rates_,
+                                    &err,
+                                    PolicyT());
+    }
+
+    // Two arg constructor from 2 ranges, we SFINAE this out of existance if
+    // either argument type is incrementable as in that case the type is
+    // probably an iterator:
+    public: template <typename ProbRangeT, typename RateRangeT>
+            hyperexponential_distribution(ProbRangeT const& prob_range,
+                                          RateRangeT const& rate_range,
+                                          typename boost::disable_if_c<boost::has_pre_increment<ProbRangeT>::value || boost::has_pre_increment<RateRangeT>::value>::type* = 0)
+    : probs_(boost::begin(prob_range), boost::end(prob_range)),
+      rates_(boost::begin(rate_range), boost::end(rate_range))
+    {
+        hyperexp_detail::normalize(probs_);
+
+        RealT err;
+        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+                                    probs_,
+                                    rates_,
+                                    &err,
+                                    PolicyT());
+    }
+
+    // Two arg constructor for a pair of iterators: we SFINAE this out of
+    // existance if neither argument types are incrementable.
+    // Note that we allow different argument types here to allow for
+    // construction from an array plus a pointer into that array.
+    public: template <typename RateIterT, typename RateIterT2>
+            hyperexponential_distribution(RateIterT const& rate_first, 
+                                          RateIterT2 const& rate_last, 
+                                          typename boost::enable_if_c<boost::has_pre_increment<RateIterT>::value || boost::has_pre_increment<RateIterT2>::value>::type* = 0)
+    : probs_(std::distance(rate_first, rate_last), 1), // will be normalized below
+      rates_(rate_first, rate_last)
+    {
+        hyperexp_detail::normalize(probs_);
+
+        RealT err;
+        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+                                    probs_,
+                                    rates_,
+                                    &err,
+                                    PolicyT());
+    }
+
+#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
+      // Initializer list constructor: allows for construction from array literals:
+public: hyperexponential_distribution(std::initializer_list<RealT> l1, std::initializer_list<RealT> l2)
+      : probs_(l1.begin(), l1.end()),
+        rates_(l2.begin(), l2.end())
+      {
+         hyperexp_detail::normalize(probs_);
+
+         RealT err;
+         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+            probs_,
+            rates_,
+            &err,
+            PolicyT());
+      }
+
+public: hyperexponential_distribution(std::initializer_list<RealT> l1)
+      : probs_(l1.size(), 1),
+        rates_(l1.begin(), l1.end())
+      {
+         hyperexp_detail::normalize(probs_);
+
+         RealT err;
+         hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+            probs_,
+            rates_,
+            &err,
+            PolicyT());
+      }
+#endif // !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
+
+    // Single argument constructor: argument must be a range.
+    public: template <typename RateRangeT>
+    hyperexponential_distribution(RateRangeT const& rate_range)
+    : probs_(boost::size(rate_range), 1), // will be normalized below
+      rates_(boost::begin(rate_range), boost::end(rate_range))
+    {
+        hyperexp_detail::normalize(probs_);
+
+        RealT err;
+        hyperexp_detail::check_dist("boost::math::hyperexponential_distribution<%1%>::hyperexponential_distribution",
+                                    probs_,
+                                    rates_,
+                                    &err,
+                                    PolicyT());
+    }
+
+    public: std::vector<RealT> probabilities() const
+    {
+        return probs_;
+    }
+
+    public: std::vector<RealT> rates() const
+    {
+        return rates_;
+    }
+
+    public: std::size_t num_phases() const
+    {
+        return rates_.size();
+    }
+
+
+    private: std::vector<RealT> probs_;
+    private: std::vector<RealT> rates_;
+}; // class hyperexponential_distribution
+
+
+// Convenient type synonym for double.
+typedef hyperexponential_distribution<double> hyperexponential;
+
+
+// Range of permissible values for random variable x
+template <typename RealT, typename PolicyT>
+std::pair<RealT,RealT> range(hyperexponential_distribution<RealT,PolicyT> const&)
+{
+    if (std::numeric_limits<RealT>::has_infinity)
+    {
+        return std::make_pair(static_cast<RealT>(0), std::numeric_limits<RealT>::infinity()); // 0 to +inf.
+    }
+
+    return std::make_pair(static_cast<RealT>(0), tools::max_value<RealT>()); // 0 to +<max value>
+}
+
+// Range of supported values for random variable x.
+// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+template <typename RealT, typename PolicyT>
+std::pair<RealT,RealT> support(hyperexponential_distribution<RealT,PolicyT> const&)
+{
+    return std::make_pair(tools::min_value<RealT>(), tools::max_value<RealT>()); // <min value> to +<max value>.
+}
+
+template <typename RealT, typename PolicyT>
+RealT pdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
+{
+    BOOST_MATH_STD_USING
+    RealT result = 0;
+
+    if (!hyperexp_detail::check_x("boost::math::pdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
+    {
+        return result;
+    }
+
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        const exponential_distribution<RealT,PolicyT> exp(rates[i]);
+
+        result += probs[i]*pdf(exp, x);
+        //result += probs[i]*rates[i]*exp(-rates[i]*x);
+    }
+
+    return result;
+}
+
+template <typename RealT, typename PolicyT>
+RealT cdf(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& x)
+{
+    RealT result = 0;
+
+    if (!hyperexp_detail::check_x("boost::math::cdf(const boost::math::hyperexponential_distribution<%1%>&, %1%)", x, &result, PolicyT()))
+    {
+        return result;
+    }
+
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        const exponential_distribution<RealT,PolicyT> exp(rates[i]);
+
+        result += probs[i]*cdf(exp, x);
+    }
+
+    return result;
+}
+
+template <typename RealT, typename PolicyT>
+RealT quantile(hyperexponential_distribution<RealT, PolicyT> const& dist, RealT const& p)
+{
+    return hyperexp_detail::quantile_impl(dist, p , false);
+}
+
+template <typename RealT, typename PolicyT>
+RealT cdf(complemented2_type<hyperexponential_distribution<RealT,PolicyT>, RealT> const& c)
+{
+    RealT const& x = c.param;
+    hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
+
+    RealT result = 0;
+
+    if (!hyperexp_detail::check_x("boost::math::cdf(boost::math::complemented2_type<const boost::math::hyperexponential_distribution<%1%>&, %1%>)", x, &result, PolicyT()))
+    {
+        return result;
+    }
+
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        const exponential_distribution<RealT,PolicyT> exp(rates[i]);
+
+        result += probs[i]*cdf(complement(exp, x));
+    }
+
+    return result;
+}
+
+
+template <typename RealT, typename PolicyT>
+RealT quantile(complemented2_type<hyperexponential_distribution<RealT, PolicyT>, RealT> const& c)
+{
+    RealT const& p = c.param;
+    hyperexponential_distribution<RealT,PolicyT> const& dist = c.dist;
+
+    return hyperexp_detail::quantile_impl(dist, p , true);
+}
+
+template <typename RealT, typename PolicyT>
+RealT mean(hyperexponential_distribution<RealT, PolicyT> const& dist)
+{
+    RealT result = 0;
+
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        const exponential_distribution<RealT,PolicyT> exp(rates[i]);
+
+        result += probs[i]*mean(exp);
+    }
+
+    return result;
+}
+
+template <typename RealT, typename PolicyT>
+RealT variance(hyperexponential_distribution<RealT, PolicyT> const& dist)
+{
+    RealT result = 0;
+
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        result += probs[i]/(rates[i]*rates[i]);
+    }
+
+    const RealT mean = boost::math::mean(dist);
+
+    result = 2*result-mean*mean;
+
+    return result;
+}
+
+template <typename RealT, typename PolicyT>
+RealT skewness(hyperexponential_distribution<RealT,PolicyT> const& dist)
+{
+    BOOST_MATH_STD_USING
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
+    RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
+    RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        const RealT p = probs[i];
+        const RealT r = rates[i];
+        const RealT r2 = r*r;
+        const RealT r3 = r2*r;
+
+        s1 += p/r;
+        s2 += p/r2;
+        s3 += p/r3;
+    }
+
+    const RealT s1s1 = s1*s1;
+
+    const RealT num = (6*s3 - (3*(2*s2 - s1s1) + s1s1)*s1);
+    const RealT den = (2*s2 - s1s1);
+
+    return num / pow(den, static_cast<RealT>(1.5));
+}
+
+template <typename RealT, typename PolicyT>
+RealT kurtosis(hyperexponential_distribution<RealT,PolicyT> const& dist)
+{
+    const std::size_t n = dist.num_phases();
+    const std::vector<RealT> probs = dist.probabilities();
+    const std::vector<RealT> rates = dist.rates();
+
+    RealT s1 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i}
+    RealT s2 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^2}
+    RealT s3 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^3}
+    RealT s4 = 0; // \sum_{i=1}^n \frac{p_i}{\lambda_i^4}
+    for (std::size_t i = 0; i < n; ++i)
+    {
+        const RealT p = probs[i];
+        const RealT r = rates[i];
+        const RealT r2 = r*r;
+        const RealT r3 = r2*r;
+        const RealT r4 = r3*r;
+
+        s1 += p/r;
+        s2 += p/r2;
+        s3 += p/r3;
+        s4 += p/r4;
+    }
+
+    const RealT s1s1 = s1*s1;
+
+    const RealT num = (24*s4 - 24*s3*s1 + 3*(2*(2*s2 - s1s1) + s1s1)*s1s1);
+    const RealT den = (2*s2 - s1s1);
+
+    return num/(den*den);
+}
+
+template <typename RealT, typename PolicyT>
+RealT kurtosis_excess(hyperexponential_distribution<RealT,PolicyT> const& dist)
+{
+    return kurtosis(dist) - 3;
+}
+
+template <typename RealT, typename PolicyT>
+RealT mode(hyperexponential_distribution<RealT,PolicyT> const& /*dist*/)
+{
+    return 0;
+}
+
+}} // namespace boost::math
+
+#ifdef BOOST_MSVC
+#pragma warning (pop)
+#endif
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+#include <boost/math/distributions/detail/generic_quantile.hpp>
+
+#endif // BOOST_MATH_DISTRIBUTIONS_HYPEREXPONENTIAL
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/hypergeometric.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,293 @@
+// Copyright 2008 Gautam Sewani
+// Copyright 2008 John Maddock
+//
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_HYPERGEOMETRIC_HPP
+#define BOOST_MATH_DISTRIBUTIONS_HYPERGEOMETRIC_HPP
+
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/hypergeometric_pdf.hpp>
+#include <boost/math/distributions/detail/hypergeometric_cdf.hpp>
+#include <boost/math/distributions/detail/hypergeometric_quantile.hpp>
+#include <boost/math/special_functions/fpclassify.hpp>
+
+
+namespace boost { namespace math {
+
+   template <class RealType = double, class Policy = policies::policy<> >
+   class hypergeometric_distribution
+   {
+   public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      hypergeometric_distribution(unsigned r, unsigned n, unsigned N) // Constructor.
+         : m_n(n), m_N(N), m_r(r)
+      {
+         static const char* function = "boost::math::hypergeometric_distribution<%1%>::hypergeometric_distribution";
+         RealType ret;
+         check_params(function, &ret);
+      }
+      // Accessor functions.
+      unsigned total()const
+      {
+         return m_N;
+      }
+
+      unsigned defective()const
+      {
+         return m_r;
+      }
+
+      unsigned sample_count()const
+      {
+         return m_n;
+      }
+
+      bool check_params(const char* function, RealType* result)const
+      {
+         if(m_r > m_N)
+         {
+            *result = boost::math::policies::raise_domain_error<RealType>(
+               function, "Parameter r out of range: must be <= N but got %1%", static_cast<RealType>(m_r), Policy());
+            return false;
+         }
+         if(m_n > m_N)
+         {
+            *result = boost::math::policies::raise_domain_error<RealType>(
+               function, "Parameter n out of range: must be <= N but got %1%", static_cast<RealType>(m_n), Policy());
+            return false;
+         }
+         return true;
+      }
+      bool check_x(unsigned x, const char* function, RealType* result)const
+      {
+         if(x < static_cast<unsigned>((std::max)(0, (int)(m_n + m_r) - (int)(m_N))))
+         {
+            *result = boost::math::policies::raise_domain_error<RealType>(
+               function, "Random variable out of range: must be > 0 and > m + r - N but got %1%", static_cast<RealType>(x), Policy());
+            return false;
+         }
+         if(x > (std::min)(m_r, m_n))
+         {
+            *result = boost::math::policies::raise_domain_error<RealType>(
+               function, "Random variable out of range: must be less than both n and r but got %1%", static_cast<RealType>(x), Policy());
+            return false;
+         }
+         return true;
+      }
+
+   private:
+      // Data members:
+      unsigned m_n;  // number of items picked
+      unsigned m_N; // number of "total" items
+      unsigned m_r; // number of "defective" items
+
+   }; // class hypergeometric_distribution
+
+   typedef hypergeometric_distribution<double> hypergeometric;
+
+   template <class RealType, class Policy>
+   inline const std::pair<unsigned, unsigned> range(const hypergeometric_distribution<RealType, Policy>& dist)
+   { // Range of permissible values for random variable x.
+#ifdef BOOST_MSVC
+#  pragma warning(push)
+#  pragma warning(disable:4267)
+#endif
+      unsigned r = dist.defective();
+      unsigned n = dist.sample_count();
+      unsigned N = dist.total();
+      unsigned l = static_cast<unsigned>((std::max)(0, (int)(n + r) - (int)(N)));
+      unsigned u = (std::min)(r, n);
+      return std::pair<unsigned, unsigned>(l, u);
+#ifdef BOOST_MSVC
+#  pragma warning(pop)
+#endif
+   }
+
+   template <class RealType, class Policy>
+   inline const std::pair<unsigned, unsigned> support(const hypergeometric_distribution<RealType, Policy>& d)
+   { 
+      return range(d);
+   }
+
+   template <class RealType, class Policy>
+   inline RealType pdf(const hypergeometric_distribution<RealType, Policy>& dist, const unsigned& x)
+   {
+      static const char* function = "boost::math::pdf(const hypergeometric_distribution<%1%>&, const %1%&)";
+      RealType result = 0;
+      if(!dist.check_params(function, &result))
+         return result;
+      if(!dist.check_x(x, function, &result))
+         return result;
+
+      return boost::math::detail::hypergeometric_pdf<RealType>(
+         x, dist.defective(), dist.sample_count(), dist.total(), Policy());
+   }
+
+   template <class RealType, class Policy, class U>
+   inline RealType pdf(const hypergeometric_distribution<RealType, Policy>& dist, const U& x)
+   {
+      BOOST_MATH_STD_USING
+      static const char* function = "boost::math::pdf(const hypergeometric_distribution<%1%>&, const %1%&)";
+      RealType r = static_cast<RealType>(x);
+      unsigned u = itrunc(r, typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type());
+      if(u != r)
+      {
+         return boost::math::policies::raise_domain_error<RealType>(
+            function, "Random variable out of range: must be an integer but got %1%", r, Policy());
+      }
+      return pdf(dist, u);
+   }
+
+   template <class RealType, class Policy>
+   inline RealType cdf(const hypergeometric_distribution<RealType, Policy>& dist, const unsigned& x)
+   {
+      static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
+      RealType result = 0;
+      if(!dist.check_params(function, &result))
+         return result;
+      if(!dist.check_x(x, function, &result))
+         return result;
+
+      return boost::math::detail::hypergeometric_cdf<RealType>(
+         x, dist.defective(), dist.sample_count(), dist.total(), false, Policy());
+   }
+
+   template <class RealType, class Policy, class U>
+   inline RealType cdf(const hypergeometric_distribution<RealType, Policy>& dist, const U& x)
+   {
+      BOOST_MATH_STD_USING
+      static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
+      RealType r = static_cast<RealType>(x);
+      unsigned u = itrunc(r, typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type());
+      if(u != r)
+      {
+         return boost::math::policies::raise_domain_error<RealType>(
+            function, "Random variable out of range: must be an integer but got %1%", r, Policy());
+      }
+      return cdf(dist, u);
+   }
+
+   template <class RealType, class Policy>
+   inline RealType cdf(const complemented2_type<hypergeometric_distribution<RealType, Policy>, unsigned>& c)
+   {
+      static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
+      RealType result = 0;
+      if(!c.dist.check_params(function, &result))
+         return result;
+      if(!c.dist.check_x(c.param, function, &result))
+         return result;
+
+      return boost::math::detail::hypergeometric_cdf<RealType>(
+         c.param, c.dist.defective(), c.dist.sample_count(), c.dist.total(), true, Policy());
+   }
+
+   template <class RealType, class Policy, class U>
+   inline RealType cdf(const complemented2_type<hypergeometric_distribution<RealType, Policy>, U>& c)
+   {
+      BOOST_MATH_STD_USING
+      static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
+      RealType r = static_cast<RealType>(c.param);
+      unsigned u = itrunc(r, typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type());
+      if(u != r)
+      {
+         return boost::math::policies::raise_domain_error<RealType>(
+            function, "Random variable out of range: must be an integer but got %1%", r, Policy());
+      }
+      return cdf(complement(c.dist, u));
+   }
+
+   template <class RealType, class Policy>
+   inline RealType quantile(const hypergeometric_distribution<RealType, Policy>& dist, const RealType& p)
+   {
+      BOOST_MATH_STD_USING // for ADL of std functions
+
+         // Checking function argument
+         RealType result = 0;
+      const char* function = "boost::math::quantile(const hypergeometric_distribution<%1%>&, %1%)";
+      if (false == dist.check_params(function, &result)) return result;
+      if(false == detail::check_probability(function, p, &result, Policy())) return result;
+
+      return static_cast<RealType>(detail::hypergeometric_quantile(p, RealType(1 - p), dist.defective(), dist.sample_count(), dist.total(), Policy()));
+   } // quantile
+
+   template <class RealType, class Policy>
+   inline RealType quantile(const complemented2_type<hypergeometric_distribution<RealType, Policy>, RealType>& c)
+   {
+      BOOST_MATH_STD_USING // for ADL of std functions
+
+      // Checking function argument
+      RealType result = 0;
+      const char* function = "quantile(const complemented2_type<hypergeometric_distribution<%1%>, %1%>&)";
+      if (false == c.dist.check_params(function, &result)) return result;
+      if(false == detail::check_probability(function, c.param, &result, Policy())) return result;
+
+      return static_cast<RealType>(detail::hypergeometric_quantile(RealType(1 - c.param), c.param, c.dist.defective(), c.dist.sample_count(), c.dist.total(), Policy()));
+   } // quantile
+
+   template <class RealType, class Policy>
+   inline RealType mean(const hypergeometric_distribution<RealType, Policy>& dist)
+   {
+      return static_cast<RealType>(dist.defective() * dist.sample_count()) / dist.total();
+   } // RealType mean(const hypergeometric_distribution<RealType, Policy>& dist)
+
+   template <class RealType, class Policy>
+   inline RealType variance(const hypergeometric_distribution<RealType, Policy>& dist)
+   {
+      RealType r = static_cast<RealType>(dist.defective());
+      RealType n = static_cast<RealType>(dist.sample_count());
+      RealType N = static_cast<RealType>(dist.total());
+      return n * r  * (N - r) * (N - n) / (N * N * (N - 1));
+   } // RealType variance(const hypergeometric_distribution<RealType, Policy>& dist)
+
+   template <class RealType, class Policy>
+   inline RealType mode(const hypergeometric_distribution<RealType, Policy>& dist)
+   {
+      BOOST_MATH_STD_USING
+      RealType r = static_cast<RealType>(dist.defective());
+      RealType n = static_cast<RealType>(dist.sample_count());
+      RealType N = static_cast<RealType>(dist.total());
+      return floor((r + 1) * (n + 1) / (N + 2));
+   }
+
+   template <class RealType, class Policy>
+   inline RealType skewness(const hypergeometric_distribution<RealType, Policy>& dist)
+   {
+      BOOST_MATH_STD_USING
+      RealType r = static_cast<RealType>(dist.defective());
+      RealType n = static_cast<RealType>(dist.sample_count());
+      RealType N = static_cast<RealType>(dist.total());
+      return (N - 2 * r) * sqrt(N - 1) * (N - 2 * n) / (sqrt(n * r * (N - r) * (N - n)) * (N - 2));
+   } // RealType skewness(const hypergeometric_distribution<RealType, Policy>& dist)
+
+   template <class RealType, class Policy>
+   inline RealType kurtosis_excess(const hypergeometric_distribution<RealType, Policy>& dist)
+   {
+      RealType r = static_cast<RealType>(dist.defective());
+      RealType n = static_cast<RealType>(dist.sample_count());
+      RealType N = static_cast<RealType>(dist.total());
+      RealType t1 = N * N * (N - 1) / (r * (N - 2) * (N - 3) * (N - r));
+      RealType t2 = (N * (N + 1) - 6 * N * (N - r)) / (n * (N - n))
+         + 3 * r * (N - r) * (N + 6) / (N * N) - 6;
+      return t1 * t2;
+   } // RealType kurtosis_excess(const hypergeometric_distribution<RealType, Policy>& dist)
+
+   template <class RealType, class Policy>
+   inline RealType kurtosis(const hypergeometric_distribution<RealType, Policy>& dist)
+   {
+      return kurtosis_excess(dist) + 3;
+   } // RealType kurtosis_excess(const hypergeometric_distribution<RealType, Policy>& dist)
+}} // namespaces
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // include guard
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/inverse_chi_squared.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,391 @@
+// Copyright John Maddock 2010.
+// Copyright Paul A. Bristow 2010.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
+#define BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp> // for incomplete beta.
+#include <boost/math/distributions/complement.hpp> // for complements.
+#include <boost/math/distributions/detail/common_error_handling.hpp> // for error checks.
+#include <boost/math/special_functions/fpclassify.hpp> // for isfinite
+
+// See http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution
+// for definitions of this scaled version.
+// See http://en.wikipedia.org/wiki/Inverse-chi-square_distribution
+// for unscaled version.
+
+// http://reference.wolfram.com/mathematica/ref/InverseChiSquareDistribution.html
+// Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource.
+// http://mathworld.wolfram.com/InverseChi-SquaredDistribution.html
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+namespace detail
+{
+  template <class RealType, class Policy>
+  inline bool check_inverse_chi_squared( // Check both distribution parameters.
+        const char* function,
+        RealType degrees_of_freedom, // degrees_of_freedom (aka nu).
+        RealType scale,  // scale (aka sigma^2)
+        RealType* result,
+        const Policy& pol)
+  {
+     return check_scale(function, scale, result, pol)
+       && check_df(function, degrees_of_freedom,
+       result, pol);
+  } // bool check_inverse_chi_squared
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class inverse_chi_squared_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   inverse_chi_squared_distribution(RealType df, RealType l_scale) : m_df(df), m_scale (l_scale)
+   {
+      RealType result;
+      detail::check_df(
+         "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
+         m_df, &result, Policy())
+         && detail::check_scale(
+"boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
+         m_scale, &result,  Policy());
+   } // inverse_chi_squared_distribution constructor 
+
+   inverse_chi_squared_distribution(RealType df = 1) : m_df(df)
+   {
+      RealType result;
+      m_scale = 1 / m_df ; // Default scale = 1 / degrees of freedom (Wikipedia definition 1).
+      detail::check_df(
+         "boost::math::inverse_chi_squared_distribution<%1%>::inverse_chi_squared_distribution",
+         m_df, &result, Policy());
+   } // inverse_chi_squared_distribution
+
+   RealType degrees_of_freedom()const
+   {
+      return m_df; // aka nu
+   }
+   RealType scale()const
+   {
+      return m_scale;  // aka xi
+   }
+
+   // Parameter estimation:  NOT implemented yet.
+   //static RealType find_degrees_of_freedom(
+   //   RealType difference_from_variance,
+   //   RealType alpha,
+   //   RealType beta,
+   //   RealType variance,
+   //   RealType hint = 100);
+
+private:
+   // Data members:
+   RealType m_df;  // degrees of freedom are treated as a real number.
+   RealType m_scale;  // distribution scale.
+
+}; // class chi_squared_distribution
+
+typedef inverse_chi_squared_distribution<double> inverse_chi_squared;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const inverse_chi_squared_distribution<RealType, Policy>& /*dist*/)
+{  // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // 0 to + infinity.
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const inverse_chi_squared_distribution<RealType, Policy>& /*dist*/)
+{  // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), tools::max_value<RealType>()); // 0 to + infinity.
+}
+
+template <class RealType, class Policy>
+RealType pdf(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions.
+   RealType df = dist.degrees_of_freedom();
+   RealType scale = dist.scale();
+   RealType error_result;
+
+   static const char* function = "boost::math::pdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
+
+   if(false == detail::check_inverse_chi_squared
+     (function, df, scale, &error_result, Policy())
+     )
+   { // Bad distribution.
+      return error_result;
+   }
+   if((x < 0) || !(boost::math::isfinite)(x))
+   { // Bad x.
+      return policies::raise_domain_error<RealType>(
+         function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy());
+   }
+
+   if(x == 0)
+   { // Treat as special case.
+     return 0;
+   }
+   // Wikipedia scaled inverse chi sq (df, scale) related to inv gamma (df/2, df * scale /2) 
+   // so use inverse gamma pdf with shape = df/2, scale df * scale /2 
+   // RealType shape = df /2; // inv_gamma shape
+   // RealType scale = df * scale/2; // inv_gamma scale
+   // RealType result = gamma_p_derivative(shape, scale / x, Policy()) * scale / (x * x);
+   RealType result = df * scale/2 / x;
+   if(result < tools::min_value<RealType>())
+      return 0; // Random variable is near enough infinite.
+   result = gamma_p_derivative(df/2, result, Policy()) * df * scale/2;
+   if(result != 0) // prevent 0 / 0,  gamma_p_derivative -> 0 faster than x^2
+      result /= (x * x);
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
+   RealType df = dist.degrees_of_freedom();
+   RealType scale = dist.scale();
+   RealType error_result;
+
+   if(false ==
+       detail::check_inverse_chi_squared(function, df, scale, &error_result, Policy())
+     )
+   { // Bad distribution.
+      return error_result;
+   }
+   if((x < 0) || !(boost::math::isfinite)(x))
+   { // Bad x.
+      return policies::raise_domain_error<RealType>(
+         function, "inverse Chi Square parameter was %1%, but must be >= 0 !", x, Policy());
+   }
+   if (x == 0)
+   { // Treat zero as a special case.
+     return 0;
+   }
+   // RealType shape = df /2; // inv_gamma shape,
+   // RealType scale = df * scale/2; // inv_gamma scale,
+   // result = boost::math::gamma_q(shape, scale / x, Policy()); // inverse_gamma code.
+   return boost::math::gamma_q(df / 2, (df * (scale / 2)) / x, Policy());
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const inverse_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   using boost::math::gamma_q_inv;
+   RealType df = dist.degrees_of_freedom();
+   RealType scale = dist.scale();
+
+   static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)";
+   // Error check:
+   RealType error_result;
+   if(false == detail::check_df(
+         function, df, &error_result, Policy())
+         && detail::check_probability(
+            function, p, &error_result, Policy()))
+   {
+      return error_result;
+   }
+   if(false == detail::check_probability(
+            function, p, &error_result, Policy()))
+   {
+      return error_result;
+   }
+   // RealType shape = df /2; // inv_gamma shape,
+   // RealType scale = df * scale/2; // inv_gamma scale,
+   // result = scale / gamma_q_inv(shape, p, Policy());
+      RealType result = gamma_q_inv(df /2, p, Policy());
+      if(result == 0)
+         return policies::raise_overflow_error<RealType, Policy>(function, "Random variable is infinite.", Policy());
+      result = df * (scale / 2) / result;
+      return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<inverse_chi_squared_distribution<RealType, Policy>, RealType>& c)
+{
+   using boost::math::gamma_q_inv;
+   RealType const& df = c.dist.degrees_of_freedom();
+   RealType const& scale = c.dist.scale();
+   RealType const& x = c.param;
+   static const char* function = "boost::math::cdf(const inverse_chi_squared_distribution<%1%>&, %1%)";
+   // Error check:
+   RealType error_result;
+   if(false == detail::check_df(
+         function, df, &error_result, Policy()))
+   {
+      return error_result;
+   }
+   if (x == 0)
+   { // Treat zero as a special case.
+     return 1;
+   }
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      return policies::raise_domain_error<RealType>(
+         function, "inverse Chi Square parameter was %1%, but must be > 0 !", x, Policy());
+   }
+   // RealType shape = df /2; // inv_gamma shape,
+   // RealType scale = df * scale/2; // inv_gamma scale,
+   // result = gamma_p(shape, scale/c.param, Policy()); use inv_gamma.
+
+   return gamma_p(df / 2, (df * scale/2) / x, Policy()); // OK
+} // cdf(complemented
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<inverse_chi_squared_distribution<RealType, Policy>, RealType>& c)
+{
+   using boost::math::gamma_q_inv;
+
+   RealType const& df = c.dist.degrees_of_freedom();
+   RealType const& scale = c.dist.scale();
+   RealType const& q = c.param;
+   static const char* function = "boost::math::quantile(const inverse_chi_squared_distribution<%1%>&, %1%)";
+   // Error check:
+   RealType error_result;
+   if(false == detail::check_df(function, df, &error_result, Policy()))
+   {
+      return error_result;
+   }
+   if(false == detail::check_probability(function, q, &error_result, Policy()))
+   {
+      return error_result;
+   }
+   // RealType shape = df /2; // inv_gamma shape,
+   // RealType scale = df * scale/2; // inv_gamma scale,
+   // result = scale / gamma_p_inv(shape, q, Policy());  // using inv_gamma.
+   RealType result = gamma_p_inv(df/2, q, Policy());
+   if(result == 0)
+      return policies::raise_overflow_error<RealType, Policy>(function, "Random variable is infinite.", Policy());
+   result = (df * scale / 2) / result;
+   return result;
+} // quantile(const complement
+
+template <class RealType, class Policy>
+inline RealType mean(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+{ // Mean of inverse Chi-Squared distribution.
+   RealType df = dist.degrees_of_freedom();
+   RealType scale = dist.scale();
+
+   static const char* function = "boost::math::mean(const inverse_chi_squared_distribution<%1%>&)";
+   if(df <= 2)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "inverse Chi-Squared distribution only has a mode for degrees of freedom > 2, but got degrees of freedom = %1%.",
+         df, Policy());
+  return (df * scale) / (df - 2);
+} // mean
+
+template <class RealType, class Policy>
+inline RealType variance(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+{ // Variance of inverse Chi-Squared distribution.
+   RealType df = dist.degrees_of_freedom();
+   RealType scale = dist.scale();
+   static const char* function = "boost::math::variance(const inverse_chi_squared_distribution<%1%>&)";
+   if(df <= 4)
+   {
+      return policies::raise_domain_error<RealType>(
+         function,
+         "inverse Chi-Squared distribution only has a variance for degrees of freedom > 4, but got degrees of freedom = %1%.",
+         df, Policy());
+   }
+   return 2 * df * df * scale * scale / ((df - 2)*(df - 2) * (df - 4));
+} // variance
+
+template <class RealType, class Policy>
+inline RealType mode(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+{ // mode is not defined in Mathematica.
+  // See Discussion section http://en.wikipedia.org/wiki/Talk:Scaled-inverse-chi-square_distribution
+  // for origin of the formula used below.
+
+   RealType df = dist.degrees_of_freedom();
+   RealType scale = dist.scale();
+   static const char* function = "boost::math::mode(const inverse_chi_squared_distribution<%1%>&)";
+   if(df < 0)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "inverse Chi-Squared distribution only has a mode for degrees of freedom >= 0, but got degrees of freedom = %1%.",
+         df, Policy());
+   return (df * scale) / (df + 2);
+}
+
+//template <class RealType, class Policy>
+//inline RealType median(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+//{ // Median is given by Quantile[dist, 1/2]
+//   RealType df = dist.degrees_of_freedom();
+//   if(df <= 1)
+//      return tools::domain_error<RealType>(
+//         BOOST_CURRENT_FUNCTION,
+//         "The inverse_Chi-Squared distribution only has a median for degrees of freedom >= 0, but got degrees of freedom = %1%.",
+//         df);
+//   return df;
+//}
+// Now implemented via quantile(half) in derived accessors.
+
+template <class RealType, class Policy>
+inline RealType skewness(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING // For ADL
+   RealType df = dist.degrees_of_freedom();
+   static const char* function = "boost::math::skewness(const inverse_chi_squared_distribution<%1%>&)";
+   if(df <= 6)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "inverse Chi-Squared distribution only has a skewness for degrees of freedom > 6, but got degrees of freedom = %1%.",
+         df, Policy());
+
+   return 4 * sqrt (2 * (df - 4)) / (df - 6);  // Not a function of scale.
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+{
+   RealType df = dist.degrees_of_freedom();
+   static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)";
+   if(df <= 8)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "inverse Chi-Squared distribution only has a kurtosis for degrees of freedom > 8, but got degrees of freedom = %1%.",
+         df, Policy());
+
+   return kurtosis_excess(dist) + 3;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const inverse_chi_squared_distribution<RealType, Policy>& dist)
+{
+   RealType df = dist.degrees_of_freedom();
+   static const char* function = "boost::math::kurtosis(const inverse_chi_squared_distribution<%1%>&)";
+   if(df <= 8)
+      return policies::raise_domain_error<RealType>(
+         function,
+         "inverse Chi-Squared distribution only has a kurtosis excess for degrees of freedom > 8, but got degrees of freedom = %1%.",
+         df, Policy());
+
+   return 12 * (5 * df - 22) / ((df - 6 )*(df - 8));  // Not a function of scale.
+}
+
+//
+// Parameter estimation comes last:
+//
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_DISTRIBUTIONS_INVERSE_CHI_SQUARED_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/inverse_gamma.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,461 @@
+// inverse_gamma.hpp
+
+//  Copyright Paul A. Bristow 2010.
+//  Copyright John Maddock 2010.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_INVERSE_GAMMA_HPP
+#define BOOST_STATS_INVERSE_GAMMA_HPP
+
+// Inverse Gamma Distribution is a two-parameter family
+// of continuous probability distributions
+// on the positive real line, which is the distribution of
+// the reciprocal of a variable distributed according to the gamma distribution.
+
+// http://en.wikipedia.org/wiki/Inverse-gamma_distribution
+// http://rss.acs.unt.edu/Rdoc/library/pscl/html/igamma.html
+
+// See also gamma distribution at gamma.hpp:
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm
+// http://mathworld.wolfram.com/GammaDistribution.html
+// http://en.wikipedia.org/wiki/Gamma_distribution
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+namespace detail
+{
+
+template <class RealType, class Policy>
+inline bool check_inverse_gamma_shape(
+      const char* function, // inverse_gamma
+      RealType shape, // shape aka alpha
+      RealType* result, // to update, perhaps with NaN
+      const Policy& pol)
+{  // Sources say shape argument must be > 0
+   // but seems logical to allow shape zero as special case,
+   // returning pdf and cdf zero (but not < 0).
+   // (Functions like mean, variance with other limits on shape are checked
+   // in version including an operator & limit below).
+   if((shape < 0) || !(boost::math::isfinite)(shape))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Shape parameter is %1%, but must be >= 0 !", shape, pol);
+      return false;
+   }
+   return true;
+} //bool check_inverse_gamma_shape
+
+template <class RealType, class Policy>
+inline bool check_inverse_gamma_x(
+      const char* function,
+      RealType const& x,
+      RealType* result, const Policy& pol)
+{
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Random variate is %1% but must be >= 0 !", x, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_inverse_gamma(
+      const char* function, // TODO swap these over, so shape is first.
+      RealType scale,  // scale aka beta
+      RealType shape, // shape aka alpha
+      RealType* result, const Policy& pol)
+{
+   return check_scale(function, scale, result, pol)
+     && check_inverse_gamma_shape(function, shape, result, pol);
+} // bool check_inverse_gamma
+
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class inverse_gamma_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   inverse_gamma_distribution(RealType l_shape = 1, RealType l_scale = 1)
+      : m_shape(l_shape), m_scale(l_scale)
+   {
+      RealType result;
+      detail::check_inverse_gamma(
+        "boost::math::inverse_gamma_distribution<%1%>::inverse_gamma_distribution",
+        l_scale, l_shape, &result, Policy());
+   }
+
+   RealType shape()const
+   {
+      return m_shape;
+   }
+
+   RealType scale()const
+   {
+      return m_scale;
+   }
+private:
+   //
+   // Data members:
+   //
+   RealType m_shape;     // distribution shape
+   RealType m_scale;     // distribution scale
+};
+
+typedef inverse_gamma_distribution<double> inverse_gamma;
+// typedef - but potential clash with name of inverse gamma *function*.
+// but there is a typedef for gamma
+//   typedef boost::math::gamma_distribution<Type, Policy> gamma;
+
+// Allow random variable x to be zero, treated as a special case (unlike some definitions).
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const inverse_gamma_distribution<RealType, Policy>& /* dist */)
+{  // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const inverse_gamma_distribution<RealType, Policy>& /* dist */)
+{  // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   using boost::math::tools::min_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const inverse_gamma_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::pdf(const inverse_gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_inverse_gamma(function, scale, shape, &result, Policy()))
+   { // distribution parameters bad.
+      return result;
+   } 
+   if(x == 0)
+   { // Treat random variate zero as a special case.
+      return 0;
+   }
+   else if(false == detail::check_inverse_gamma_x(function, x, &result, Policy()))
+   { // x bad.
+      return result;
+   }
+   result = scale / x;
+   if(result < tools::min_value<RealType>())
+      return 0;  // random variable is infinite or so close as to make no difference.
+   result = gamma_p_derivative(shape, result, Policy()) * scale;
+   if(0 != result)
+   {
+      if(x < 0)
+      {
+         // x * x may under or overflow, likewise our result,
+         // so be extra careful about the arithmetic:
+         RealType lim = tools::max_value<RealType>() * x;
+         if(lim < result)
+            return policies::raise_overflow_error<RealType, Policy>(function, "PDF is infinite.", Policy());
+         result /= x;
+         if(lim < result)
+            return policies::raise_overflow_error<RealType, Policy>(function, "PDF is infinite.", Policy());
+         result /= x;
+      }
+      result /= (x * x);
+   }
+   // better than naive
+   // result = (pow(scale, shape) * pow(x, (-shape -1)) * exp(-scale/x) ) / tgamma(shape);
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const inverse_gamma_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const inverse_gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_inverse_gamma(function, scale, shape, &result, Policy()))
+   { // distribution parameters bad.
+      return result;
+   }
+   if (x == 0)
+   { // Treat zero as a special case.
+     return 0;
+   }
+   else if(false == detail::check_inverse_gamma_x(function, x, &result, Policy()))
+   { // x bad
+      return result;
+   }
+   result = boost::math::gamma_q(shape, scale / x, Policy());
+   // result = tgamma(shape, scale / x) / tgamma(shape); // naive using tgamma
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const inverse_gamma_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+   using boost::math::gamma_q_inv;
+
+   static const char* function = "boost::math::quantile(const inverse_gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_inverse_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+   if(p == 1)
+   {
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+   result = gamma_q_inv(shape, p, Policy());
+   if((result < 1) && (result * tools::max_value<RealType>() < scale))
+      return policies::raise_overflow_error<RealType, Policy>(function, "Value of random variable in inverse gamma distribution quantile is infinite.", Policy());
+   result = scale / result;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<inverse_gamma_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = c.dist.shape();
+   RealType scale = c.dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_inverse_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_inverse_gamma_x(function, c.param, &result, Policy()))
+      return result;
+
+   if(c.param == 0)
+      return 1; // Avoid division by zero
+
+   //result = 1. - gamma_q(shape, c.param / scale, Policy());
+   result = gamma_p(shape, scale/c.param, Policy());
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<inverse_gamma_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const inverse_gamma_distribution<%1%>&, %1%)";
+
+   RealType shape = c.dist.shape();
+   RealType scale = c.dist.scale();
+   RealType q = c.param;
+
+   RealType result = 0;
+   if(false == detail::check_inverse_gamma(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+   if(q == 0)
+   {
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+   result = gamma_p_inv(shape, q, Policy());
+   if((result < 1) && (result * tools::max_value<RealType>() < scale))
+      return policies::raise_overflow_error<RealType, Policy>(function, "Value of random variable in inverse gamma distribution quantile is infinite.", Policy());
+   result = scale / result;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const inverse_gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::mean(const inverse_gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+     return result;
+   }
+   if((shape <= 1) || !(boost::math::isfinite)(shape))
+   {
+     result = policies::raise_domain_error<RealType>(
+       function,
+       "Shape parameter is %1%, but for a defined mean it must be > 1", shape, Policy());
+     return result;
+   }
+  result = scale / (shape - 1);
+  return result;
+} // mean
+
+template <class RealType, class Policy>
+inline RealType variance(const inverse_gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::variance(const inverse_gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+      if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+     return result;
+   }
+   if((shape <= 2) || !(boost::math::isfinite)(shape))
+   {
+     result = policies::raise_domain_error<RealType>(
+       function,
+       "Shape parameter is %1%, but for a defined variance it must be > 2", shape, Policy());
+     return result;
+   }
+   result = (scale * scale) / ((shape - 1) * (shape -1) * (shape -2));
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const inverse_gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::mode(const inverse_gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_inverse_gamma(function, scale, shape, &result, Policy()))
+   {
+      return result;
+   }
+   // Only defined for shape >= 0, but is checked by check_inverse_gamma.
+   result = scale / (shape + 1);
+   return result;
+}
+
+//template <class RealType, class Policy>
+//inline RealType median(const gamma_distribution<RealType, Policy>& dist)
+//{  // Wikipedia does not define median,
+     // so rely on default definition quantile(0.5) in derived accessors.
+//  return result.
+//}
+
+template <class RealType, class Policy>
+inline RealType skewness(const inverse_gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::skewness(const inverse_gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+   RealType result = 0;
+
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+     return result;
+   }
+   if((shape <= 3) || !(boost::math::isfinite)(shape))
+   {
+     result = policies::raise_domain_error<RealType>(
+       function,
+       "Shape parameter is %1%, but for a defined skewness it must be > 3", shape, Policy());
+     return result;
+   }
+   result = (4 * sqrt(shape - 2) ) / (shape - 3);
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const inverse_gamma_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::kurtosis_excess(const inverse_gamma_distribution<%1%>&)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+     return result;
+   }
+   if((shape <= 4) || !(boost::math::isfinite)(shape))
+   {
+     result = policies::raise_domain_error<RealType>(
+       function,
+       "Shape parameter is %1%, but for a defined kurtosis excess it must be > 4", shape, Policy());
+     return result;
+   }
+   result = (30 * shape - 66) / ((shape - 3) * (shape - 4));
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const inverse_gamma_distribution<RealType, Policy>& dist)
+{
+  static const char* function = "boost::math::kurtosis(const inverse_gamma_distribution<%1%>&)";
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+
+  if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+     return result;
+   }
+   if((shape <= 4) || !(boost::math::isfinite)(shape))
+   {
+     result = policies::raise_domain_error<RealType>(
+       function,
+       "Shape parameter is %1%, but for a defined kurtosis it must be > 4", shape, Policy());
+     return result;
+   }
+  return kurtosis_excess(dist) + 3;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_INVERSE_GAMMA_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/inverse_gaussian.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,527 @@
+//  Copyright John Maddock 2010.
+//  Copyright Paul A. Bristow 2010.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
+#define BOOST_STATS_INVERSE_GAUSSIAN_HPP
+
+#ifdef _MSC_VER
+#pragma warning(disable: 4512) // assignment operator could not be generated
+#endif
+
+// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
+// http://mathworld.wolfram.com/InverseGaussianDistribution.html
+
+// The normal-inverse Gaussian distribution
+// also called the Wald distribution (some sources limit this to when mean = 1).
+
+// It is the continuous probability distribution
+// that is defined as the normal variance-mean mixture where the mixing density is the 
+// inverse Gaussian distribution. The tails of the distribution decrease more slowly
+// than the normal distribution. It is therefore suitable to model phenomena
+// where numerically large values are more probable than is the case for the normal distribution.
+
+// The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
+// In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse 
+// relationship between the time to cover a unit distance and distance covered in unit time.
+
+// Examples are returns from financial assets and turbulent wind speeds. 
+// The normal-inverse Gaussian distributions form
+// a subclass of the generalised hyperbolic distributions.
+
+// See also
+
+// http://en.wikipedia.org/wiki/Normal_distribution
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
+// Also:
+// Weisstein, Eric W. "Normal Distribution."
+// From MathWorld--A Wolfram Web Resource.
+// http://mathworld.wolfram.com/NormalDistribution.html
+
+// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
+// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
+
+// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
+// R package for dinverse_gaussian, ...
+
+// http://www.statsci.org/s/inverse_gaussian.s  and http://www.statsci.org/s/inverse_gaussian.html
+
+//#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/normal.hpp>
+#include <boost/math/distributions/gamma.hpp> // for gamma function
+// using boost::math::gamma_p;
+
+#include <boost/math/tools/tuple.hpp>
+//using std::tr1::tuple;
+//using std::tr1::make_tuple;
+#include <boost/math/tools/roots.hpp>
+//using boost::math::tools::newton_raphson_iterate;
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+template <class RealType = double, class Policy = policies::policy<> >
+class inverse_gaussian_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1)
+      : m_mean(l_mean), m_scale(l_scale)
+   { // Default is a 1,1 inverse_gaussian distribution.
+     static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";
+
+     RealType result;
+     detail::check_scale(function, l_scale, &result, Policy());
+     detail::check_location(function, l_mean, &result, Policy());
+     detail::check_x_gt0(function, l_mean, &result, Policy());
+   }
+
+   RealType mean()const
+   { // alias for location.
+      return m_mean; // aka mu
+   }
+
+   // Synonyms, provided to allow generic use of find_location and find_scale.
+   RealType location()const
+   { // location, aka mu.
+      return m_mean;
+   }
+   RealType scale()const
+   { // scale, aka lambda.
+      return m_scale;
+   }
+
+   RealType shape()const
+   { // shape, aka phi = lambda/mu.
+      return m_scale / m_mean;
+   }
+
+private:
+   //
+   // Data members:
+   //
+   RealType m_mean;  // distribution mean or location, aka mu.
+   RealType m_scale;    // distribution standard deviation or scale, aka lambda.
+}; // class normal_distribution
+
+typedef inverse_gaussian_distribution<double> inverse_gaussian;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x, zero to max.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x, zero to max.
+  // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0.),  max_value<RealType>()); // - to + max value.
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
+{ // Probability Density Function
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType scale = dist.scale();
+   RealType mean = dist.mean();
+   RealType result = 0;
+   static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_location(function, mean, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_x_gt0(function, mean, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_positive_x(function, x, &result, Policy()))
+   {
+      return result;
+   }
+
+   if (x == 0)
+   {
+     return 0; // Convenient, even if not defined mathematically.
+   }
+
+   result =
+     sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
+    * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
+{ // Cumulative Density Function.
+   BOOST_MATH_STD_USING  // for ADL of std functions.
+
+   RealType scale = dist.scale();
+   RealType mean = dist.mean();
+   static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
+   RealType result = 0;
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_location(function, mean, &result, Policy()))
+   {
+      return result;
+   }
+   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_positive_x(function, x, &result, Policy()))
+   {
+     return result;
+   }
+   if (x == 0)
+   {
+     return 0; // Convenient, even if not defined mathematically.
+   }
+   // Problem with this formula for large scale > 1000 or small x, 
+   //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
+   //  + exp(2 * scale / mean) / 2 
+   //  * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
+   // so use normal distribution version:
+   // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.
+
+   normal_distribution<RealType> n01;
+
+   RealType n0 = sqrt(scale / x);
+   n0 *= ((x / mean) -1);
+   RealType n1 = cdf(n01, n0);
+   RealType expfactor = exp(2 * scale / mean);
+   RealType n3 = - sqrt(scale / x);
+   n3 *= (x / mean) + 1;
+   RealType n4 = cdf(n01, n3);
+   result = n1 + expfactor * n4;
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+struct inverse_gaussian_quantile_functor
+{ 
+
+  inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
+    : distribution(dist), prob(p)
+  {
+  }
+  boost::math::tuple<RealType, RealType> operator()(RealType const& x)
+  {
+    RealType c = cdf(distribution, x);
+    RealType fx = c - prob;  // Difference cdf - value - to minimize.
+    RealType dx = pdf(distribution, x); // pdf is 1st derivative.
+    // return both function evaluation difference f(x) and 1st derivative f'(x).
+    return boost::math::make_tuple(fx, dx);
+  }
+  private:
+  const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
+  RealType prob; 
+};
+
+template <class RealType, class Policy>
+struct inverse_gaussian_quantile_complement_functor
+{ 
+    inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
+    : distribution(dist), prob(p)
+  {
+  }
+  boost::math::tuple<RealType, RealType> operator()(RealType const& x)
+  {
+    RealType c = cdf(complement(distribution, x));
+    RealType fx = c - prob;  // Difference cdf - value - to minimize.
+    RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
+    // return both function evaluation difference f(x) and 1st derivative f'(x).
+    //return std::tr1::make_tuple(fx, dx); if available.
+    return boost::math::make_tuple(fx, dx);
+  }
+  private:
+  const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
+  RealType prob; 
+};
+
+namespace detail
+{
+  template <class RealType>
+  inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
+  { // guess at random variate value x for inverse gaussian quantile.
+      BOOST_MATH_STD_USING
+      using boost::math::policies::policy;
+      // Error type.
+      using boost::math::policies::overflow_error;
+      // Action.
+      using boost::math::policies::ignore_error;
+
+      typedef policy<
+        overflow_error<ignore_error> // Ignore overflow (return infinity)
+      > no_overthrow_policy;
+
+    RealType x; // result is guess at random variate value x.
+    RealType phi = lambda / mu;
+    if (phi > 2.)
+    { // Big phi, so starting to look like normal Gaussian distribution.
+      //    x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
+      // Whitmore, G.A. and Yalovsky, M.
+      // A normalising logarithmic transformation for inverse Gaussian random variables,
+      // Technometrics 20-2, 207-208 (1978), but using expression from
+      // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
+ 
+      normal_distribution<RealType, no_overthrow_policy> n01;
+      x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
+     }
+    else
+    { // phi < 2 so much less symmetrical with long tail,
+      // so use gamma distribution as an approximation.
+      using boost::math::gamma_distribution;
+
+      // Define the distribution, using gamma_nooverflow:
+      typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;
+
+      gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
+
+      // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
+      // R qgamma(0.2, 0.5, 1)  0.0320923
+      RealType qg = quantile(complement(g, p));
+      //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
+      x = lambda / (qg * 2);
+      // 
+      if (x > mu/2) // x > mu /2?
+      { // x too large for the gamma approximation to work well.
+        //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
+        RealType q = quantile(g, p);
+       // x = mu * exp(q * static_cast<RealType>(0.1));  // Said to improve at high p
+       // x = mu * x;  // Improves at high p?
+        x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
+      }
+    }
+    return x;
+  }  // guess_ig
+} // namespace detail
+
+template <class RealType, class Policy>
+inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions.
+   // No closed form exists so guess and use Newton Raphson iteration.
+
+   RealType mean = dist.mean();
+   RealType scale = dist.scale();
+   static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+   if(false == detail::check_location(function, mean, &result, Policy()))
+      return result;
+   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+   if (p == 0)
+   {
+     return 0; // Convenient, even if not defined mathematically?
+   }
+   if (p == 1)
+   { // overflow 
+      result = policies::raise_overflow_error<RealType>(function,
+        "probability parameter is 1, but must be < 1!", Policy());
+      return result; // std::numeric_limits<RealType>::infinity();
+   }
+
+  RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
+  using boost::math::tools::max_value;
+
+  RealType min = 0.; // Minimum possible value is bottom of range of distribution.
+  RealType max = max_value<RealType>();// Maximum possible value is top of range. 
+  // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
+  // digits used to control how accurate to try to make the result.
+  // To allow user to control accuracy versus speed,
+  int get_digits = policies::digits<RealType, Policy>();// get digits from policy, 
+  boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
+  using boost::math::tools::newton_raphson_iterate;
+  result =
+    newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m);
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions.
+
+   RealType scale = c.dist.scale();
+   RealType mean = c.dist.mean();
+   RealType x = c.param;
+   static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
+   // infinite arguments not supported.
+   //if((boost::math::isinf)(x))
+   //{
+   //  if(x < 0) return 1; // cdf complement -infinity is unity.
+   //  return 0; // cdf complement +infinity is zero
+   //}
+   // These produce MSVC 4127 warnings, so the above used instead.
+   //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
+   //{ // cdf complement +infinity is zero.
+   //  return 0;
+   //}
+   //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
+   //{ // cdf complement -infinity is unity.
+   //  return 1;
+   //}
+   RealType result = 0;
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+   if(false == detail::check_location(function, mean, &result, Policy()))
+      return result;
+   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
+      return result;
+   if(false == detail::check_positive_x(function, x, &result, Policy()))
+      return result;
+
+   normal_distribution<RealType> n01;
+   RealType n0 = sqrt(scale / x);
+   n0 *= ((x / mean) -1);
+   RealType cdf_1 = cdf(complement(n01, n0));
+
+   RealType expfactor = exp(2 * scale / mean);
+   RealType n3 = - sqrt(scale / x);
+   n3 *= (x / mean) + 1;
+
+   //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
+   RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
+   // RealType n4 = cdf(n01, n3); // = 
+   result = cdf_1 - expfactor * n6; 
+   return result;
+} // cdf complement
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType scale = c.dist.scale();
+   RealType mean = c.dist.mean();
+   static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
+   RealType result = 0;
+   if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+   if(false == detail::check_location(function, mean, &result, Policy()))
+      return result;
+   if (false == detail::check_x_gt0(function, mean, &result, Policy()))
+      return result;
+   RealType q = c.param;
+   if(false == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+   RealType guess = detail::guess_ig(q, mean, scale);
+   // Complement.
+   using boost::math::tools::max_value;
+
+  RealType min = 0.; // Minimum possible value is bottom of range of distribution.
+  RealType max = max_value<RealType>();// Maximum possible value is top of range. 
+  // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
+  // digits used to control how accurate to try to make the result.
+  int get_digits = policies::digits<RealType, Policy>();
+  boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
+  using boost::math::tools::newton_raphson_iterate;
+  result =
+    newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m);
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{ // aka mu
+   return dist.mean();
+}
+
+template <class RealType, class Policy>
+inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{ // aka lambda
+   return dist.scale();
+}
+
+template <class RealType, class Policy>
+inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{ // aka phi
+   return dist.shape();
+}
+
+template <class RealType, class Policy>
+inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{
+  BOOST_MATH_STD_USING
+  RealType scale = dist.scale();
+  RealType mean = dist.mean();
+  RealType result = sqrt(mean * mean * mean / scale);
+  return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{
+  BOOST_MATH_STD_USING
+  RealType scale = dist.scale();
+  RealType  mean = dist.mean();
+  RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) 
+      - 3 * mean / (2 * scale));
+  return result;
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{
+  BOOST_MATH_STD_USING
+  RealType scale = dist.scale();
+  RealType  mean = dist.mean();
+  RealType result = 3 * sqrt(mean/scale);
+  return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{
+  RealType scale = dist.scale();
+  RealType  mean = dist.mean();
+  RealType result = 15 * mean / scale -3;
+  return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
+{
+  RealType scale = dist.scale();
+  RealType  mean = dist.mean();
+  RealType result = 15 * mean / scale;
+  return result;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/laplace.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,350 @@
+//  Copyright Thijs van den Berg, 2008.
+//  Copyright John Maddock 2008.
+//  Copyright Paul A. Bristow 2008, 2014.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// This module implements the Laplace distribution.
+// Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.
+// http://mathworld.wolfram.com/LaplaceDistribution.html
+// http://en.wikipedia.org/wiki/Laplace_distribution
+//
+// Abramowitz and Stegun 1972, p 930
+// http://www.math.sfu.ca/~cbm/aands/page_930.htm
+
+#ifndef BOOST_STATS_LAPLACE_HPP
+#define BOOST_STATS_LAPLACE_HPP
+
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <limits>
+
+namespace boost{ namespace math{
+
+#ifdef BOOST_MSVC
+#  pragma warning(push)
+#  pragma warning(disable:4127) // conditional expression is constant
+#endif
+
+template <class RealType = double, class Policy = policies::policy<> >
+class laplace_distribution
+{
+public:
+   // ----------------------------------
+   // public Types
+   // ----------------------------------
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   // ----------------------------------
+   // Constructor(s)
+   // ----------------------------------
+   laplace_distribution(RealType l_location = 0, RealType l_scale = 1)
+      : m_location(l_location), m_scale(l_scale)
+   {
+      RealType result;
+      check_parameters("boost::math::laplace_distribution<%1%>::laplace_distribution()", &result);
+   }
+
+
+   // ----------------------------------
+   // Public functions
+   // ----------------------------------
+
+   RealType location() const
+   {
+      return m_location;
+   }
+
+   RealType scale() const
+   {
+      return m_scale;
+   }
+
+   bool check_parameters(const char* function, RealType* result) const
+   {
+         if(false == detail::check_scale(function, m_scale, result, Policy())) return false;
+         if(false == detail::check_location(function, m_location, result, Policy())) return false;
+         return true;
+   }
+
+private:
+   RealType m_location;
+   RealType m_scale;
+}; // class laplace_distribution
+
+//
+// Convenient type synonym for double.
+typedef laplace_distribution<double> laplace;
+
+//
+// Non-member functions.
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const laplace_distribution<RealType, Policy>&)
+{
+   if (std::numeric_limits<RealType>::has_infinity)
+  {  // Can use infinity.
+     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
+  }
+  else
+  { // Can only use max_value.
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
+  }
+
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const laplace_distribution<RealType, Policy>&)
+{
+  if (std::numeric_limits<RealType>::has_infinity)
+  { // Can Use infinity.
+     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
+  }
+  else
+  { // Can only use max_value.
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
+  }
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   // Checking function argument
+   RealType result = 0;
+   const char* function = "boost::math::pdf(const laplace_distribution<%1%>&, %1%))";
+
+   // Check scale and location.
+   if (false == dist.check_parameters(function, &result)) return result;
+   // Special pdf values.
+   if((boost::math::isinf)(x))
+   {
+      return 0; // pdf + and - infinity is zero.
+   }
+   if (false == detail::check_x(function, x, &result, Policy())) return result;
+
+   // General case
+   RealType scale( dist.scale() );
+   RealType location( dist.location() );
+
+   RealType exponent = x - location;
+   if (exponent>0) exponent = -exponent;
+   exponent /= scale;
+
+   result = exp(exponent);
+   result /= 2 * scale;
+
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // For ADL of std functions.
+
+   RealType result = 0;
+   // Checking function argument.
+   const char* function = "boost::math::cdf(const laplace_distribution<%1%>&, %1%)";
+   // Check scale and location.
+   if (false == dist.check_parameters(function, &result)) return result;
+
+   // Special cdf values:
+   if((boost::math::isinf)(x))
+   {
+     if(x < 0) return 0; // -infinity.
+     return 1; // + infinity.
+   }
+   if (false == detail::check_x(function, x, &result, Policy())) return result;
+
+   // General cdf  values
+   RealType scale( dist.scale() );
+   RealType location( dist.location() );
+
+   if (x < location)
+   {
+      result = exp( (x-location)/scale )/2;
+   }
+   else
+   {
+      result = 1 - exp( (location-x)/scale )/2;
+   }
+   return result;
+} // cdf
+
+
+template <class RealType, class Policy>
+inline RealType quantile(const laplace_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions.
+
+   // Checking function argument
+   RealType result = 0;
+   const char* function = "boost::math::quantile(const laplace_distribution<%1%>&, %1%)";
+   if (false == dist.check_parameters(function, &result)) return result;
+   if(false == detail::check_probability(function, p, &result, Policy())) return result;
+
+   // Extreme values of p:
+   if(p == 0)
+   {
+      result = policies::raise_overflow_error<RealType>(function,
+        "probability parameter is 0, but must be > 0!", Policy());
+      return -result; // -std::numeric_limits<RealType>::infinity();
+   }
+  
+   if(p == 1)
+   {
+      result = policies::raise_overflow_error<RealType>(function,
+        "probability parameter is 1, but must be < 1!", Policy());
+      return result; // std::numeric_limits<RealType>::infinity();
+   }
+   // Calculate Quantile
+   RealType scale( dist.scale() );
+   RealType location( dist.location() );
+
+   if (p - 0.5 < 0.0)
+      result = location + scale*log( static_cast<RealType>(p*2) );
+   else
+      result = location - scale*log( static_cast<RealType>(-p*2 + 2) );
+
+   return result;
+} // quantile
+
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
+{
+   // Calculate complement of cdf.
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   RealType scale = c.dist.scale();
+   RealType location = c.dist.location();
+   RealType x = c.param;
+   RealType result = 0;
+
+   // Checking function argument.
+   const char* function = "boost::math::cdf(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
+
+   // Check scale and location.
+   //if(false == detail::check_scale(function, scale, result, Policy())) return false;
+   //if(false == detail::check_location(function, location, result, Policy())) return false;
+    if (false == c.dist.check_parameters(function, &result)) return result;
+
+   // Special cdf values.
+   if((boost::math::isinf)(x))
+   {
+     if(x < 0) return 1; // cdf complement -infinity is unity.
+     return 0; // cdf complement +infinity is zero.
+   }
+   if(false == detail::check_x(function, x, &result, Policy()))return result;
+
+   // Cdf interval value.
+   if (-x < -location)
+   {
+      result = exp( (-x+location)/scale )/2;
+   }
+   else
+   {
+      result = 1 - exp( (-location+x)/scale )/2;
+   }
+   return result;
+} // cdf complement
+
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions.
+
+   // Calculate quantile.
+   RealType scale = c.dist.scale();
+   RealType location = c.dist.location();
+   RealType q = c.param;
+   RealType result = 0;
+
+   // Checking function argument.
+   const char* function = "quantile(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
+   if (false == c.dist.check_parameters(function, &result)) return result;
+   
+   // Extreme values.
+   if(q == 0)
+   {
+       return std::numeric_limits<RealType>::infinity();
+   }
+   if(q == 1)
+   {
+       return -std::numeric_limits<RealType>::infinity();
+   }
+   if(false == detail::check_probability(function, q, &result, Policy())) return result;
+
+   if (0.5 - q < 0.0)
+      result = location + scale*log( static_cast<RealType>(-q*2 + 2) );
+   else
+      result = location - scale*log( static_cast<RealType>(q*2) );
+
+
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType mean(const laplace_distribution<RealType, Policy>& dist)
+{
+   return dist.location();
+}
+
+template <class RealType, class Policy>
+inline RealType standard_deviation(const laplace_distribution<RealType, Policy>& dist)
+{
+   return constants::root_two<RealType>() * dist.scale();
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const laplace_distribution<RealType, Policy>& dist)
+{
+   return dist.location();
+}
+
+template <class RealType, class Policy>
+inline RealType median(const laplace_distribution<RealType, Policy>& dist)
+{
+   return dist.location();
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const laplace_distribution<RealType, Policy>& /*dist*/)
+{
+   return 0;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const laplace_distribution<RealType, Policy>& /*dist*/)
+{
+   return 6;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const laplace_distribution<RealType, Policy>& /*dist*/)
+{
+   return 3;
+}
+
+#ifdef BOOST_MSVC
+#  pragma warning(pop)
+#endif
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_LAPLACE_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/logistic.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,299 @@
+// Copyright 2008 Gautam Sewani
+//
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_DISTRIBUTIONS_LOGISTIC
+#define BOOST_MATH_DISTRIBUTIONS_LOGISTIC
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/special_functions/log1p.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <utility>
+
+namespace boost { namespace math { 
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class logistic_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+      
+      logistic_distribution(RealType l_location=0, RealType l_scale=1) // Constructor.
+        : m_location(l_location), m_scale(l_scale) 
+      {
+        static const char* function = "boost::math::logistic_distribution<%1%>::logistic_distribution";
+        
+        RealType result;
+        detail::check_scale(function, l_scale, &result, Policy());
+        detail::check_location(function, l_location, &result, Policy());
+      }
+      // Accessor functions.
+      RealType scale()const
+      {
+        return m_scale;
+      }
+      
+      RealType location()const
+      {
+        return m_location;
+      }
+    private:
+      // Data members:
+      RealType m_location;  // distribution location aka mu.
+      RealType m_scale;  // distribution scale aka s.
+    }; // class logistic_distribution
+    
+    
+    typedef logistic_distribution<double> logistic;
+    
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const logistic_distribution<RealType, Policy>& /* dist */)
+    { // Range of permissible values for random variable x.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(
+         std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(), 
+         std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());
+    }
+    
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const logistic_distribution<RealType, Policy>& /* dist */)
+    { // Range of supported values for random variable x.
+      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + infinity
+    }
+     
+    template <class RealType, class Policy>
+    inline RealType pdf(const logistic_distribution<RealType, Policy>& dist, const RealType& x)
+    {
+       static const char* function = "boost::math::pdf(const logistic_distribution<%1%>&, %1%)";
+       RealType scale = dist.scale();
+       RealType location = dist.location();
+       RealType result = 0;
+
+       if(false == detail::check_scale(function, scale , &result, Policy()))
+       {
+          return result;
+       }
+       if(false == detail::check_location(function, location, &result, Policy()))
+       {
+          return result;
+       }
+
+       if((boost::math::isinf)(x))
+       {
+          return 0; // pdf + and - infinity is zero.
+       }
+
+       if(false == detail::check_x(function, x, &result, Policy()))
+       {
+          return result;
+       }
+
+       BOOST_MATH_STD_USING
+       RealType exp_term = (location - x) / scale;
+       if(fabs(exp_term) > tools::log_max_value<RealType>())
+          return 0;
+       exp_term = exp(exp_term);
+       if((exp_term * scale > 1) && (exp_term > tools::max_value<RealType>() / (scale * exp_term)))
+          return 1 / (scale * exp_term);
+       return (exp_term) / (scale * (1 + exp_term) * (1 + exp_term));
+    } 
+    
+    template <class RealType, class Policy>
+    inline RealType cdf(const logistic_distribution<RealType, Policy>& dist, const RealType& x)
+    {
+       RealType scale = dist.scale();
+       RealType location = dist.location();
+       RealType result = 0; // of checks.
+       static const char* function = "boost::math::cdf(const logistic_distribution<%1%>&, %1%)";
+       if(false == detail::check_scale(function, scale, &result, Policy()))
+       {
+          return result;
+       }
+       if(false == detail::check_location(function, location, &result, Policy()))
+       {
+          return result;
+       }
+
+       if((boost::math::isinf)(x))
+       {
+          if(x < 0) return 0; // -infinity
+          return 1; // + infinity
+       }
+
+       if(false == detail::check_x(function, x, &result, Policy()))
+       {
+          return result;
+       }
+       BOOST_MATH_STD_USING
+       RealType power = (location - x) / scale;
+       if(power > tools::log_max_value<RealType>())
+          return 0;
+       if(power < -tools::log_max_value<RealType>())
+          return 1;
+       return 1 / (1 + exp(power)); 
+    } 
+    
+    template <class RealType, class Policy>
+    inline RealType quantile(const logistic_distribution<RealType, Policy>& dist, const RealType& p)
+    {
+       BOOST_MATH_STD_USING
+       RealType location = dist.location();
+       RealType scale = dist.scale();
+
+       static const char* function = "boost::math::quantile(const logistic_distribution<%1%>&, %1%)";
+
+       RealType result = 0;
+       if(false == detail::check_scale(function, scale, &result, Policy()))
+          return result;
+       if(false == detail::check_location(function, location, &result, Policy()))
+          return result;
+       if(false == detail::check_probability(function, p, &result, Policy()))
+          return result;
+
+       if(p == 0)
+       {
+          return -policies::raise_overflow_error<RealType>(function,"probability argument is 0, must be >0 and <1",Policy());
+       }
+       if(p == 1)
+       {
+          return policies::raise_overflow_error<RealType>(function,"probability argument is 1, must be >0 and <1",Policy());
+       }
+       //Expressions to try
+       //return location+scale*log(p/(1-p));
+       //return location+scale*log1p((2*p-1)/(1-p));
+
+       //return location - scale*log( (1-p)/p);
+       //return location - scale*log1p((1-2*p)/p);
+
+       //return -scale*log(1/p-1) + location;
+       return location - scale * log((1 - p) / p);
+     } // RealType quantile(const logistic_distribution<RealType, Policy>& dist, const RealType& p)
+    
+    template <class RealType, class Policy>
+    inline RealType cdf(const complemented2_type<logistic_distribution<RealType, Policy>, RealType>& c)
+    {
+       BOOST_MATH_STD_USING
+       RealType location = c.dist.location();
+       RealType scale = c.dist.scale();
+       RealType x = c.param;
+       static const char* function = "boost::math::cdf(const complement(logistic_distribution<%1%>&), %1%)";
+
+       RealType result = 0;
+       if(false == detail::check_scale(function, scale, &result, Policy()))
+       {
+          return result;
+       }
+       if(false == detail::check_location(function, location, &result, Policy()))
+       {
+          return result;
+       }
+       if((boost::math::isinf)(x))
+       {
+          if(x < 0) return 1; // cdf complement -infinity is unity.
+          return 0; // cdf complement +infinity is zero.
+       }
+       if(false == detail::check_x(function, x, &result, Policy()))
+       {
+          return result;
+       }
+       RealType power = (x - location) / scale;
+       if(power > tools::log_max_value<RealType>())
+          return 0;
+       if(power < -tools::log_max_value<RealType>())
+          return 1;
+       return 1 / (1 + exp(power)); 
+    } 
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<logistic_distribution<RealType, Policy>, RealType>& c)
+    {
+       BOOST_MATH_STD_USING
+       RealType scale = c.dist.scale();
+       RealType location = c.dist.location();
+       static const char* function = "boost::math::quantile(const complement(logistic_distribution<%1%>&), %1%)";
+       RealType result = 0;
+       if(false == detail::check_scale(function, scale, &result, Policy()))
+          return result;
+       if(false == detail::check_location(function, location, &result, Policy()))
+          return result;
+       RealType q = c.param;
+       if(false == detail::check_probability(function, q, &result, Policy()))
+          return result;
+       using boost::math::tools::max_value;
+
+       if(q == 1)
+       {
+          return -policies::raise_overflow_error<RealType>(function,"probability argument is 1, but must be >0 and <1",Policy());
+       }
+       if(q == 0)
+       {
+          return policies::raise_overflow_error<RealType>(function,"probability argument is 0, but must be >0 and <1",Policy());
+       }
+       //Expressions to try 
+       //return location+scale*log((1-q)/q);
+       return location + scale * log((1 - q) / q);
+
+       //return location-scale*log(q/(1-q));
+       //return location-scale*log1p((2*q-1)/(1-q));
+
+       //return location+scale*log(1/q-1);
+       //return location+scale*log1p(1/q-2);
+    } 
+    
+    template <class RealType, class Policy>
+    inline RealType mean(const logistic_distribution<RealType, Policy>& dist)
+    {
+      return dist.location();
+    } // RealType mean(const logistic_distribution<RealType, Policy>& dist)
+    
+    template <class RealType, class Policy>
+    inline RealType variance(const logistic_distribution<RealType, Policy>& dist)
+    {
+      BOOST_MATH_STD_USING
+      RealType scale = dist.scale();
+      return boost::math::constants::pi<RealType>()*boost::math::constants::pi<RealType>()*scale*scale/3;
+    } // RealType variance(const logistic_distribution<RealType, Policy>& dist)
+    
+    template <class RealType, class Policy>
+    inline RealType mode(const logistic_distribution<RealType, Policy>& dist)
+    {
+      return dist.location();
+    }
+    
+    template <class RealType, class Policy>
+    inline RealType median(const logistic_distribution<RealType, Policy>& dist)
+    {
+      return dist.location();
+    }
+    template <class RealType, class Policy>
+    inline RealType skewness(const logistic_distribution<RealType, Policy>& /*dist*/)
+    {
+      return 0;
+    } // RealType skewness(const logistic_distribution<RealType, Policy>& dist)
+    
+    template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const logistic_distribution<RealType, Policy>& /*dist*/)
+    {
+      return static_cast<RealType>(6)/5; 
+    } // RealType kurtosis_excess(const logistic_distribution<RealType, Policy>& dist)
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const logistic_distribution<RealType, Policy>& dist)
+    {
+      return kurtosis_excess(dist) + 3;
+    } // RealType kurtosis_excess(const logistic_distribution<RealType, Policy>& dist)
+  }}
+
+
+// Must come at the end:
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_DISTRIBUTIONS_LOGISTIC
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/lognormal.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,341 @@
+//  Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_LOGNORMAL_HPP
+#define BOOST_STATS_LOGNORMAL_HPP
+
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
+// http://mathworld.wolfram.com/LogNormalDistribution.html
+// http://en.wikipedia.org/wiki/Lognormal_distribution
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/distributions/normal.hpp>
+#include <boost/math/special_functions/expm1.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+namespace detail
+{
+
+  template <class RealType, class Policy>
+  inline bool check_lognormal_x(
+        const char* function,
+        RealType const& x,
+        RealType* result, const Policy& pol)
+  {
+     if((x < 0) || !(boost::math::isfinite)(x))
+     {
+        *result = policies::raise_domain_error<RealType>(
+           function,
+           "Random variate is %1% but must be >= 0 !", x, pol);
+        return false;
+     }
+     return true;
+  }
+
+} // namespace detail
+
+
+template <class RealType = double, class Policy = policies::policy<> >
+class lognormal_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   lognormal_distribution(RealType l_location = 0, RealType l_scale = 1)
+      : m_location(l_location), m_scale(l_scale)
+   {
+      RealType result;
+      detail::check_scale("boost::math::lognormal_distribution<%1%>::lognormal_distribution", l_scale, &result, Policy());
+      detail::check_location("boost::math::lognormal_distribution<%1%>::lognormal_distribution", l_location, &result, Policy());
+   }
+
+   RealType location()const
+   {
+      return m_location;
+   }
+
+   RealType scale()const
+   {
+      return m_scale;
+   }
+private:
+   //
+   // Data members:
+   //
+   RealType m_location;  // distribution location.
+   RealType m_scale;     // distribution scale.
+};
+
+typedef lognormal_distribution<double> lognormal;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const lognormal_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x is >0 to +infinity.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const lognormal_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+RealType pdf(const lognormal_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType mu = dist.location();
+   RealType sigma = dist.scale();
+
+   static const char* function = "boost::math::pdf(const lognormal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(0 == detail::check_scale(function, sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location(function, mu, &result, Policy()))
+      return result;
+   if(0 == detail::check_lognormal_x(function, x, &result, Policy()))
+      return result;
+
+   if(x == 0)
+      return 0;
+
+   RealType exponent = log(x) - mu;
+   exponent *= -exponent;
+   exponent /= 2 * sigma * sigma;
+
+   result = exp(exponent);
+   result /= sigma * sqrt(2 * constants::pi<RealType>()) * x;
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType cdf(const lognormal_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const lognormal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(0 == detail::check_scale(function, dist.scale(), &result, Policy()))
+      return result;
+   if(0 == detail::check_location(function, dist.location(), &result, Policy()))
+      return result;
+   if(0 == detail::check_lognormal_x(function, x, &result, Policy()))
+      return result;
+
+   if(x == 0)
+      return 0;
+
+   normal_distribution<RealType, Policy> norm(dist.location(), dist.scale());
+   return cdf(norm, log(x));
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const lognormal_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const lognormal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(0 == detail::check_scale(function, dist.scale(), &result, Policy()))
+      return result;
+   if(0 == detail::check_location(function, dist.location(), &result, Policy()))
+      return result;
+   if(0 == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   if(p == 0)
+      return 0;
+   if(p == 1)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   normal_distribution<RealType, Policy> norm(dist.location(), dist.scale());
+   return exp(quantile(norm, p));
+}
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<lognormal_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const lognormal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(0 == detail::check_scale(function, c.dist.scale(), &result, Policy()))
+      return result;
+   if(0 == detail::check_location(function, c.dist.location(), &result, Policy()))
+      return result;
+   if(0 == detail::check_lognormal_x(function, c.param, &result, Policy()))
+      return result;
+
+   if(c.param == 0)
+      return 1;
+
+   normal_distribution<RealType, Policy> norm(c.dist.location(), c.dist.scale());
+   return cdf(complement(norm, log(c.param)));
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<lognormal_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const lognormal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(0 == detail::check_scale(function, c.dist.scale(), &result, Policy()))
+      return result;
+   if(0 == detail::check_location(function, c.dist.location(), &result, Policy()))
+      return result;
+   if(0 == detail::check_probability(function, c.param, &result, Policy()))
+      return result;
+
+   if(c.param == 1)
+      return 0;
+   if(c.param == 0)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   normal_distribution<RealType, Policy> norm(c.dist.location(), c.dist.scale());
+   return exp(quantile(complement(norm, c.param)));
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType mu = dist.location();
+   RealType sigma = dist.scale();
+
+   RealType result = 0;
+   if(0 == detail::check_scale("boost::math::mean(const lognormal_distribution<%1%>&)", sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location("boost::math::mean(const lognormal_distribution<%1%>&)", mu, &result, Policy()))
+      return result;
+
+   return exp(mu + sigma * sigma / 2);
+}
+
+template <class RealType, class Policy>
+inline RealType variance(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType mu = dist.location();
+   RealType sigma = dist.scale();
+
+   RealType result = 0;
+   if(0 == detail::check_scale("boost::math::variance(const lognormal_distribution<%1%>&)", sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location("boost::math::variance(const lognormal_distribution<%1%>&)", mu, &result, Policy()))
+      return result;
+
+   return boost::math::expm1(sigma * sigma, Policy()) * exp(2 * mu + sigma * sigma);
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType mu = dist.location();
+   RealType sigma = dist.scale();
+
+   RealType result = 0;
+   if(0 == detail::check_scale("boost::math::mode(const lognormal_distribution<%1%>&)", sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location("boost::math::mode(const lognormal_distribution<%1%>&)", mu, &result, Policy()))
+      return result;
+
+   return exp(mu - sigma * sigma);
+}
+
+template <class RealType, class Policy>
+inline RealType median(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+   RealType mu = dist.location();
+   return exp(mu); // e^mu
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   //RealType mu = dist.location();
+   RealType sigma = dist.scale();
+
+   RealType ss = sigma * sigma;
+   RealType ess = exp(ss);
+
+   RealType result = 0;
+   if(0 == detail::check_scale("boost::math::skewness(const lognormal_distribution<%1%>&)", sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location("boost::math::skewness(const lognormal_distribution<%1%>&)", dist.location(), &result, Policy()))
+      return result;
+
+   return (ess + 2) * sqrt(boost::math::expm1(ss, Policy()));
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   //RealType mu = dist.location();
+   RealType sigma = dist.scale();
+   RealType ss = sigma * sigma;
+
+   RealType result = 0;
+   if(0 == detail::check_scale("boost::math::kurtosis(const lognormal_distribution<%1%>&)", sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location("boost::math::kurtosis(const lognormal_distribution<%1%>&)", dist.location(), &result, Policy()))
+      return result;
+
+   return exp(4 * ss) + 2 * exp(3 * ss) + 3 * exp(2 * ss) - 3;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const lognormal_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   // RealType mu = dist.location();
+   RealType sigma = dist.scale();
+   RealType ss = sigma * sigma;
+
+   RealType result = 0;
+   if(0 == detail::check_scale("boost::math::kurtosis_excess(const lognormal_distribution<%1%>&)", sigma, &result, Policy()))
+      return result;
+   if(0 == detail::check_location("boost::math::kurtosis_excess(const lognormal_distribution<%1%>&)", dist.location(), &result, Policy()))
+      return result;
+
+   return exp(4 * ss) + 2 * exp(3 * ss) + 3 * exp(2 * ss) - 6;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_STUDENTS_T_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/negative_binomial.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,607 @@
+// boost\math\special_functions\negative_binomial.hpp
+
+// Copyright Paul A. Bristow 2007.
+// Copyright John Maddock 2007.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// http://en.wikipedia.org/wiki/negative_binomial_distribution
+// http://mathworld.wolfram.com/NegativeBinomialDistribution.html
+// http://documents.wolfram.com/teachersedition/Teacher/Statistics/DiscreteDistributions.html
+
+// The negative binomial distribution NegativeBinomialDistribution[n, p]
+// is the distribution of the number (k) of failures that occur in a sequence of trials before
+// r successes have occurred, where the probability of success in each trial is p.
+
+// In a sequence of Bernoulli trials or events
+// (independent, yes or no, succeed or fail) with success_fraction probability p,
+// negative_binomial is the probability that k or fewer failures
+// preceed the r th trial's success.
+// random variable k is the number of failures (NOT the probability).
+
+// Negative_binomial distribution is a discrete probability distribution.
+// But note that the negative binomial distribution
+// (like others including the binomial, Poisson & Bernoulli)
+// is strictly defined as a discrete function: only integral values of k are envisaged.
+// However because of the method of calculation using a continuous gamma function,
+// it is convenient to treat it as if a continous function,
+// and permit non-integral values of k.
+
+// However, by default the policy is to use discrete_quantile_policy.
+
+// To enforce the strict mathematical model, users should use conversion
+// on k outside this function to ensure that k is integral.
+
+// MATHCAD cumulative negative binomial pnbinom(k, n, p)
+
+// Implementation note: much greater speed, and perhaps greater accuracy,
+// might be achieved for extreme values by using a normal approximation.
+// This is NOT been tested or implemented.
+
+#ifndef BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
+#define BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
+#include <boost/math/distributions/complement.hpp> // complement.
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
+
+#include <boost/type_traits/is_floating_point.hpp>
+#include <boost/type_traits/is_integral.hpp>
+#include <boost/type_traits/is_same.hpp>
+#include <boost/mpl/if.hpp>
+
+#include <limits> // using std::numeric_limits;
+#include <utility>
+
+#if defined (BOOST_MSVC)
+#  pragma warning(push)
+// This believed not now necessary, so commented out.
+//#  pragma warning(disable: 4702) // unreachable code.
+// in domain_error_imp in error_handling.
+#endif
+
+namespace boost
+{
+  namespace math
+  {
+    namespace negative_binomial_detail
+    {
+      // Common error checking routines for negative binomial distribution functions:
+      template <class RealType, class Policy>
+      inline bool check_successes(const char* function, const RealType& r, RealType* result, const Policy& pol)
+      {
+        if( !(boost::math::isfinite)(r) || (r <= 0) )
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Number of successes argument is %1%, but must be > 0 !", r, pol);
+          return false;
+        }
+        return true;
+      }
+      template <class RealType, class Policy>
+      inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
+      {
+        if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
+          return false;
+        }
+        return true;
+      }
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& r, const RealType& p, RealType* result, const Policy& pol)
+      {
+        return check_success_fraction(function, p, result, pol)
+          && check_successes(function, r, result, pol);
+      }
+      template <class RealType, class Policy>
+      inline bool check_dist_and_k(const char* function, const RealType& r, const RealType& p, RealType k, RealType* result, const Policy& pol)
+      {
+        if(check_dist(function, r, p, result, pol) == false)
+        {
+          return false;
+        }
+        if( !(boost::math::isfinite)(k) || (k < 0) )
+        { // Check k failures.
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Number of failures argument is %1%, but must be >= 0 !", k, pol);
+          return false;
+        }
+        return true;
+      } // Check_dist_and_k
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_prob(const char* function, const RealType& r, RealType p, RealType prob, RealType* result, const Policy& pol)
+      {
+        if((check_dist(function, r, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
+        {
+          return false;
+        }
+        return true;
+      } // check_dist_and_prob
+    } //  namespace negative_binomial_detail
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class negative_binomial_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      negative_binomial_distribution(RealType r, RealType p) : m_r(r), m_p(p)
+      { // Constructor.
+        RealType result;
+        negative_binomial_detail::check_dist(
+          "negative_binomial_distribution<%1%>::negative_binomial_distribution",
+          m_r, // Check successes r > 0.
+          m_p, // Check success_fraction 0 <= p <= 1.
+          &result, Policy());
+      } // negative_binomial_distribution constructor.
+
+      // Private data getter class member functions.
+      RealType success_fraction() const
+      { // Probability of success as fraction in range 0 to 1.
+        return m_p;
+      }
+      RealType successes() const
+      { // Total number of successes r.
+        return m_r;
+      }
+
+      static RealType find_lower_bound_on_p(
+        RealType trials,
+        RealType successes,
+        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
+      {
+        static const char* function = "boost::math::negative_binomial<%1%>::find_lower_bound_on_p";
+        RealType result = 0;  // of error checks.
+        RealType failures = trials - successes;
+        if(false == detail::check_probability(function, alpha, &result, Policy())
+          && negative_binomial_detail::check_dist_and_k(
+          function, successes, RealType(0), failures, &result, Policy()))
+        {
+          return result;
+        }
+        // Use complement ibeta_inv function for lower bound.
+        // This is adapted from the corresponding binomial formula
+        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
+        // This is a Clopper-Pearson interval, and may be overly conservative,
+        // see also "A Simple Improved Inferential Method for Some
+        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
+        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
+        //
+        return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
+      } // find_lower_bound_on_p
+
+      static RealType find_upper_bound_on_p(
+        RealType trials,
+        RealType successes,
+        RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
+      {
+        static const char* function = "boost::math::negative_binomial<%1%>::find_upper_bound_on_p";
+        RealType result = 0;  // of error checks.
+        RealType failures = trials - successes;
+        if(false == negative_binomial_detail::check_dist_and_k(
+          function, successes, RealType(0), failures, &result, Policy())
+          && detail::check_probability(function, alpha, &result, Policy()))
+        {
+          return result;
+        }
+        if(failures == 0)
+           return 1;
+        // Use complement ibetac_inv function for upper bound.
+        // Note adjusted failures value: *not* failures+1 as usual.
+        // This is adapted from the corresponding binomial formula
+        // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
+        // This is a Clopper-Pearson interval, and may be overly conservative,
+        // see also "A Simple Improved Inferential Method for Some
+        // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
+        // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
+        //
+        return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
+      } // find_upper_bound_on_p
+
+      // Estimate number of trials :
+      // "How many trials do I need to be P% sure of seeing k or fewer failures?"
+
+      static RealType find_minimum_number_of_trials(
+        RealType k,     // number of failures (k >= 0).
+        RealType p,     // success fraction 0 <= p <= 1.
+        RealType alpha) // risk level threshold 0 <= alpha <= 1.
+      {
+        static const char* function = "boost::math::negative_binomial<%1%>::find_minimum_number_of_trials";
+        // Error checks:
+        RealType result = 0;
+        if(false == negative_binomial_detail::check_dist_and_k(
+          function, RealType(1), p, k, &result, Policy())
+          && detail::check_probability(function, alpha, &result, Policy()))
+        { return result; }
+
+        result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
+        return result + k;
+      } // RealType find_number_of_failures
+
+      static RealType find_maximum_number_of_trials(
+        RealType k,     // number of failures (k >= 0).
+        RealType p,     // success fraction 0 <= p <= 1.
+        RealType alpha) // risk level threshold 0 <= alpha <= 1.
+      {
+        static const char* function = "boost::math::negative_binomial<%1%>::find_maximum_number_of_trials";
+        // Error checks:
+        RealType result = 0;
+        if(false == negative_binomial_detail::check_dist_and_k(
+          function, RealType(1), p, k, &result, Policy())
+          &&  detail::check_probability(function, alpha, &result, Policy()))
+        { return result; }
+
+        result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
+        return result + k;
+      } // RealType find_number_of_trials complemented
+
+    private:
+      RealType m_r; // successes.
+      RealType m_p; // success_fraction
+    }; // template <class RealType, class Policy> class negative_binomial_distribution
+
+    typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const negative_binomial_distribution<RealType, Policy>& /* dist */)
+    { // Range of permissible values for random variable k.
+       using boost::math::tools::max_value;
+       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
+    }
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const negative_binomial_distribution<RealType, Policy>& /* dist */)
+    { // Range of supported values for random variable k.
+       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+       using boost::math::tools::max_value;
+       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
+    }
+
+    template <class RealType, class Policy>
+    inline RealType mean(const negative_binomial_distribution<RealType, Policy>& dist)
+    { // Mean of Negative Binomial distribution = r(1-p)/p.
+      return dist.successes() * (1 - dist.success_fraction() ) / dist.success_fraction();
+    } // mean
+
+    //template <class RealType, class Policy>
+    //inline RealType median(const negative_binomial_distribution<RealType, Policy>& dist)
+    //{ // Median of negative_binomial_distribution is not defined.
+    //  return policies::raise_domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
+    //} // median
+    // Now implemented via quantile(half) in derived accessors.
+
+    template <class RealType, class Policy>
+    inline RealType mode(const negative_binomial_distribution<RealType, Policy>& dist)
+    { // Mode of Negative Binomial distribution = floor[(r-1) * (1 - p)/p]
+      BOOST_MATH_STD_USING // ADL of std functions.
+      return floor((dist.successes() -1) * (1 - dist.success_fraction()) / dist.success_fraction());
+    } // mode
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const negative_binomial_distribution<RealType, Policy>& dist)
+    { // skewness of Negative Binomial distribution = 2-p / (sqrt(r(1-p))
+      BOOST_MATH_STD_USING // ADL of std functions.
+      RealType p = dist.success_fraction();
+      RealType r = dist.successes();
+
+      return (2 - p) /
+        sqrt(r * (1 - p));
+    } // skewness
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const negative_binomial_distribution<RealType, Policy>& dist)
+    { // kurtosis of Negative Binomial distribution
+      // http://en.wikipedia.org/wiki/Negative_binomial is kurtosis_excess so add 3
+      RealType p = dist.success_fraction();
+      RealType r = dist.successes();
+      return 3 + (6 / r) + ((p * p) / (r * (1 - p)));
+    } // kurtosis
+
+     template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const negative_binomial_distribution<RealType, Policy>& dist)
+    { // kurtosis excess of Negative Binomial distribution
+      // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
+      RealType p = dist.success_fraction();
+      RealType r = dist.successes();
+      return (6 - p * (6-p)) / (r * (1-p));
+    } // kurtosis_excess
+
+    template <class RealType, class Policy>
+    inline RealType variance(const negative_binomial_distribution<RealType, Policy>& dist)
+    { // Variance of Binomial distribution = r (1-p) / p^2.
+      return  dist.successes() * (1 - dist.success_fraction())
+        / (dist.success_fraction() * dist.success_fraction());
+    } // variance
+
+    // RealType standard_deviation(const negative_binomial_distribution<RealType, Policy>& dist)
+    // standard_deviation provided by derived accessors.
+    // RealType hazard(const negative_binomial_distribution<RealType, Policy>& dist)
+    // hazard of Negative Binomial distribution provided by derived accessors.
+    // RealType chf(const negative_binomial_distribution<RealType, Policy>& dist)
+    // chf of Negative Binomial distribution provided by derived accessors.
+
+    template <class RealType, class Policy>
+    inline RealType pdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Probability Density/Mass Function.
+      BOOST_FPU_EXCEPTION_GUARD
+
+      static const char* function = "boost::math::pdf(const negative_binomial_distribution<%1%>&, %1%)";
+
+      RealType r = dist.successes();
+      RealType p = dist.success_fraction();
+      RealType result = 0;
+      if(false == negative_binomial_detail::check_dist_and_k(
+        function,
+        r,
+        dist.success_fraction(),
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+
+      result = (p/(r + k)) * ibeta_derivative(r, static_cast<RealType>(k+1), p, Policy());
+      // Equivalent to:
+      // return exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p, r) * pow((1-p), k);
+      return result;
+    } // negative_binomial_pdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Cumulative Distribution Function of Negative Binomial.
+      static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
+      using boost::math::ibeta; // Regularized incomplete beta function.
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // If necessary, it has already been promoted from an integral type.
+      RealType p = dist.success_fraction();
+      RealType r = dist.successes();
+      // Error check:
+      RealType result = 0;
+      if(false == negative_binomial_detail::check_dist_and_k(
+        function,
+        r,
+        dist.success_fraction(),
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+
+      RealType probability = ibeta(r, static_cast<RealType>(k+1), p, Policy());
+      // Ip(r, k+1) = ibeta(r, k+1, p)
+      return probability;
+    } // cdf Cumulative Distribution Function Negative Binomial.
+
+      template <class RealType, class Policy>
+      inline RealType cdf(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function Negative Binomial.
+
+      static const char* function = "boost::math::cdf(const negative_binomial_distribution<%1%>&, %1%)";
+      using boost::math::ibetac; // Regularized incomplete beta function complement.
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // If necessary, it has already been promoted from an integral type.
+      RealType const& k = c.param;
+      negative_binomial_distribution<RealType, Policy> const& dist = c.dist;
+      RealType p = dist.success_fraction();
+      RealType r = dist.successes();
+      // Error check:
+      RealType result = 0;
+      if(false == negative_binomial_detail::check_dist_and_k(
+        function,
+        r,
+        p,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Calculate cdf negative binomial using the incomplete beta function.
+      // Use of ibeta here prevents cancellation errors in calculating
+      // 1-p if p is very small, perhaps smaller than machine epsilon.
+      // Ip(k+1, r) = ibetac(r, k+1, p)
+      // constrain_probability here?
+     RealType probability = ibetac(r, static_cast<RealType>(k+1), p, Policy());
+      // Numerical errors might cause probability to be slightly outside the range < 0 or > 1.
+      // This might cause trouble downstream, so warn, possibly throw exception, but constrain to the limits.
+      return probability;
+    } // cdf Cumulative Distribution Function Negative Binomial.
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const negative_binomial_distribution<RealType, Policy>& dist, const RealType& P)
+    { // Quantile, percentile/100 or Percent Point Negative Binomial function.
+      // Return the number of expected failures k for a given probability p.
+
+      // Inverse cumulative Distribution Function or Quantile (percentile / 100) of negative_binomial Probability.
+      // MAthCAD pnbinom return smallest k such that negative_binomial(k, n, p) >= probability.
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // BUT Cephes/CodeCogs says: finds argument p (0 to 1) such that cdf(k, n, p) = y
+      static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
+      BOOST_MATH_STD_USING // ADL of std functions.
+
+      RealType p = dist.success_fraction();
+      RealType r = dist.successes();
+      // Check dist and P.
+      RealType result = 0;
+      if(false == negative_binomial_detail::check_dist_and_prob
+        (function, r, p, P, &result, Policy()))
+      {
+        return result;
+      }
+
+      // Special cases.
+      if (P == 1)
+      {  // Would need +infinity failures for total confidence.
+        result = policies::raise_overflow_error<RealType>(
+            function,
+            "Probability argument is 1, which implies infinite failures !", Policy());
+        return result;
+       // usually means return +std::numeric_limits<RealType>::infinity();
+       // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
+      }
+      if (P == 0)
+      { // No failures are expected if P = 0.
+        return 0; // Total trials will be just dist.successes.
+      }
+      if (P <= pow(dist.success_fraction(), dist.successes()))
+      { // p <= pdf(dist, 0) == cdf(dist, 0)
+        return 0;
+      }
+      if(p == 0)
+      {  // Would need +infinity failures for total confidence.
+         result = policies::raise_overflow_error<RealType>(
+            function,
+            "Success fraction is 0, which implies infinite failures !", Policy());
+         return result;
+         // usually means return +std::numeric_limits<RealType>::infinity();
+         // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
+      }
+      /*
+      // Calculate quantile of negative_binomial using the inverse incomplete beta function.
+      using boost::math::ibeta_invb;
+      return ibeta_invb(r, p, P, Policy()) - 1; //
+      */
+      RealType guess = 0;
+      RealType factor = 5;
+      if(r * r * r * P * p > 0.005)
+         guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), P, RealType(1-P), Policy());
+
+      if(guess < 10)
+      {
+         //
+         // Cornish-Fisher Negative binomial approximation not accurate in this area:
+         //
+         guess = (std::min)(RealType(r * 2), RealType(10));
+      }
+      else
+         factor = (1-P < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
+      BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
+      //
+      // Max iterations permitted:
+      //
+      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+      typedef typename Policy::discrete_quantile_type discrete_type;
+      return detail::inverse_discrete_quantile(
+         dist,
+         P,
+         false,
+         guess,
+         factor,
+         RealType(1),
+         discrete_type(),
+         max_iter);
+    } // RealType quantile(const negative_binomial_distribution dist, p)
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<negative_binomial_distribution<RealType, Policy>, RealType>& c)
+    {  // Quantile or Percent Point Binomial function.
+       // Return the number of expected failures k for a given
+       // complement of the probability Q = 1 - P.
+       static const char* function = "boost::math::quantile(const negative_binomial_distribution<%1%>&, %1%)";
+       BOOST_MATH_STD_USING
+
+       // Error checks:
+       RealType Q = c.param;
+       const negative_binomial_distribution<RealType, Policy>& dist = c.dist;
+       RealType p = dist.success_fraction();
+       RealType r = dist.successes();
+       RealType result = 0;
+       if(false == negative_binomial_detail::check_dist_and_prob(
+          function,
+          r,
+          p,
+          Q,
+          &result, Policy()))
+       {
+          return result;
+       }
+
+       // Special cases:
+       //
+       if(Q == 1)
+       {  // There may actually be no answer to this question,
+          // since the probability of zero failures may be non-zero,
+          return 0; // but zero is the best we can do:
+       }
+       if(Q == 0)
+       {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
+          // Would need +infinity failures for total confidence.
+          result = policies::raise_overflow_error<RealType>(
+             function,
+             "Probability argument complement is 0, which implies infinite failures !", Policy());
+          return result;
+          // usually means return +std::numeric_limits<RealType>::infinity();
+          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
+       }
+       if (-Q <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
+       {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
+          return 0; //
+       }
+       if(p == 0)
+       {  // Success fraction is 0 so infinite failures to achieve certainty.
+          // Would need +infinity failures for total confidence.
+          result = policies::raise_overflow_error<RealType>(
+             function,
+             "Success fraction is 0, which implies infinite failures !", Policy());
+          return result;
+          // usually means return +std::numeric_limits<RealType>::infinity();
+          // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
+       }
+       //return ibetac_invb(r, p, Q, Policy()) -1;
+       RealType guess = 0;
+       RealType factor = 5;
+       if(r * r * r * (1-Q) * p > 0.005)
+          guess = detail::inverse_negative_binomial_cornish_fisher(r, p, RealType(1-p), RealType(1-Q), Q, Policy());
+
+       if(guess < 10)
+       {
+          //
+          // Cornish-Fisher Negative binomial approximation not accurate in this area:
+          //
+          guess = (std::min)(RealType(r * 2), RealType(10));
+       }
+       else
+          factor = (Q < sqrt(tools::epsilon<RealType>())) ? 2 : (guess < 20 ? 1.2f : 1.1f);
+       BOOST_MATH_INSTRUMENT_CODE("guess = " << guess);
+       //
+       // Max iterations permitted:
+       //
+       boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+       typedef typename Policy::discrete_quantile_type discrete_type;
+       return detail::inverse_discrete_quantile(
+          dist,
+          Q,
+          true,
+          guess,
+          factor,
+          RealType(1),
+          discrete_type(),
+          max_iter);
+    } // quantile complement
+
+ } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#if defined (BOOST_MSVC)
+# pragma warning(pop)
+#endif
+
+#endif // BOOST_MATH_SPECIAL_NEGATIVE_BINOMIAL_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/non_central_beta.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,929 @@
+// boost\math\distributions\non_central_beta.hpp
+
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
+#define BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for incomplete gamma. gamma_q
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/beta.hpp> // central distribution
+#include <boost/math/distributions/detail/generic_mode.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+#include <boost/math/tools/series.hpp>
+
+namespace boost
+{
+   namespace math
+   {
+
+      template <class RealType, class Policy>
+      class non_central_beta_distribution;
+
+      namespace detail{
+
+         template <class T, class Policy>
+         T non_central_beta_p(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0)
+         {
+            BOOST_MATH_STD_USING
+               using namespace boost::math;
+            //
+            // Variables come first:
+            //
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T l2 = lam / 2;
+            //
+            // k is the starting point for iteration, and is the
+            // maximum of the poisson weighting term,
+            // note that unlike other similar code, we do not set
+            // k to zero, when l2 is small, as forward iteration
+            // is unstable:
+            //
+            int k = itrunc(l2);
+            if(k == 0)
+               k = 1;
+               // Starting Poisson weight:
+            T pois = gamma_p_derivative(T(k+1), l2, pol);
+            if(pois == 0)
+               return init_val;
+            // recurance term:
+            T xterm;
+            // Starting beta term:
+            T beta = x < y
+               ? detail::ibeta_imp(T(a + k), b, x, pol, false, true, &xterm)
+               : detail::ibeta_imp(b, T(a + k), y, pol, true, true, &xterm);
+
+            xterm *= y / (a + b + k - 1);
+            T poisf(pois), betaf(beta), xtermf(xterm);
+            T sum = init_val;
+
+            if((beta == 0) && (xterm == 0))
+               return init_val;
+
+            //
+            // Backwards recursion first, this is the stable
+            // direction for recursion:
+            //
+            T last_term = 0;
+            boost::uintmax_t count = k;
+            for(int i = k; i >= 0; --i)
+            {
+               T term = beta * pois;
+               sum += term;
+               if(((fabs(term/sum) < errtol) && (last_term >= term)) || (term == 0))
+               {
+                  count = k - i;
+                  break;
+               }
+               pois *= i / l2;
+               beta += xterm;
+               xterm *= (a + i - 1) / (x * (a + b + i - 2));
+               last_term = term;
+            }
+            for(int i = k + 1; ; ++i)
+            {
+               poisf *= l2 / i;
+               xtermf *= (x * (a + b + i - 2)) / (a + i - 1);
+               betaf -= xtermf;
+
+               T term = poisf * betaf;
+               sum += term;
+               if((fabs(term/sum) < errtol) || (term == 0))
+               {
+                  break;
+               }
+               if(static_cast<boost::uintmax_t>(count + i - k) > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "cdf(non_central_beta_distribution<%1%>, %1%)",
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+            }
+            return sum;
+         }
+
+         template <class T, class Policy>
+         T non_central_beta_q(T a, T b, T lam, T x, T y, const Policy& pol, T init_val = 0)
+         {
+            BOOST_MATH_STD_USING
+               using namespace boost::math;
+            //
+            // Variables come first:
+            //
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T l2 = lam / 2;
+            //
+            // k is the starting point for iteration, and is the
+            // maximum of the poisson weighting term:
+            //
+            int k = itrunc(l2);
+            T pois;
+            if(k <= 30)
+            {
+               //
+               // Might as well start at 0 since we'll likely have this number of terms anyway:
+               //
+               if(a + b > 1)
+                  k = 0;
+               else if(k == 0)
+                  k = 1;
+            }
+            if(k == 0)
+            {
+               // Starting Poisson weight:
+               pois = exp(-l2);
+            }
+            else
+            {
+               // Starting Poisson weight:
+               pois = gamma_p_derivative(T(k+1), l2, pol);
+            }
+            if(pois == 0)
+               return init_val;
+            // recurance term:
+            T xterm;
+            // Starting beta term:
+            T beta = x < y
+               ? detail::ibeta_imp(T(a + k), b, x, pol, true, true, &xterm)
+               : detail::ibeta_imp(b, T(a + k), y, pol, false, true, &xterm);
+
+            xterm *= y / (a + b + k - 1);
+            T poisf(pois), betaf(beta), xtermf(xterm);
+            T sum = init_val;
+            if((beta == 0) && (xterm == 0))
+               return init_val;
+            //
+            // Forwards recursion first, this is the stable
+            // direction for recursion, and the location
+            // of the bulk of the sum:
+            //
+            T last_term = 0;
+            boost::uintmax_t count = 0;
+            for(int i = k + 1; ; ++i)
+            {
+               poisf *= l2 / i;
+               xtermf *= (x * (a + b + i - 2)) / (a + i - 1);
+               betaf += xtermf;
+
+               T term = poisf * betaf;
+               sum += term;
+               if((fabs(term/sum) < errtol) && (last_term >= term))
+               {
+                  count = i - k;
+                  break;
+               }
+               if(static_cast<boost::uintmax_t>(i - k) > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "cdf(non_central_beta_distribution<%1%>, %1%)",
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+               last_term = term;
+            }
+            for(int i = k; i >= 0; --i)
+            {
+               T term = beta * pois;
+               sum += term;
+               if(fabs(term/sum) < errtol)
+               {
+                  break;
+               }
+               if(static_cast<boost::uintmax_t>(count + k - i) > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "cdf(non_central_beta_distribution<%1%>, %1%)",
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+               pois *= i / l2;
+               beta -= xterm;
+               xterm *= (a + i - 1) / (x * (a + b + i - 2));
+            }
+            return sum;
+         }
+
+         template <class RealType, class Policy>
+         inline RealType non_central_beta_cdf(RealType x, RealType y, RealType a, RealType b, RealType l, bool invert, const Policy&)
+         {
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+            BOOST_MATH_STD_USING
+
+            if(x == 0)
+               return invert ? 1.0f : 0.0f;
+            if(y == 0)
+               return invert ? 0.0f : 1.0f;
+            value_type result;
+            value_type c = a + b + l / 2;
+            value_type cross = 1 - (b / c) * (1 + l / (2 * c * c));
+            if(l == 0)
+               result = cdf(boost::math::beta_distribution<RealType, Policy>(a, b), x);
+            else if(x > cross)
+            {
+               // Complement is the smaller of the two:
+               result = detail::non_central_beta_q(
+                  static_cast<value_type>(a),
+                  static_cast<value_type>(b),
+                  static_cast<value_type>(l),
+                  static_cast<value_type>(x),
+                  static_cast<value_type>(y),
+                  forwarding_policy(),
+                  static_cast<value_type>(invert ? 0 : -1));
+               invert = !invert;
+            }
+            else
+            {
+               result = detail::non_central_beta_p(
+                  static_cast<value_type>(a),
+                  static_cast<value_type>(b),
+                  static_cast<value_type>(l),
+                  static_cast<value_type>(x),
+                  static_cast<value_type>(y),
+                  forwarding_policy(),
+                  static_cast<value_type>(invert ? -1 : 0));
+            }
+            if(invert)
+               result = -result;
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               "boost::math::non_central_beta_cdf<%1%>(%1%, %1%, %1%)");
+         }
+
+         template <class T, class Policy>
+         struct nc_beta_quantile_functor
+         {
+            nc_beta_quantile_functor(const non_central_beta_distribution<T,Policy>& d, T t, bool c)
+               : dist(d), target(t), comp(c) {}
+
+            T operator()(const T& x)
+            {
+               return comp ?
+                  T(target - cdf(complement(dist, x)))
+                  : T(cdf(dist, x) - target);
+            }
+
+         private:
+            non_central_beta_distribution<T,Policy> dist;
+            T target;
+            bool comp;
+         };
+
+         //
+         // This is more or less a copy of bracket_and_solve_root, but
+         // modified to search only the interval [0,1] using similar
+         // heuristics.
+         //
+         template <class F, class T, class Tol, class Policy>
+         std::pair<T, T> bracket_and_solve_root_01(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+               static const char* function = "boost::math::tools::bracket_and_solve_root_01<%1%>";
+            //
+            // Set up inital brackets:
+            //
+            T a = guess;
+            T b = a;
+            T fa = f(a);
+            T fb = fa;
+            //
+            // Set up invocation count:
+            //
+            boost::uintmax_t count = max_iter - 1;
+
+            if((fa < 0) == (guess < 0 ? !rising : rising))
+            {
+               //
+               // Zero is to the right of b, so walk upwards
+               // until we find it:
+               //
+               while((boost::math::sign)(fb) == (boost::math::sign)(fa))
+               {
+                  if(count == 0)
+                  {
+                     b = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol);
+                     return std::make_pair(a, b);
+                  }
+                  //
+                  // Heuristic: every 20 iterations we double the growth factor in case the
+                  // initial guess was *really* bad !
+                  //
+                  if((max_iter - count) % 20 == 0)
+                     factor *= 2;
+                  //
+                  // Now go ahead and move are guess by "factor",
+                  // we do this by reducing 1-guess by factor:
+                  //
+                  a = b;
+                  fa = fb;
+                  b = 1 - ((1 - b) / factor);
+                  fb = f(b);
+                  --count;
+                  BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
+               }
+            }
+            else
+            {
+               //
+               // Zero is to the left of a, so walk downwards
+               // until we find it:
+               //
+               while((boost::math::sign)(fb) == (boost::math::sign)(fa))
+               {
+                  if(fabs(a) < tools::min_value<T>())
+                  {
+                     // Escape route just in case the answer is zero!
+                     max_iter -= count;
+                     max_iter += 1;
+                     return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
+                  }
+                  if(count == 0)
+                  {
+                     a = policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol);
+                     return std::make_pair(a, b);
+                  }
+                  //
+                  // Heuristic: every 20 iterations we double the growth factor in case the
+                  // initial guess was *really* bad !
+                  //
+                  if((max_iter - count) % 20 == 0)
+                     factor *= 2;
+                  //
+                  // Now go ahead and move are guess by "factor":
+                  //
+                  b = a;
+                  fb = fa;
+                  a /= factor;
+                  fa = f(a);
+                  --count;
+                  BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
+               }
+            }
+            max_iter -= count;
+            max_iter += 1;
+            std::pair<T, T> r = toms748_solve(
+               f,
+               (a < 0 ? b : a),
+               (a < 0 ? a : b),
+               (a < 0 ? fb : fa),
+               (a < 0 ? fa : fb),
+               tol,
+               count,
+               pol);
+            max_iter += count;
+            BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
+            return r;
+         }
+
+         template <class RealType, class Policy>
+         RealType nc_beta_quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
+         {
+            static const char* function = "quantile(non_central_beta_distribution<%1%>, %1%)";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+            value_type a = dist.alpha();
+            value_type b = dist.beta();
+            value_type l = dist.non_centrality();
+            value_type r;
+            if(!beta_detail::check_alpha(
+               function,
+               a, &r, Policy())
+               ||
+            !beta_detail::check_beta(
+               function,
+               b, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy())
+               ||
+            !detail::check_probability(
+               function,
+               static_cast<value_type>(p),
+               &r,
+               Policy()))
+                  return (RealType)r;
+            //
+            // Special cases first:
+            //
+            if(p == 0)
+               return comp
+               ? 1.0f
+               : 0.0f;
+            if(p == 1)
+               return !comp
+               ? 1.0f
+               : 0.0f;
+
+            value_type c = a + b + l / 2;
+            value_type mean = 1 - (b / c) * (1 + l / (2 * c * c));
+            /*
+            //
+            // Calculate a normal approximation to the quantile,
+            // uses mean and variance approximations from:
+            // Algorithm AS 310:
+            // Computing the Non-Central Beta Distribution Function
+            // R. Chattamvelli; R. Shanmugam
+            // Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.
+            //
+            // Unfortunately, when this is wrong it tends to be *very*
+            // wrong, so it's disabled for now, even though it often
+            // gets the initial guess quite close.  Probably we could
+            // do much better by factoring in the skewness if only
+            // we could calculate it....
+            //
+            value_type delta = l / 2;
+            value_type delta2 = delta * delta;
+            value_type delta3 = delta * delta2;
+            value_type delta4 = delta2 * delta2;
+            value_type G = c * (c + 1) + delta;
+            value_type alpha = a + b;
+            value_type alpha2 = alpha * alpha;
+            value_type eta = (2 * alpha + 1) * (2 * alpha + 1) + 1;
+            value_type H = 3 * alpha2 + 5 * alpha + 2;
+            value_type F = alpha2 * (alpha + 1) + H * delta
+               + (2 * alpha + 4) * delta2 + delta3;
+            value_type P = (3 * alpha + 1) * (9 * alpha + 17)
+               + 2 * alpha * (3 * alpha + 2) * (3 * alpha + 4) + 15;
+            value_type Q = 54 * alpha2 + 162 * alpha + 130;
+            value_type R = 6 * (6 * alpha + 11);
+            value_type D = delta
+               * (H * H + 2 * P * delta + Q * delta2 + R * delta3 + 9 * delta4);
+            value_type variance = (b / G)
+               * (1 + delta * (l * l + 3 * l + eta) / (G * G))
+               - (b * b / F) * (1 + D / (F * F));
+            value_type sd = sqrt(variance);
+
+            value_type guess = comp
+               ? quantile(complement(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p))
+               : quantile(normal_distribution<RealType, Policy>(static_cast<RealType>(mean), static_cast<RealType>(sd)), p);
+
+            if(guess >= 1)
+               guess = mean;
+            if(guess <= tools::min_value<value_type>())
+               guess = mean;
+            */
+            value_type guess = mean;
+            detail::nc_beta_quantile_functor<value_type, Policy>
+               f(non_central_beta_distribution<value_type, Policy>(a, b, l), p, comp);
+            tools::eps_tolerance<value_type> tol(policies::digits<RealType, Policy>());
+            boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+
+            std::pair<value_type, value_type> ir
+               = bracket_and_solve_root_01(
+                  f, guess, value_type(2.5), true, tol,
+                  max_iter, Policy());
+            value_type result = ir.first + (ir.second - ir.first) / 2;
+
+            if(max_iter >= policies::get_max_root_iterations<Policy>())
+            {
+               return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+                  " either there is no answer to quantile of the non central beta distribution"
+                  " or the answer is infinite.  Current best guess is %1%",
+                  policies::checked_narrowing_cast<RealType, forwarding_policy>(
+                     result,
+                     function), Policy());
+            }
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               function);
+         }
+
+         template <class T, class Policy>
+         T non_central_beta_pdf(T a, T b, T lam, T x, T y, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+            //
+            // Special cases:
+            //
+            if((x == 0) || (y == 0))
+               return 0;
+            //
+            // Variables come first:
+            //
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T l2 = lam / 2;
+            //
+            // k is the starting point for iteration, and is the
+            // maximum of the poisson weighting term:
+            //
+            int k = itrunc(l2);
+            // Starting Poisson weight:
+            T pois = gamma_p_derivative(T(k+1), l2, pol);
+            // Starting beta term:
+            T beta = x < y ?
+               ibeta_derivative(a + k, b, x, pol)
+               : ibeta_derivative(b, a + k, y, pol);
+            T sum = 0;
+            T poisf(pois);
+            T betaf(beta);
+
+            //
+            // Stable backwards recursion first:
+            //
+            boost::uintmax_t count = k;
+            for(int i = k; i >= 0; --i)
+            {
+               T term = beta * pois;
+               sum += term;
+               if((fabs(term/sum) < errtol) || (term == 0))
+               {
+                  count = k - i;
+                  break;
+               }
+               pois *= i / l2;
+               beta *= (a + i - 1) / (x * (a + i + b - 1));
+            }
+            for(int i = k + 1; ; ++i)
+            {
+               poisf *= l2 / i;
+               betaf *= x * (a + b + i - 1) / (a + i - 1);
+
+               T term = poisf * betaf;
+               sum += term;
+               if((fabs(term/sum) < errtol) || (term == 0))
+               {
+                  break;
+               }
+               if(static_cast<boost::uintmax_t>(count + i - k) > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "pdf(non_central_beta_distribution<%1%>, %1%)",
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+            }
+            return sum;
+         }
+
+         template <class RealType, class Policy>
+         RealType nc_beta_pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
+         {
+            BOOST_MATH_STD_USING
+            static const char* function = "pdf(non_central_beta_distribution<%1%>, %1%)";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+            value_type a = dist.alpha();
+            value_type b = dist.beta();
+            value_type l = dist.non_centrality();
+            value_type r;
+            if(!beta_detail::check_alpha(
+               function,
+               a, &r, Policy())
+               ||
+            !beta_detail::check_beta(
+               function,
+               b, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy())
+               ||
+            !beta_detail::check_x(
+               function,
+               static_cast<value_type>(x),
+               &r,
+               Policy()))
+                  return (RealType)r;
+
+            if(l == 0)
+               return pdf(boost::math::beta_distribution<RealType, Policy>(dist.alpha(), dist.beta()), x);
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               non_central_beta_pdf(a, b, l, static_cast<value_type>(x), value_type(1 - static_cast<value_type>(x)), forwarding_policy()),
+               "function");
+         }
+
+         template <class T>
+         struct hypergeometric_2F2_sum
+         {
+            typedef T result_type;
+            hypergeometric_2F2_sum(T a1_, T a2_, T b1_, T b2_, T z_) : a1(a1_), a2(a2_), b1(b1_), b2(b2_), z(z_), term(1), k(0) {}
+            T operator()()
+            {
+               T result = term;
+               term *= a1 * a2 / (b1 * b2);
+               a1 += 1;
+               a2 += 1;
+               b1 += 1;
+               b2 += 1;
+               k += 1;
+               term /= k;
+               term *= z;
+               return result;
+            }
+            T a1, a2, b1, b2, z, term, k;
+         };
+
+         template <class T, class Policy>
+         T hypergeometric_2F2(T a1, T a2, T b1, T b2, T z, const Policy& pol)
+         {
+            typedef typename policies::evaluation<T, Policy>::type value_type;
+
+            const char* function = "boost::math::detail::hypergeometric_2F2<%1%>(%1%,%1%,%1%,%1%,%1%)";
+
+            hypergeometric_2F2_sum<value_type> s(a1, a2, b1, b2, z);
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
+            value_type zero = 0;
+            value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter, zero);
+#else
+            value_type result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<value_type, Policy>(), max_iter);
+#endif
+            policies::check_series_iterations<T>(function, max_iter, pol);
+            return policies::checked_narrowing_cast<T, Policy>(result, function);
+         }
+
+      } // namespace detail
+
+      template <class RealType = double, class Policy = policies::policy<> >
+      class non_central_beta_distribution
+      {
+      public:
+         typedef RealType value_type;
+         typedef Policy policy_type;
+
+         non_central_beta_distribution(RealType a_, RealType b_, RealType lambda) : a(a_), b(b_), ncp(lambda)
+         {
+            const char* function = "boost::math::non_central_beta_distribution<%1%>::non_central_beta_distribution(%1%,%1%)";
+            RealType r;
+            beta_detail::check_alpha(
+               function,
+               a, &r, Policy());
+            beta_detail::check_beta(
+               function,
+               b, &r, Policy());
+            detail::check_non_centrality(
+               function,
+               lambda,
+               &r,
+               Policy());
+         } // non_central_beta_distribution constructor.
+
+         RealType alpha() const
+         { // Private data getter function.
+            return a;
+         }
+         RealType beta() const
+         { // Private data getter function.
+            return b;
+         }
+         RealType non_centrality() const
+         { // Private data getter function.
+            return ncp;
+         }
+      private:
+         // Data member, initialized by constructor.
+         RealType a;   // alpha.
+         RealType b;   // beta.
+         RealType ncp; // non-centrality parameter
+      }; // template <class RealType, class Policy> class non_central_beta_distribution
+
+      typedef non_central_beta_distribution<double> non_central_beta; // Reserved name of type double.
+
+      // Non-member functions to give properties of the distribution.
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> range(const non_central_beta_distribution<RealType, Policy>& /* dist */)
+      { // Range of permissible values for random variable k.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
+      }
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> support(const non_central_beta_distribution<RealType, Policy>& /* dist */)
+      { // Range of supported values for random variable k.
+         // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1));
+      }
+
+      template <class RealType, class Policy>
+      inline RealType mode(const non_central_beta_distribution<RealType, Policy>& dist)
+      { // mode.
+         static const char* function = "mode(non_central_beta_distribution<%1%> const&)";
+
+         RealType a = dist.alpha();
+         RealType b = dist.beta();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!beta_detail::check_alpha(
+               function,
+               a, &r, Policy())
+               ||
+            !beta_detail::check_beta(
+               function,
+               b, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy()))
+                  return (RealType)r;
+         RealType c = a + b + l / 2;
+         RealType mean = 1 - (b / c) * (1 + l / (2 * c * c));
+         return detail::generic_find_mode_01(
+            dist,
+            mean,
+            function);
+      }
+
+      //
+      // We don't have the necessary information to implement
+      // these at present.  These are just disabled for now,
+      // prototypes retained so we can fill in the blanks
+      // later:
+      //
+      template <class RealType, class Policy>
+      inline RealType mean(const non_central_beta_distribution<RealType, Policy>& dist)
+      {
+         BOOST_MATH_STD_USING
+         RealType a = dist.alpha();
+         RealType b = dist.beta();
+         RealType d = dist.non_centrality();
+         RealType apb = a + b;
+         return exp(-d / 2) * a * detail::hypergeometric_2F2<RealType, Policy>(1 + a, apb, a, 1 + apb, d / 2, Policy()) / apb;
+      } // mean
+
+      template <class RealType, class Policy>
+      inline RealType variance(const non_central_beta_distribution<RealType, Policy>& dist)
+      { 
+         //
+         // Relative error of this function may be arbitarily large... absolute
+         // error will be small however... that's the best we can do for now.
+         //
+         BOOST_MATH_STD_USING
+         RealType a = dist.alpha();
+         RealType b = dist.beta();
+         RealType d = dist.non_centrality();
+         RealType apb = a + b;
+         RealType result = detail::hypergeometric_2F2(RealType(1 + a), apb, a, RealType(1 + apb), RealType(d / 2), Policy());
+         result *= result * -exp(-d) * a * a / (apb * apb);
+         result += exp(-d / 2) * a * (1 + a) * detail::hypergeometric_2F2(RealType(2 + a), apb, a, RealType(2 + apb), RealType(d / 2), Policy()) / (apb * (1 + apb));
+         return result;
+      }
+
+      // RealType standard_deviation(const non_central_beta_distribution<RealType, Policy>& dist)
+      // standard_deviation provided by derived accessors.
+      template <class RealType, class Policy>
+      inline RealType skewness(const non_central_beta_distribution<RealType, Policy>& /*dist*/)
+      { // skewness = sqrt(l).
+         const char* function = "boost::math::non_central_beta_distribution<%1%>::skewness()";
+         typedef typename Policy::assert_undefined_type assert_type;
+         BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+         return policies::raise_evaluation_error<RealType>(
+            function,
+            "This function is not yet implemented, the only sensible result is %1%.",
+            std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
+      }
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis_excess(const non_central_beta_distribution<RealType, Policy>& /*dist*/)
+      {
+         const char* function = "boost::math::non_central_beta_distribution<%1%>::kurtosis_excess()";
+         typedef typename Policy::assert_undefined_type assert_type;
+         BOOST_STATIC_ASSERT(assert_type::value == 0);
+
+         return policies::raise_evaluation_error<RealType>(
+            function,
+            "This function is not yet implemented, the only sensible result is %1%.",
+            std::numeric_limits<RealType>::quiet_NaN(), Policy()); // infinity?
+      } // kurtosis_excess
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis(const non_central_beta_distribution<RealType, Policy>& dist)
+      {
+         return kurtosis_excess(dist) + 3;
+      }
+
+      template <class RealType, class Policy>
+      inline RealType pdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
+      { // Probability Density/Mass Function.
+         return detail::nc_beta_pdf(dist, x);
+      } // pdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& x)
+      {
+         const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)";
+            RealType a = dist.alpha();
+            RealType b = dist.beta();
+            RealType l = dist.non_centrality();
+            RealType r;
+            if(!beta_detail::check_alpha(
+               function,
+               a, &r, Policy())
+               ||
+            !beta_detail::check_beta(
+               function,
+               b, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy())
+               ||
+            !beta_detail::check_x(
+               function,
+               x,
+               &r,
+               Policy()))
+                  return (RealType)r;
+
+         if(l == 0)
+            return cdf(beta_distribution<RealType, Policy>(a, b), x);
+
+         return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, false, Policy());
+      } // cdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function
+         const char* function = "boost::math::non_central_beta_distribution<%1%>::cdf(%1%)";
+         non_central_beta_distribution<RealType, Policy> const& dist = c.dist;
+            RealType a = dist.alpha();
+            RealType b = dist.beta();
+            RealType l = dist.non_centrality();
+            RealType x = c.param;
+            RealType r;
+            if(!beta_detail::check_alpha(
+               function,
+               a, &r, Policy())
+               ||
+            !beta_detail::check_beta(
+               function,
+               b, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy())
+               ||
+            !beta_detail::check_x(
+               function,
+               x,
+               &r,
+               Policy()))
+                  return (RealType)r;
+
+         if(l == 0)
+            return cdf(complement(beta_distribution<RealType, Policy>(a, b), x));
+
+         return detail::non_central_beta_cdf(x, RealType(1 - x), a, b, l, true, Policy());
+      } // ccdf
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const non_central_beta_distribution<RealType, Policy>& dist, const RealType& p)
+      { // Quantile (or Percent Point) function.
+         return detail::nc_beta_quantile(dist, p, false);
+      } // quantile
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const complemented2_type<non_central_beta_distribution<RealType, Policy>, RealType>& c)
+      { // Quantile (or Percent Point) function.
+         return detail::nc_beta_quantile(c.dist, c.param, true);
+      } // quantile complement.
+
+   } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_BETA_HPP
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/non_central_chi_squared.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,999 @@
+// boost\math\distributions\non_central_chi_squared.hpp
+
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
+#define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
+#include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i
+#include <boost/math/special_functions/round.hpp> // for iround
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/chi_squared.hpp> // central distribution
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/tools/roots.hpp> // for root finding.
+#include <boost/math/distributions/detail/generic_mode.hpp>
+#include <boost/math/distributions/detail/generic_quantile.hpp>
+
+namespace boost
+{
+   namespace math
+   {
+
+      template <class RealType, class Policy>
+      class non_central_chi_squared_distribution;
+
+      namespace detail{
+
+         template <class T, class Policy>
+         T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0)
+         {
+            //
+            // Computes the complement of the Non-Central Chi-Square
+            // Distribution CDF by summing a weighted sum of complements
+            // of the central-distributions.  The weighting factor is
+            // a Poisson Distribution.
+            //
+            // This is an application of the technique described in:
+            //
+            // Computing discrete mixtures of continuous
+            // distributions: noncentral chisquare, noncentral t
+            // and the distribution of the square of the sample
+            // multiple correlation coeficient.
+            // D. Benton, K. Krishnamoorthy.
+            // Computational Statistics & Data Analysis 43 (2003) 249 - 267
+            //
+            BOOST_MATH_STD_USING
+
+            // Special case:
+            if(x == 0)
+               return 1;
+
+            //
+            // Initialize the variables we'll be using:
+            //
+            T lambda = theta / 2;
+            T del = f / 2;
+            T y = x / 2;
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T sum = init_sum;
+            //
+            // k is the starting location for iteration, we'll
+            // move both forwards and backwards from this point.
+            // k is chosen as the peek of the Poisson weights, which
+            // will occur *before* the largest term.
+            //
+            int k = iround(lambda, pol);
+            // Forwards and backwards Poisson weights:
+            T poisf = boost::math::gamma_p_derivative(static_cast<T>(1 + k), lambda, pol);
+            T poisb = poisf * k / lambda;
+            // Initial forwards central chi squared term:
+            T gamf = boost::math::gamma_q(del + k, y, pol);
+            // Forwards and backwards recursion terms on the central chi squared:
+            T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol);
+            T xtermb = xtermf * (del + k) / y;
+            // Initial backwards central chi squared term:
+            T gamb = gamf - xtermb;
+
+            //
+            // Forwards iteration first, this is the
+            // stable direction for the gamma function
+            // recurrences:
+            //
+            int i;
+            for(i = k; static_cast<boost::uintmax_t>(i-k) < max_iter; ++i)
+            {
+               T term = poisf * gamf;
+               sum += term;
+               poisf *= lambda / (i + 1);
+               gamf += xtermf;
+               xtermf *= y / (del + i + 1);
+               if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf))
+                  break;
+            }
+            //Error check:
+            if(static_cast<boost::uintmax_t>(i-k) >= max_iter)
+               return policies::raise_evaluation_error(
+                  "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
+                  "Series did not converge, closest value was %1%", sum, pol);
+            //
+            // Now backwards iteration: the gamma
+            // function recurrences are unstable in this
+            // direction, we rely on the terms deminishing in size
+            // faster than we introduce cancellation errors.
+            // For this reason it's very important that we start
+            // *before* the largest term so that backwards iteration
+            // is strictly converging.
+            //
+            for(i = k - 1; i >= 0; --i)
+            {
+               T term = poisb * gamb;
+               sum += term;
+               poisb *= i / lambda;
+               xtermb *= (del + i) / y;
+               gamb -= xtermb;
+               if((sum == 0) || (fabs(term / sum) < errtol))
+                  break;
+            }
+
+            return sum;
+         }
+
+         template <class T, class Policy>
+         T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0)
+         {
+            //
+            // This is an implementation of:
+            //
+            // Algorithm AS 275:
+            // Computing the Non-Central #2 Distribution Function
+            // Cherng G. Ding
+            // Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482.
+            //
+            // This uses a stable forward iteration to sum the
+            // CDF, unfortunately this can not be used for large
+            // values of the non-centrality parameter because:
+            // * The first term may underfow to zero.
+            // * We may need an extra-ordinary number of terms
+            //   before we reach the first *significant* term.
+            //
+            BOOST_MATH_STD_USING
+            // Special case:
+            if(x == 0)
+               return 0;
+            T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol);
+            T lambda = theta / 2;
+            T vk = exp(-lambda);
+            T uk = vk;
+            T sum = init_sum + tk * vk;
+            if(sum == 0)
+               return sum;
+
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+
+            int i;
+            T lterm(0), term(0);
+            for(i = 1; static_cast<boost::uintmax_t>(i) < max_iter; ++i)
+            {
+               tk = tk * x / (f + 2 * i);
+               uk = uk * lambda / i;
+               vk = vk + uk;
+               lterm = term;
+               term = vk * tk;
+               sum += term;
+               if((fabs(term / sum) < errtol) && (term <= lterm))
+                  break;
+            }
+            //Error check:
+            if(static_cast<boost::uintmax_t>(i) >= max_iter)
+               return policies::raise_evaluation_error(
+                  "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
+                  "Series did not converge, closest value was %1%", sum, pol);
+            return sum;
+         }
+
+
+         template <class T, class Policy>
+         T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum)
+         {
+            //
+            // This is taken more or less directly from:
+            //
+            // Computing discrete mixtures of continuous
+            // distributions: noncentral chisquare, noncentral t
+            // and the distribution of the square of the sample
+            // multiple correlation coeficient.
+            // D. Benton, K. Krishnamoorthy.
+            // Computational Statistics & Data Analysis 43 (2003) 249 - 267
+            //
+            // We're summing a Poisson weighting term multiplied by
+            // a central chi squared distribution.
+            //
+            BOOST_MATH_STD_USING
+            // Special case:
+            if(y == 0)
+               return 0;
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T errorf(0), errorb(0);
+
+            T x = y / 2;
+            T del = lambda / 2;
+            //
+            // Starting location for the iteration, we'll iterate
+            // both forwards and backwards from this point.  The
+            // location chosen is the maximum of the Poisson weight
+            // function, which ocurrs *after* the largest term in the
+            // sum.
+            //
+            int k = iround(del, pol);
+            T a = n / 2 + k;
+            // Central chi squared term for forward iteration:
+            T gamkf = boost::math::gamma_p(a, x, pol);
+
+            if(lambda == 0)
+               return gamkf;
+            // Central chi squared term for backward iteration:
+            T gamkb = gamkf;
+            // Forwards Poisson weight:
+            T poiskf = gamma_p_derivative(static_cast<T>(k+1), del, pol);
+            // Backwards Poisson weight:
+            T poiskb = poiskf;
+            // Forwards gamma function recursion term:
+            T xtermf = boost::math::gamma_p_derivative(a, x, pol);
+            // Backwards gamma function recursion term:
+            T xtermb = xtermf * x / a;
+            T sum = init_sum + poiskf * gamkf;
+            if(sum == 0)
+               return sum;
+            int i = 1;
+            //
+            // Backwards recursion first, this is the stable
+            // direction for gamma function recurrences:
+            //
+            while(i <= k)
+            {
+               xtermb *= (a - i + 1) / x;
+               gamkb += xtermb;
+               poiskb = poiskb * (k - i + 1) / del;
+               errorf = errorb;
+               errorb = gamkb * poiskb;
+               sum += errorb;
+               if((fabs(errorb / sum) < errtol) && (errorb <= errorf))
+                  break;
+               ++i;
+            }
+            i = 1;
+            //
+            // Now forwards recursion, the gamma function
+            // recurrence relation is unstable in this direction,
+            // so we rely on the magnitude of successive terms
+            // decreasing faster than we introduce cancellation error.
+            // For this reason it's vital that k is chosen to be *after*
+            // the largest term, so that successive forward iterations
+            // are strictly (and rapidly) converging.
+            //
+            do
+            {
+               xtermf = xtermf * x / (a + i - 1);
+               gamkf = gamkf - xtermf;
+               poiskf = poiskf * del / (k + i);
+               errorf = poiskf * gamkf;
+               sum += errorf;
+               ++i;
+            }while((fabs(errorf / sum) > errtol) && (static_cast<boost::uintmax_t>(i) < max_iter));
+
+            //Error check:
+            if(static_cast<boost::uintmax_t>(i) >= max_iter)
+               return policies::raise_evaluation_error(
+                  "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
+                  "Series did not converge, closest value was %1%", sum, pol);
+
+            return sum;
+         }
+
+         template <class T, class Policy>
+         T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol)
+         {
+            //
+            // As above but for the PDF:
+            //
+            BOOST_MATH_STD_USING
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T x2 = x / 2;
+            T n2 = n / 2;
+            T l2 = lambda / 2;
+            T sum = 0;
+            int k = itrunc(l2);
+            T pois = gamma_p_derivative(static_cast<T>(k + 1), l2, pol) * gamma_p_derivative(static_cast<T>(n2 + k), x2);
+            if(pois == 0)
+               return 0;
+            T poisb = pois;
+            for(int i = k; ; ++i)
+            {
+               sum += pois;
+               if(pois / sum < errtol)
+                  break;
+               if(static_cast<boost::uintmax_t>(i - k) >= max_iter)
+                  return policies::raise_evaluation_error(
+                     "pdf(non_central_chi_squared_distribution<%1%>, %1%)",
+                     "Series did not converge, closest value was %1%", sum, pol);
+               pois *= l2 * x2 / ((i + 1) * (n2 + i));
+            }
+            for(int i = k - 1; i >= 0; --i)
+            {
+               poisb *= (i + 1) * (n2 + i) / (l2 * x2);
+               sum += poisb;
+               if(poisb / sum < errtol)
+                  break;
+            }
+            return sum / 2;
+         }
+
+         template <class RealType, class Policy>
+         inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&)
+         {
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+            BOOST_MATH_STD_USING
+            value_type result;
+            if(l == 0)
+              return invert == false ? cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x) : cdf(complement(boost::math::chi_squared_distribution<RealType, Policy>(k), x));
+            else if(x > k + l)
+            {
+               // Complement is the smaller of the two:
+               result = detail::non_central_chi_square_q(
+                  static_cast<value_type>(x),
+                  static_cast<value_type>(k),
+                  static_cast<value_type>(l),
+                  forwarding_policy(),
+                  static_cast<value_type>(invert ? 0 : -1));
+               invert = !invert;
+            }
+            else if(l < 200)
+            {
+               // For small values of the non-centrality parameter
+               // we can use Ding's method:
+               result = detail::non_central_chi_square_p_ding(
+                  static_cast<value_type>(x),
+                  static_cast<value_type>(k),
+                  static_cast<value_type>(l),
+                  forwarding_policy(),
+                  static_cast<value_type>(invert ? -1 : 0));
+            }
+            else
+            {
+               // For largers values of the non-centrality
+               // parameter Ding's method will consume an
+               // extra-ordinary number of terms, and worse
+               // may return zero when the result is in fact
+               // finite, use Krishnamoorthy's method instead:
+               result = detail::non_central_chi_square_p(
+                  static_cast<value_type>(x),
+                  static_cast<value_type>(k),
+                  static_cast<value_type>(l),
+                  forwarding_policy(),
+                  static_cast<value_type>(invert ? -1 : 0));
+            }
+            if(invert)
+               result = -result;
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               "boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)");
+         }
+
+         template <class T, class Policy>
+         struct nccs_quantile_functor
+         {
+            nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c)
+               : dist(d), target(t), comp(c) {}
+
+            T operator()(const T& x)
+            {
+               return comp ?
+                  target - cdf(complement(dist, x))
+                  : cdf(dist, x) - target;
+            }
+
+         private:
+            non_central_chi_squared_distribution<T,Policy> dist;
+            T target;
+            bool comp;
+         };
+
+         template <class RealType, class Policy>
+         RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
+         {
+            BOOST_MATH_STD_USING
+            static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+            value_type k = dist.degrees_of_freedom();
+            value_type l = dist.non_centrality();
+            value_type r;
+            if(!detail::check_df(
+               function,
+               k, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy())
+               ||
+            !detail::check_probability(
+               function,
+               static_cast<value_type>(p),
+               &r,
+               Policy()))
+                  return (RealType)r;
+            //
+            // Special cases get short-circuited first:
+            //
+            if(p == 0)
+               return comp ? policies::raise_overflow_error<RealType>(function, 0, Policy()) : 0;
+            if(p == 1)
+               return comp ? 0 : policies::raise_overflow_error<RealType>(function, 0, Policy());
+            //
+            // This is Pearson's approximation to the quantile, see
+            // Pearson, E. S. (1959) "Note on an approximation to the distribution of
+            // noncentral chi squared", Biometrika 46: 364.
+            // See also:
+            // "A comparison of approximations to percentiles of the noncentral chi2-distribution",
+            // Hardeo Sahai and Mario Miguel Ojeda, Revista de Matematica: Teoria y Aplicaciones 2003 10(1-2) : 57-76.
+            // Note that the latter reference refers to an approximation of the CDF, when they really mean the quantile.
+            //
+            value_type b = -(l * l) / (k + 3 * l);
+            value_type c = (k + 3 * l) / (k + 2 * l);
+            value_type ff = (k + 2 * l) / (c * c);
+            value_type guess;
+            if(comp)
+            {
+               guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p));
+            }
+            else
+            {
+               guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p);
+            }
+            //
+            // Sometimes guess goes very small or negative, in that case we have
+            // to do something else for the initial guess, this approximation
+            // was provided in a private communication from Thomas Luu, PhD candidate,
+            // University College London.  It's an asymptotic expansion for the
+            // quantile which usually gets us within an order of magnitude of the
+            // correct answer.
+            // Fast and accurate parallel computation of quantile functions for random number generation,
+            // Thomas LuuDoctorial Thesis 2016
+            // http://discovery.ucl.ac.uk/1482128/
+            //
+            if(guess < 0.005)
+            {
+               value_type pp = comp ? 1 - p : p;
+               //guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k, 2 / k);
+               guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k * boost::math::tgamma(k / 2, forwarding_policy()), (2 / k));
+               if(guess == 0)
+                  guess = tools::min_value<value_type>();
+            }
+            value_type result = detail::generic_quantile(
+               non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l),
+               p,
+               guess,
+               comp,
+               function);
+
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               function);
+         }
+
+         template <class RealType, class Policy>
+         RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+         {
+            BOOST_MATH_STD_USING
+            static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+            value_type k = dist.degrees_of_freedom();
+            value_type l = dist.non_centrality();
+            value_type r;
+            if(!detail::check_df(
+               function,
+               k, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy())
+               ||
+            !detail::check_positive_x(
+               function,
+               (value_type)x,
+               &r,
+               Policy()))
+                  return (RealType)r;
+
+         if(l == 0)
+            return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x);
+
+         // Special case:
+         if(x == 0)
+            return 0;
+         if(l > 50)
+         {
+            r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
+         }
+         else
+         {
+            r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2;
+            if(fabs(r) >= tools::log_max_value<RealType>() / 4)
+            {
+               r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
+            }
+            else
+            {
+               r = exp(r);
+               r = 0.5f * r
+                  * boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy());
+            }
+         }
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               r,
+               function);
+         }
+
+         template <class RealType, class Policy>
+         struct degrees_of_freedom_finder
+         {
+            degrees_of_freedom_finder(
+               RealType lam_, RealType x_, RealType p_, bool c)
+               : lam(lam_), x(x_), p(p_), comp(c) {}
+
+            RealType operator()(const RealType& v)
+            {
+               non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
+               return comp ?
+                  RealType(p - cdf(complement(d, x)))
+                  : RealType(cdf(d, x) - p);
+            }
+         private:
+            RealType lam;
+            RealType x;
+            RealType p;
+            bool comp;
+         };
+
+         template <class RealType, class Policy>
+         inline RealType find_degrees_of_freedom(
+            RealType lam, RealType x, RealType p, RealType q, const Policy& pol)
+         {
+            const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
+            if((p == 0) || (q == 0))
+            {
+               //
+               // Can't a thing if one of p and q is zero:
+               //
+               return policies::raise_evaluation_error<RealType>(function,
+                  "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
+                  RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
+            }
+            degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true);
+            tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+            boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+            //
+            // Pick an initial guess that we know will give us a probability
+            // right around 0.5.
+            //
+            RealType guess = x - lam;
+            if(guess < 1)
+               guess = 1;
+            std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
+               f, guess, RealType(2), false, tol, max_iter, pol);
+            RealType result = ir.first + (ir.second - ir.first) / 2;
+            if(max_iter >= policies::get_max_root_iterations<Policy>())
+            {
+               return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+                  " or there is no answer to problem.  Current best guess is %1%", result, Policy());
+            }
+            return result;
+         }
+
+         template <class RealType, class Policy>
+         struct non_centrality_finder
+         {
+            non_centrality_finder(
+               RealType v_, RealType x_, RealType p_, bool c)
+               : v(v_), x(x_), p(p_), comp(c) {}
+
+            RealType operator()(const RealType& lam)
+            {
+               non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
+               return comp ?
+                  RealType(p - cdf(complement(d, x)))
+                  : RealType(cdf(d, x) - p);
+            }
+         private:
+            RealType v;
+            RealType x;
+            RealType p;
+            bool comp;
+         };
+
+         template <class RealType, class Policy>
+         inline RealType find_non_centrality(
+            RealType v, RealType x, RealType p, RealType q, const Policy& pol)
+         {
+            const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
+            if((p == 0) || (q == 0))
+            {
+               //
+               // Can't do a thing if one of p and q is zero:
+               //
+               return policies::raise_evaluation_error<RealType>(function,
+                  "Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%",
+                  RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
+            }
+            non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
+            tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+            boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+            //
+            // Pick an initial guess that we know will give us a probability
+            // right around 0.5.
+            //
+            RealType guess = x - v;
+            if(guess < 1)
+               guess = 1;
+            std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
+               f, guess, RealType(2), false, tol, max_iter, pol);
+            RealType result = ir.first + (ir.second - ir.first) / 2;
+            if(max_iter >= policies::get_max_root_iterations<Policy>())
+            {
+               return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+                  " or there is no answer to problem.  Current best guess is %1%", result, Policy());
+            }
+            return result;
+         }
+
+      }
+
+      template <class RealType = double, class Policy = policies::policy<> >
+      class non_central_chi_squared_distribution
+      {
+      public:
+         typedef RealType value_type;
+         typedef Policy policy_type;
+
+         non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda)
+         {
+            const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)";
+            RealType r;
+            detail::check_df(
+               function,
+               df, &r, Policy());
+            detail::check_non_centrality(
+               function,
+               ncp,
+               &r,
+               Policy());
+         } // non_central_chi_squared_distribution constructor.
+
+         RealType degrees_of_freedom() const
+         { // Private data getter function.
+            return df;
+         }
+         RealType non_centrality() const
+         { // Private data getter function.
+            return ncp;
+         }
+         static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p)
+         {
+            const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
+            typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            eval_type result = detail::find_degrees_of_freedom(
+               static_cast<eval_type>(lam),
+               static_cast<eval_type>(x),
+               static_cast<eval_type>(p),
+               static_cast<eval_type>(1-p),
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               function);
+         }
+         template <class A, class B, class C>
+         static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
+         {
+            const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
+            typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            eval_type result = detail::find_degrees_of_freedom(
+               static_cast<eval_type>(c.dist),
+               static_cast<eval_type>(c.param1),
+               static_cast<eval_type>(1-c.param2),
+               static_cast<eval_type>(c.param2),
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               function);
+         }
+         static RealType find_non_centrality(RealType v, RealType x, RealType p)
+         {
+            const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
+            typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            eval_type result = detail::find_non_centrality(
+               static_cast<eval_type>(v),
+               static_cast<eval_type>(x),
+               static_cast<eval_type>(p),
+               static_cast<eval_type>(1-p),
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               function);
+         }
+         template <class A, class B, class C>
+         static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
+         {
+            const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
+            typedef typename policies::evaluation<RealType, Policy>::type eval_type;
+            typedef typename policies::normalise<
+               Policy,
+               policies::promote_float<false>,
+               policies::promote_double<false>,
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            eval_type result = detail::find_non_centrality(
+               static_cast<eval_type>(c.dist),
+               static_cast<eval_type>(c.param1),
+               static_cast<eval_type>(1-c.param2),
+               static_cast<eval_type>(c.param2),
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result,
+               function);
+         }
+      private:
+         // Data member, initialized by constructor.
+         RealType df; // degrees of freedom.
+         RealType ncp; // non-centrality parameter
+      }; // template <class RealType, class Policy> class non_central_chi_squared_distribution
+
+      typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double.
+
+      // Non-member functions to give properties of the distribution.
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
+      { // Range of permissible values for random variable k.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
+      }
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
+      { // Range of supported values for random variable k.
+         // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
+      }
+
+      template <class RealType, class Policy>
+      inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      { // Mean of poisson distribution = lambda.
+         const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()";
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy()))
+               return r;
+         return k + l;
+      } // mean
+
+      template <class RealType, class Policy>
+      inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      { // mode.
+         static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)";
+
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy()))
+               return (RealType)r;
+         return detail::generic_find_mode(dist, 1 + k, function);
+      }
+
+      template <class RealType, class Policy>
+      inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      { // variance.
+         const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()";
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy()))
+               return r;
+         return 2 * (2 * l + k);
+      }
+
+      // RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      // standard_deviation provided by derived accessors.
+
+      template <class RealType, class Policy>
+      inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      { // skewness = sqrt(l).
+         const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()";
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy()))
+               return r;
+         BOOST_MATH_STD_USING
+            return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l);
+      }
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      {
+         const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()";
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy()))
+               return r;
+         return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l));
+      } // kurtosis_excess
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist)
+      {
+         return kurtosis_excess(dist) + 3;
+      }
+
+      template <class RealType, class Policy>
+      inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+      { // Probability Density/Mass Function.
+         return detail::nccs_pdf(dist, x);
+      } // pdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
+      {
+         const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy())
+            ||
+         !detail::check_positive_x(
+            function,
+            x,
+            &r,
+            Policy()))
+               return r;
+
+         return detail::non_central_chi_squared_cdf(x, k, l, false, Policy());
+      } // cdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function
+         const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
+         non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist;
+         RealType x = c.param;
+         RealType k = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            k, &r, Policy())
+            ||
+         !detail::check_non_centrality(
+            function,
+            l,
+            &r,
+            Policy())
+            ||
+         !detail::check_positive_x(
+            function,
+            x,
+            &r,
+            Policy()))
+               return r;
+
+         return detail::non_central_chi_squared_cdf(x, k, l, true, Policy());
+      } // ccdf
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
+      { // Quantile (or Percent Point) function.
+         return detail::nccs_quantile(dist, p, false);
+      } // quantile
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
+      { // Quantile (or Percent Point) function.
+         return detail::nccs_quantile(c.dist, c.param, true);
+      } // quantile complement.
+
+   } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/non_central_f.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,410 @@
+// boost\math\distributions\non_central_f.hpp
+
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_F_HPP
+#define BOOST_MATH_SPECIAL_NON_CENTRAL_F_HPP
+
+#include <boost/math/distributions/non_central_beta.hpp>
+#include <boost/math/distributions/detail/generic_mode.hpp>
+#include <boost/math/special_functions/pow.hpp>
+
+namespace boost
+{
+   namespace math
+   {
+      template <class RealType = double, class Policy = policies::policy<> >
+      class non_central_f_distribution
+      {
+      public:
+         typedef RealType value_type;
+         typedef Policy policy_type;
+
+         non_central_f_distribution(RealType v1_, RealType v2_, RealType lambda) : v1(v1_), v2(v2_), ncp(lambda)
+         {
+            const char* function = "boost::math::non_central_f_distribution<%1%>::non_central_f_distribution(%1%,%1%)";
+            RealType r;
+            detail::check_df(
+               function,
+               v1, &r, Policy());
+            detail::check_df(
+               function,
+               v2, &r, Policy());
+            detail::check_non_centrality(
+               function,
+               lambda,
+               &r,
+               Policy());
+         } // non_central_f_distribution constructor.
+
+         RealType degrees_of_freedom1()const
+         {
+            return v1;
+         }
+         RealType degrees_of_freedom2()const
+         {
+            return v2;
+         }
+         RealType non_centrality() const
+         { // Private data getter function.
+            return ncp;
+         }
+      private:
+         // Data member, initialized by constructor.
+         RealType v1;   // alpha.
+         RealType v2;   // beta.
+         RealType ncp; // non-centrality parameter
+      }; // template <class RealType, class Policy> class non_central_f_distribution
+
+      typedef non_central_f_distribution<double> non_central_f; // Reserved name of type double.
+
+      // Non-member functions to give properties of the distribution.
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> range(const non_central_f_distribution<RealType, Policy>& /* dist */)
+      { // Range of permissible values for random variable k.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+      }
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> support(const non_central_f_distribution<RealType, Policy>& /* dist */)
+      { // Range of supported values for random variable k.
+         // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+      }
+
+      template <class RealType, class Policy>
+      inline RealType mean(const non_central_f_distribution<RealType, Policy>& dist)
+      {
+         const char* function = "mean(non_central_f_distribution<%1%> const&)";
+         RealType v1 = dist.degrees_of_freedom1();
+         RealType v2 = dist.degrees_of_freedom2();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            v1, &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               v2, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy()))
+               return r;
+         if(v2 <= 2)
+            return policies::raise_domain_error(
+               function,
+               "Second degrees of freedom parameter was %1%, but must be > 2 !",
+               v2, Policy());
+         return v2 * (v1 + l) / (v1 * (v2 - 2));
+      } // mean
+
+      template <class RealType, class Policy>
+      inline RealType mode(const non_central_f_distribution<RealType, Policy>& dist)
+      { // mode.
+         static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)";
+
+         RealType n = dist.degrees_of_freedom1();
+         RealType m = dist.degrees_of_freedom2();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            n, &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               m, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy()))
+               return r;
+         RealType guess = m > 2 ? RealType(m * (n + l) / (n * (m - 2))) : RealType(1);
+         return detail::generic_find_mode(
+            dist,
+            guess,
+            function);
+      }
+
+      template <class RealType, class Policy>
+      inline RealType variance(const non_central_f_distribution<RealType, Policy>& dist)
+      { // variance.
+         const char* function = "variance(non_central_f_distribution<%1%> const&)";
+         RealType n = dist.degrees_of_freedom1();
+         RealType m = dist.degrees_of_freedom2();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            n, &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               m, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy()))
+               return r;
+         if(m <= 4)
+            return policies::raise_domain_error(
+               function,
+               "Second degrees of freedom parameter was %1%, but must be > 4 !",
+               m, Policy());
+         RealType result = 2 * m * m * ((n + l) * (n + l)
+            + (m - 2) * (n + 2 * l));
+         result /= (m - 4) * (m - 2) * (m - 2) * n * n;
+         return result;
+      }
+
+      // RealType standard_deviation(const non_central_f_distribution<RealType, Policy>& dist)
+      // standard_deviation provided by derived accessors.
+
+      template <class RealType, class Policy>
+      inline RealType skewness(const non_central_f_distribution<RealType, Policy>& dist)
+      { // skewness = sqrt(l).
+         const char* function = "skewness(non_central_f_distribution<%1%> const&)";
+         BOOST_MATH_STD_USING
+         RealType n = dist.degrees_of_freedom1();
+         RealType m = dist.degrees_of_freedom2();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            n, &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               m, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy()))
+               return r;
+         if(m <= 6)
+            return policies::raise_domain_error(
+               function,
+               "Second degrees of freedom parameter was %1%, but must be > 6 !",
+               m, Policy());
+         RealType result = 2 * constants::root_two<RealType>();
+         result *= sqrt(m - 4);
+         result *= (n * (m + n - 2) *(m + 2 * n - 2)
+            + 3 * (m + n - 2) * (m + 2 * n - 2) * l
+            + 6 * (m + n - 2) * l * l + 2 * l * l * l);
+         result /= (m - 6) * pow(n * (m + n - 2) + 2 * (m + n - 2) * l + l * l, RealType(1.5f));
+         return result;
+      }
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis_excess(const non_central_f_distribution<RealType, Policy>& dist)
+      {
+         const char* function = "kurtosis_excess(non_central_f_distribution<%1%> const&)";
+         BOOST_MATH_STD_USING
+         RealType n = dist.degrees_of_freedom1();
+         RealType m = dist.degrees_of_freedom2();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df(
+            function,
+            n, &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               m, &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               l,
+               &r,
+               Policy()))
+               return r;
+         if(m <= 8)
+            return policies::raise_domain_error(
+               function,
+               "Second degrees of freedom parameter was %1%, but must be > 8 !",
+               m, Policy());
+         RealType l2 = l * l;
+         RealType l3 = l2 * l;
+         RealType l4 = l2 * l2;
+         RealType result = (3 * (m - 4) * (n * (m + n - 2)
+            * (4 * (m - 2) * (m - 2)
+            + (m - 2) * (m + 10) * n
+            + (10 + m) * n * n)
+            + 4 * (m + n - 2) * (4 * (m - 2) * (m - 2)
+            + (m - 2) * (10 + m) * n
+            + (10 + m) * n * n) * l + 2 * (10 + m)
+            * (m + n - 2) * (2 * m + 3 * n - 4) * l2
+            + 4 * (10 + m) * (-2 + m + n) * l3
+            + (10 + m) * l4))
+            /
+            ((-8 + m) * (-6 + m) * boost::math::pow<2>(n * (-2 + m + n)
+            + 2 * (-2 + m + n) * l + l2));
+            return result;
+      } // kurtosis_excess
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis(const non_central_f_distribution<RealType, Policy>& dist)
+      {
+         return kurtosis_excess(dist) + 3;
+      }
+
+      template <class RealType, class Policy>
+      inline RealType pdf(const non_central_f_distribution<RealType, Policy>& dist, const RealType& x)
+      { // Probability Density/Mass Function.
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy,
+            policies::promote_float<false>,
+            policies::promote_double<false>,
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+
+         value_type alpha = dist.degrees_of_freedom1() / 2;
+         value_type beta = dist.degrees_of_freedom2() / 2;
+         value_type y = x * alpha / beta;
+         value_type r = pdf(boost::math::non_central_beta_distribution<value_type, forwarding_policy>(alpha, beta, dist.non_centrality()), y / (1 + y));
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            r * (dist.degrees_of_freedom1() / dist.degrees_of_freedom2()) / ((1 + y) * (1 + y)),
+            "pdf(non_central_f_distribution<%1%>, %1%)");
+      } // pdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const non_central_f_distribution<RealType, Policy>& dist, const RealType& x)
+      {
+         const char* function = "cdf(const non_central_f_distribution<%1%>&, %1%)";
+         RealType r;
+         if(!detail::check_df(
+            function,
+            dist.degrees_of_freedom1(), &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               dist.degrees_of_freedom2(), &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               dist.non_centrality(),
+               &r,
+               Policy()))
+               return r;
+
+         if((x < 0) || !(boost::math::isfinite)(x))
+         {
+            return policies::raise_domain_error<RealType>(
+               function, "Random Variable parameter was %1%, but must be > 0 !", x, Policy());
+         }
+
+         RealType alpha = dist.degrees_of_freedom1() / 2;
+         RealType beta = dist.degrees_of_freedom2() / 2;
+         RealType y = x * alpha / beta;
+         RealType c = y / (1 + y);
+         RealType cp = 1 / (1 + y);
+         //
+         // To ensure accuracy, we pass both x and 1-x to the
+         // non-central beta cdf routine, this ensures accuracy
+         // even when we compute x to be ~ 1:
+         //
+         r = detail::non_central_beta_cdf(c, cp, alpha, beta,
+            dist.non_centrality(), false, Policy());
+         return r;
+      } // cdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const complemented2_type<non_central_f_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function
+         const char* function = "cdf(complement(const non_central_f_distribution<%1%>&, %1%))";
+         RealType r;
+         if(!detail::check_df(
+            function,
+            c.dist.degrees_of_freedom1(), &r, Policy())
+               ||
+            !detail::check_df(
+               function,
+               c.dist.degrees_of_freedom2(), &r, Policy())
+               ||
+            !detail::check_non_centrality(
+               function,
+               c.dist.non_centrality(),
+               &r,
+               Policy()))
+               return r;
+
+         if((c.param < 0) || !(boost::math::isfinite)(c.param))
+         {
+            return policies::raise_domain_error<RealType>(
+               function, "Random Variable parameter was %1%, but must be > 0 !", c.param, Policy());
+         }
+
+         RealType alpha = c.dist.degrees_of_freedom1() / 2;
+         RealType beta = c.dist.degrees_of_freedom2() / 2;
+         RealType y = c.param * alpha / beta;
+         RealType x = y / (1 + y);
+         RealType cx = 1 / (1 + y);
+         //
+         // To ensure accuracy, we pass both x and 1-x to the
+         // non-central beta cdf routine, this ensures accuracy
+         // even when we compute x to be ~ 1:
+         //
+         r = detail::non_central_beta_cdf(x, cx, alpha, beta,
+            c.dist.non_centrality(), true, Policy());
+         return r;
+      } // ccdf
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const non_central_f_distribution<RealType, Policy>& dist, const RealType& p)
+      { // Quantile (or Percent Point) function.
+         RealType alpha = dist.degrees_of_freedom1() / 2;
+         RealType beta = dist.degrees_of_freedom2() / 2;
+         RealType x = quantile(boost::math::non_central_beta_distribution<RealType, Policy>(alpha, beta, dist.non_centrality()), p);
+         if(x == 1)
+            return policies::raise_overflow_error<RealType>(
+               "quantile(const non_central_f_distribution<%1%>&, %1%)",
+               "Result of non central F quantile is too large to represent.",
+               Policy());
+         return (x / (1 - x)) * (dist.degrees_of_freedom2() / dist.degrees_of_freedom1());
+      } // quantile
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const complemented2_type<non_central_f_distribution<RealType, Policy>, RealType>& c)
+      { // Quantile (or Percent Point) function.
+         RealType alpha = c.dist.degrees_of_freedom1() / 2;
+         RealType beta = c.dist.degrees_of_freedom2() / 2;
+         RealType x = quantile(complement(boost::math::non_central_beta_distribution<RealType, Policy>(alpha, beta, c.dist.non_centrality()), c.param));
+         if(x == 1)
+            return policies::raise_overflow_error<RealType>(
+               "quantile(complement(const non_central_f_distribution<%1%>&, %1%))",
+               "Result of non central F quantile is too large to represent.",
+               Policy());
+         return (x / (1 - x)) * (c.dist.degrees_of_freedom2() / c.dist.degrees_of_freedom1());
+      } // quantile complement.
+
+   } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_F_HPP
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/non_central_t.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,1202 @@
+// boost\math\distributions\non_central_t.hpp
+
+// Copyright John Maddock 2008.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
+#define BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/distributions/non_central_beta.hpp> // for nc beta
+#include <boost/math/distributions/normal.hpp> // for normal CDF and quantile
+#include <boost/math/distributions/students_t.hpp>
+#include <boost/math/distributions/detail/generic_quantile.hpp> // quantile
+
+namespace boost
+{
+   namespace math
+   {
+
+      template <class RealType, class Policy>
+      class non_central_t_distribution;
+
+      namespace detail{
+
+         template <class T, class Policy>
+         T non_central_t2_p(T v, T delta, T x, T y, const Policy& pol, T init_val)
+         {
+            BOOST_MATH_STD_USING
+            //
+            // Variables come first:
+            //
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = policies::get_epsilon<T, Policy>();
+            T d2 = delta * delta / 2;
+            //
+            // k is the starting point for iteration, and is the
+            // maximum of the poisson weighting term, we don't
+            // ever allow k == 0 as this can lead to catastrophic
+            // cancellation errors later (test case is v = 1621286869049072.3
+            // delta = 0.16212868690490723, x = 0.86987415482475994).
+            //
+            int k = itrunc(d2);
+            T pois;
+            if(k == 0) k = 1;
+            // Starting Poisson weight:
+            pois = gamma_p_derivative(T(k+1), d2, pol) 
+               * tgamma_delta_ratio(T(k + 1), T(0.5f))
+               * delta / constants::root_two<T>();
+            if(pois == 0)
+               return init_val;
+            T xterm, beta;
+            // Recurrance & starting beta terms:
+            beta = x < y
+               ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, false, true, &xterm)
+               : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, true, true, &xterm);
+            xterm *= y / (v / 2 + k);
+            T poisf(pois), betaf(beta), xtermf(xterm);
+            T sum = init_val;
+            if((xterm == 0) && (beta == 0))
+               return init_val;
+
+            //
+            // Backwards recursion first, this is the stable
+            // direction for recursion:
+            //
+            boost::uintmax_t count = 0;
+            T last_term = 0;
+            for(int i = k; i >= 0; --i)
+            {
+               T term = beta * pois;
+               sum += term;
+               // Don't terminate on first term in case we "fixed" k above:
+               if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
+                  break;
+               last_term = term;
+               pois *= (i + 0.5f) / d2;
+               beta += xterm;
+               xterm *= (i) / (x * (v / 2 + i - 1));
+               ++count;
+            }
+            last_term = 0;
+            for(int i = k + 1; ; ++i)
+            {
+               poisf *= d2 / (i + 0.5f);
+               xtermf *= (x * (v / 2 + i - 1)) / (i);
+               betaf -= xtermf;
+               T term = poisf * betaf;
+               sum += term;
+               if((fabs(last_term) >= fabs(term)) && (fabs(term/sum) < errtol))
+                  break;
+               last_term = term;
+               ++count;
+               if(count > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "cdf(non_central_t_distribution<%1%>, %1%)", 
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+            }
+            return sum;
+         }
+
+         template <class T, class Policy>
+         T non_central_t2_q(T v, T delta, T x, T y, const Policy& pol, T init_val)
+         {
+            BOOST_MATH_STD_USING
+            //
+            // Variables come first:
+            //
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T d2 = delta * delta / 2;
+            //
+            // k is the starting point for iteration, and is the
+            // maximum of the poisson weighting term, we don't allow
+            // k == 0 as this can cause catastrophic cancellation errors
+            // (test case is v = 561908036470413.25, delta = 0.056190803647041321,
+            // x = 1.6155232703966216):
+            //
+            int k = itrunc(d2);
+            if(k == 0) k = 1;
+            // Starting Poisson weight:
+            T pois;
+            if((k < (int)(max_factorial<T>::value)) && (d2 < tools::log_max_value<T>()) && (log(d2) * k < tools::log_max_value<T>()))
+            {
+               //
+               // For small k we can optimise this calculation by using
+               // a simpler reduced formula:
+               //
+               pois = exp(-d2);
+               pois *= pow(d2, static_cast<T>(k));
+               pois /= boost::math::tgamma(T(k + 1 + 0.5), pol);
+               pois *= delta / constants::root_two<T>();
+            }
+            else
+            {
+               pois = gamma_p_derivative(T(k+1), d2, pol) 
+                  * tgamma_delta_ratio(T(k + 1), T(0.5f))
+                  * delta / constants::root_two<T>();
+            }
+            if(pois == 0)
+               return init_val;
+            // Recurance term:
+            T xterm;
+            T beta;
+            // Starting beta term:
+            if(k != 0)
+            {
+               beta = x < y 
+                  ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, true, true, &xterm) 
+                  : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, false, true, &xterm);
+
+               xterm *= y / (v / 2 + k);
+            }
+            else
+            {
+               beta = pow(y, v / 2);
+               xterm = beta;
+            }
+            T poisf(pois), betaf(beta), xtermf(xterm);
+            T sum = init_val;
+            if((xterm == 0) && (beta == 0))
+               return init_val;
+
+            //
+            // Fused forward and backwards recursion:
+            //
+            boost::uintmax_t count = 0;
+            T last_term = 0;
+            for(int i = k + 1, j = k; ; ++i, --j)
+            {
+               poisf *= d2 / (i + 0.5f);
+               xtermf *= (x * (v / 2 + i - 1)) / (i);
+               betaf += xtermf;
+               T term = poisf * betaf;
+
+               if(j >= 0)
+               {
+                  term += beta * pois;
+                  pois *= (j + 0.5f) / d2;
+                  beta -= xterm;
+                  xterm *= (j) / (x * (v / 2 + j - 1));
+               }
+
+               sum += term;
+               // Don't terminate on first term in case we "fixed" the value of k above:
+               if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
+                  break;
+               last_term = term;
+               if(count > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "cdf(non_central_t_distribution<%1%>, %1%)", 
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+               ++count;
+            }
+            return sum;
+         }
+
+         template <class T, class Policy>
+         T non_central_t_cdf(T v, T delta, T t, bool invert, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+            if ((boost::math::isinf)(v))
+            { // Infinite degrees of freedom, so use normal distribution located at delta.
+               normal_distribution<T, Policy> n(delta, 1); 
+               return cdf(n, t);
+            }
+            //
+            // Otherwise, for t < 0 we have to use the reflection formula:
+            if(t < 0)
+            {
+               t = -t;
+               delta = -delta;
+               invert = !invert;
+            }
+            if(fabs(delta / (4 * v)) < policies::get_epsilon<T, Policy>())
+            {
+               // Approximate with a Student's T centred on delta,
+               // the crossover point is based on eq 2.6 from
+               // "A Comparison of Approximations To Percentiles of the
+               // Noncentral t-Distribution".  H. Sahai and M. M. Ojeda,
+               // Revista Investigacion Operacional Vol 21, No 2, 2000.
+               // Original sources referenced in the above are:
+               // "Some Approximations to the Percentage Points of the Noncentral
+               // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
+               // "Continuous Univariate Distributions".  N.L. Johnson, S. Kotz and
+               // N. Balkrishnan. 1995. John Wiley and Sons New York.
+               T result = cdf(students_t_distribution<T, Policy>(v), t - delta);
+               return invert ? 1 - result : result;
+            }
+            //
+            // x and y are the corresponding random
+            // variables for the noncentral beta distribution,
+            // with y = 1 - x:
+            //
+            T x = t * t / (v + t * t);
+            T y = v / (v + t * t);
+            T d2 = delta * delta;
+            T a = 0.5f;
+            T b = v / 2;
+            T c = a + b + d2 / 2;
+            //
+            // Crossover point for calculating p or q is the same
+            // as for the noncentral beta:
+            //
+            T cross = 1 - (b / c) * (1 + d2 / (2 * c * c));
+            T result;
+            if(x < cross)
+            {
+               //
+               // Calculate p:
+               //
+               if(x != 0)
+               {
+                  result = non_central_beta_p(a, b, d2, x, y, pol);
+                  result = non_central_t2_p(v, delta, x, y, pol, result);
+                  result /= 2;
+               }
+               else
+                  result = 0;
+               result += cdf(boost::math::normal_distribution<T, Policy>(), -delta);
+            }
+            else
+            {
+               //
+               // Calculate q:
+               //
+               invert = !invert;
+               if(x != 0)
+               {
+                  result = non_central_beta_q(a, b, d2, x, y, pol);
+                  result = non_central_t2_q(v, delta, x, y, pol, result);
+                  result /= 2;
+               }
+               else // x == 0
+                  result = cdf(complement(boost::math::normal_distribution<T, Policy>(), -delta));
+            }
+            if(invert)
+               result = 1 - result;
+            return result;
+         }
+
+         template <class T, class Policy>
+         T non_central_t_quantile(const char* function, T v, T delta, T p, T q, const Policy&)
+         {
+            BOOST_MATH_STD_USING
+     //       static const char* function = "quantile(non_central_t_distribution<%1%>, %1%)";
+     // now passed as function
+            typedef typename policies::evaluation<T, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy, 
+               policies::promote_float<false>, 
+               policies::promote_double<false>, 
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+
+               T r;
+               if(!detail::check_df_gt0_to_inf(
+                  function,
+                  v, &r, Policy())
+                  ||
+               !detail::check_finite(
+                  function,
+                  delta,
+                  &r,
+                  Policy())
+                  ||
+               !detail::check_probability(
+                  function,
+                  p,
+                  &r,
+                  Policy()))
+                     return r;
+
+
+            value_type guess = 0;
+            if ( ((boost::math::isinf)(v)) || (v > 1 / boost::math::tools::epsilon<T>()) )
+            { // Infinite or very large degrees of freedom, so use normal distribution located at delta.
+               normal_distribution<T, Policy> n(delta, 1);
+               if (p < q)
+               {
+                 return quantile(n, p);
+               }
+               else
+               {
+                 return quantile(complement(n, q));
+               }
+            }
+            else if(v > 3)
+            { // Use normal distribution to calculate guess.
+               value_type mean = (v > 1 / policies::get_epsilon<T, Policy>()) ? delta : delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f));
+               value_type var = (v > 1 / policies::get_epsilon<T, Policy>()) ? value_type(1) : (((delta * delta + 1) * v) / (v - 2) - mean * mean);
+               if(p < q)
+                  guess = quantile(normal_distribution<value_type, forwarding_policy>(mean, var), p);
+               else
+                  guess = quantile(complement(normal_distribution<value_type, forwarding_policy>(mean, var), q));
+            }
+            //
+            // We *must* get the sign of the initial guess correct, 
+            // or our root-finder will fail, so double check it now:
+            //
+            value_type pzero = non_central_t_cdf(
+               static_cast<value_type>(v), 
+               static_cast<value_type>(delta), 
+               static_cast<value_type>(0), 
+               !(p < q), 
+               forwarding_policy());
+            int s;
+            if(p < q)
+               s = boost::math::sign(p - pzero);
+            else
+               s = boost::math::sign(pzero - q);
+            if(s != boost::math::sign(guess))
+            {
+               guess = static_cast<T>(s);
+            }
+
+            value_type result = detail::generic_quantile(
+               non_central_t_distribution<value_type, forwarding_policy>(v, delta), 
+               (p < q ? p : q), 
+               guess, 
+               (p >= q), 
+               function);
+            return policies::checked_narrowing_cast<T, forwarding_policy>(
+               result, 
+               function);
+         }
+
+         template <class T, class Policy>
+         T non_central_t2_pdf(T n, T delta, T x, T y, const Policy& pol, T init_val)
+         {
+            BOOST_MATH_STD_USING
+            //
+            // Variables come first:
+            //
+            boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
+            T errtol = boost::math::policies::get_epsilon<T, Policy>();
+            T d2 = delta * delta / 2;
+            //
+            // k is the starting point for iteration, and is the
+            // maximum of the poisson weighting term:
+            //
+            int k = itrunc(d2);
+            T pois, xterm;
+            if(k == 0)
+               k = 1;
+            // Starting Poisson weight:
+            pois = gamma_p_derivative(T(k+1), d2, pol) 
+               * tgamma_delta_ratio(T(k + 1), T(0.5f))
+               * delta / constants::root_two<T>();
+            // Starting beta term:
+            xterm = x < y
+               ? ibeta_derivative(T(k + 1), n / 2, x, pol)
+               : ibeta_derivative(n / 2, T(k + 1), y, pol);
+            T poisf(pois), xtermf(xterm);
+            T sum = init_val;
+            if((pois == 0) || (xterm == 0))
+               return init_val;
+
+            //
+            // Backwards recursion first, this is the stable
+            // direction for recursion:
+            //
+            boost::uintmax_t count = 0;
+            for(int i = k; i >= 0; --i)
+            {
+               T term = xterm * pois;
+               sum += term;
+               if(((fabs(term/sum) < errtol) && (i != k)) || (term == 0))
+                  break;
+               pois *= (i + 0.5f) / d2;
+               xterm *= (i) / (x * (n / 2 + i));
+               ++count;
+               if(count > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "pdf(non_central_t_distribution<%1%>, %1%)", 
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+            }
+            for(int i = k + 1; ; ++i)
+            {
+               poisf *= d2 / (i + 0.5f);
+               xtermf *= (x * (n / 2 + i)) / (i);
+               T term = poisf * xtermf;
+               sum += term;
+               if((fabs(term/sum) < errtol) || (term == 0))
+                  break;
+               ++count;
+               if(count > max_iter)
+               {
+                  return policies::raise_evaluation_error(
+                     "pdf(non_central_t_distribution<%1%>, %1%)", 
+                     "Series did not converge, closest value was %1%", sum, pol);
+               }
+            }
+            return sum;
+         }
+
+         template <class T, class Policy>
+         T non_central_t_pdf(T n, T delta, T t, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+            if ((boost::math::isinf)(n))
+            { // Infinite degrees of freedom, so use normal distribution located at delta.
+               normal_distribution<T, Policy> norm(delta, 1); 
+               return pdf(norm, t);
+            }
+            //
+            // Otherwise, for t < 0 we have to use the reflection formula:
+            if(t < 0)
+            {
+               t = -t;
+               delta = -delta;
+            }
+            if(t == 0)
+            {
+               //
+               // Handle this as a special case, using the formula
+               // from Weisstein, Eric W. 
+               // "Noncentral Student's t-Distribution." 
+               // From MathWorld--A Wolfram Web Resource. 
+               // http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html 
+               // 
+               // The formula is simplified thanks to the relation
+               // 1F1(a,b,0) = 1.
+               //
+               return tgamma_delta_ratio(n / 2 + 0.5f, T(0.5f))
+                  * sqrt(n / constants::pi<T>()) 
+                  * exp(-delta * delta / 2) / 2;
+            }
+            if(fabs(delta / (4 * n)) < policies::get_epsilon<T, Policy>())
+            {
+               // Approximate with a Student's T centred on delta,
+               // the crossover point is based on eq 2.6 from
+               // "A Comparison of Approximations To Percentiles of the
+               // Noncentral t-Distribution".  H. Sahai and M. M. Ojeda,
+               // Revista Investigacion Operacional Vol 21, No 2, 2000.
+               // Original sources referenced in the above are:
+               // "Some Approximations to the Percentage Points of the Noncentral
+               // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
+               // "Continuous Univariate Distributions".  N.L. Johnson, S. Kotz and
+               // N. Balkrishnan. 1995. John Wiley and Sons New York.
+               return pdf(students_t_distribution<T, Policy>(n), t - delta);
+            }
+            //
+            // x and y are the corresponding random
+            // variables for the noncentral beta distribution,
+            // with y = 1 - x:
+            //
+            T x = t * t / (n + t * t);
+            T y = n / (n + t * t);
+            T a = 0.5f;
+            T b = n / 2;
+            T d2 = delta * delta;
+            //
+            // Calculate pdf:
+            //
+            T dt = n * t / (n * n + 2 * n * t * t + t * t * t * t);
+            T result = non_central_beta_pdf(a, b, d2, x, y, pol);
+            T tol = tools::epsilon<T>() * result * 500;
+            result = non_central_t2_pdf(n, delta, x, y, pol, result);
+            if(result <= tol)
+               result = 0;
+            result *= dt;
+            return result;
+         }
+
+         template <class T, class Policy>
+         T mean(T v, T delta, const Policy& pol)
+         {
+            if ((boost::math::isinf)(v))
+            {
+               return delta;
+            }
+            BOOST_MATH_STD_USING
+            if (v > 1 / boost::math::tools::epsilon<T>() )
+            {
+              //normal_distribution<T, Policy> n(delta, 1);
+              //return boost::math::mean(n); 
+              return delta;
+            }
+            else
+            {
+             return delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f), pol);
+            }
+            // Other moments use mean so using normal distribution is propagated.
+         }
+
+         template <class T, class Policy>
+         T variance(T v, T delta, const Policy& pol)
+         {
+            if ((boost::math::isinf)(v))
+            {
+               return 1;
+            }
+            if (delta == 0)
+            {  // == Student's t
+              return v / (v - 2);
+            }
+            T result = ((delta * delta + 1) * v) / (v - 2);
+            T m = mean(v, delta, pol);
+            result -= m * m;
+            return result;
+         }
+
+         template <class T, class Policy>
+         T skewness(T v, T delta, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+            if ((boost::math::isinf)(v))
+            {
+               return 0;
+            }
+            if(delta == 0)
+            { // == Student's t
+              return 0;
+            }
+            T mean = boost::math::detail::mean(v, delta, pol);
+            T l2 = delta * delta;
+            T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
+            T result = -2 * var;
+            result += v * (l2 + 2 * v - 3) / ((v - 3) * (v - 2));
+            result *= mean;
+            result /= pow(var, T(1.5f));
+            return result;
+         }
+
+         template <class T, class Policy>
+         T kurtosis_excess(T v, T delta, const Policy& pol)
+         {
+            BOOST_MATH_STD_USING
+            if ((boost::math::isinf)(v))
+            {
+               return 3;
+            }
+            if (delta == 0)
+            { // == Student's t
+              return 3;
+            }
+            T mean = boost::math::detail::mean(v, delta, pol);
+            T l2 = delta * delta;
+            T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
+            T result = -3 * var;
+            result += v * (l2 * (v + 1) + 3 * (3 * v - 5)) / ((v - 3) * (v - 2));
+            result *= -mean * mean;
+            result += v * v * (l2 * l2 + 6 * l2 + 3) / ((v - 4) * (v - 2));
+            result /= var * var;
+            return result;
+         }
+
+#if 0
+         // 
+         // This code is disabled, since there can be multiple answers to the
+         // question, and it's not clear how to find the "right" one.
+         //
+         template <class RealType, class Policy>
+         struct t_degrees_of_freedom_finder
+         {
+            t_degrees_of_freedom_finder(
+               RealType delta_, RealType x_, RealType p_, bool c)
+               : delta(delta_), x(x_), p(p_), comp(c) {}
+
+            RealType operator()(const RealType& v)
+            {
+               non_central_t_distribution<RealType, Policy> d(v, delta);
+               return comp ?
+                  p - cdf(complement(d, x))
+                  : cdf(d, x) - p;
+            }
+         private:
+            RealType delta;
+            RealType x;
+            RealType p;
+            bool comp;
+         };
+
+         template <class RealType, class Policy>
+         inline RealType find_t_degrees_of_freedom(
+            RealType delta, RealType x, RealType p, RealType q, const Policy& pol)
+         {
+            const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
+            if((p == 0) || (q == 0))
+            {
+               //
+               // Can't a thing if one of p and q is zero:
+               //
+               return policies::raise_evaluation_error<RealType>(function, 
+                  "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%", 
+                  RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
+            }
+            t_degrees_of_freedom_finder<RealType, Policy> f(delta, x, p < q ? p : q, p < q ? false : true);
+            tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+            boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+            //
+            // Pick an initial guess:
+            //
+            RealType guess = 200;
+            std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
+               f, guess, RealType(2), false, tol, max_iter, pol);
+            RealType result = ir.first + (ir.second - ir.first) / 2;
+            if(max_iter >= policies::get_max_root_iterations<Policy>())
+            {
+               return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+                  " or there is no answer to problem.  Current best guess is %1%", result, Policy());
+            }
+            return result;
+         }
+
+         template <class RealType, class Policy>
+         struct t_non_centrality_finder
+         {
+            t_non_centrality_finder(
+               RealType v_, RealType x_, RealType p_, bool c)
+               : v(v_), x(x_), p(p_), comp(c) {}
+
+            RealType operator()(const RealType& delta)
+            {
+               non_central_t_distribution<RealType, Policy> d(v, delta);
+               return comp ?
+                  p - cdf(complement(d, x))
+                  : cdf(d, x) - p;
+            }
+         private:
+            RealType v;
+            RealType x;
+            RealType p;
+            bool comp;
+         };
+
+         template <class RealType, class Policy>
+         inline RealType find_t_non_centrality(
+            RealType v, RealType x, RealType p, RealType q, const Policy& pol)
+         {
+            const char* function = "non_central_t<%1%>::find_t_non_centrality";
+            if((p == 0) || (q == 0))
+            {
+               //
+               // Can't do a thing if one of p and q is zero:
+               //
+               return policies::raise_evaluation_error<RealType>(function, 
+                  "Can't find non-centrality parameter when the probability is 0 or 1, only possible answer is %1%", 
+                  RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
+            }
+            t_non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
+            tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+            boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+            //
+            // Pick an initial guess that we know is the right side of
+            // zero:
+            //
+            RealType guess;
+            if(f(0) < 0)
+               guess = 1;
+            else
+               guess = -1;
+            std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
+               f, guess, RealType(2), false, tol, max_iter, pol);
+            RealType result = ir.first + (ir.second - ir.first) / 2;
+            if(max_iter >= policies::get_max_root_iterations<Policy>())
+            {
+               return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+                  " or there is no answer to problem.  Current best guess is %1%", result, Policy());
+            }
+            return result;
+         }
+#endif
+      } // namespace detail ======================================================================
+
+      template <class RealType = double, class Policy = policies::policy<> >
+      class non_central_t_distribution
+      {
+      public:
+         typedef RealType value_type;
+         typedef Policy policy_type;
+
+         non_central_t_distribution(RealType v_, RealType lambda) : v(v_), ncp(lambda)
+         { 
+            const char* function = "boost::math::non_central_t_distribution<%1%>::non_central_t_distribution(%1%,%1%)";
+            RealType r;
+            detail::check_df_gt0_to_inf(
+               function,
+               v, &r, Policy());
+            detail::check_finite(
+               function,
+               lambda,
+               &r,
+               Policy());
+         } // non_central_t_distribution constructor.
+
+         RealType degrees_of_freedom() const
+         { // Private data getter function.
+            return v;
+         }
+         RealType non_centrality() const
+         { // Private data getter function.
+            return ncp;
+         }
+#if 0
+         // 
+         // This code is disabled, since there can be multiple answers to the
+         // question, and it's not clear how to find the "right" one.
+         //
+         static RealType find_degrees_of_freedom(RealType delta, RealType x, RealType p)
+         {
+            const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy, 
+               policies::promote_float<false>, 
+               policies::promote_double<false>, 
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            value_type result = detail::find_t_degrees_of_freedom(
+               static_cast<value_type>(delta), 
+               static_cast<value_type>(x), 
+               static_cast<value_type>(p), 
+               static_cast<value_type>(1-p), 
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result, 
+               function);
+         }
+         template <class A, class B, class C>
+         static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
+         {
+            const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy, 
+               policies::promote_float<false>, 
+               policies::promote_double<false>, 
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            value_type result = detail::find_t_degrees_of_freedom(
+               static_cast<value_type>(c.dist), 
+               static_cast<value_type>(c.param1), 
+               static_cast<value_type>(1-c.param2), 
+               static_cast<value_type>(c.param2), 
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result, 
+               function);
+         }
+         static RealType find_non_centrality(RealType v, RealType x, RealType p)
+         {
+            const char* function = "non_central_t<%1%>::find_t_non_centrality";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy, 
+               policies::promote_float<false>, 
+               policies::promote_double<false>, 
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            value_type result = detail::find_t_non_centrality(
+               static_cast<value_type>(v), 
+               static_cast<value_type>(x), 
+               static_cast<value_type>(p), 
+               static_cast<value_type>(1-p), 
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result, 
+               function);
+         }
+         template <class A, class B, class C>
+         static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
+         {
+            const char* function = "non_central_t<%1%>::find_t_non_centrality";
+            typedef typename policies::evaluation<RealType, Policy>::type value_type;
+            typedef typename policies::normalise<
+               Policy, 
+               policies::promote_float<false>, 
+               policies::promote_double<false>, 
+               policies::discrete_quantile<>,
+               policies::assert_undefined<> >::type forwarding_policy;
+            value_type result = detail::find_t_non_centrality(
+               static_cast<value_type>(c.dist), 
+               static_cast<value_type>(c.param1), 
+               static_cast<value_type>(1-c.param2), 
+               static_cast<value_type>(c.param2), 
+               forwarding_policy());
+            return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+               result, 
+               function);
+         }
+#endif
+      private:
+         // Data member, initialized by constructor.
+         RealType v;   // degrees of freedom
+         RealType ncp; // non-centrality parameter
+      }; // template <class RealType, class Policy> class non_central_t_distribution
+
+      typedef non_central_t_distribution<double> non_central_t; // Reserved name of type double.
+
+      // Non-member functions to give properties of the distribution.
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> range(const non_central_t_distribution<RealType, Policy>& /* dist */)
+      { // Range of permissible values for random variable k.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+      }
+
+      template <class RealType, class Policy>
+      inline const std::pair<RealType, RealType> support(const non_central_t_distribution<RealType, Policy>& /* dist */)
+      { // Range of supported values for random variable k.
+         // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+         using boost::math::tools::max_value;
+         return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+      }
+
+      template <class RealType, class Policy>
+      inline RealType mode(const non_central_t_distribution<RealType, Policy>& dist)
+      { // mode.
+         static const char* function = "mode(non_central_t_distribution<%1%> const&)";
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy()))
+               return (RealType)r;
+
+         BOOST_MATH_STD_USING
+
+         RealType m = v < 3 ? 0 : detail::mean(v, l, Policy());
+         RealType var = v < 4 ? 1 : detail::variance(v, l, Policy());
+
+         return detail::generic_find_mode(
+            dist, 
+            m,
+            function,
+            sqrt(var));
+      }
+
+      template <class RealType, class Policy>
+      inline RealType mean(const non_central_t_distribution<RealType, Policy>& dist)
+      { 
+         BOOST_MATH_STD_USING
+         const char* function = "mean(const non_central_t_distribution<%1%>&)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy()))
+               return (RealType)r;
+         if(v <= 1)
+            return policies::raise_domain_error<RealType>(
+               function, 
+               "The non-central t distribution has no defined mean for degrees of freedom <= 1: got v=%1%.", v, Policy());
+         // return l * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, RealType(0.5f));
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::mean(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
+
+      } // mean
+
+      template <class RealType, class Policy>
+      inline RealType variance(const non_central_t_distribution<RealType, Policy>& dist)
+      { // variance.
+         const char* function = "variance(const non_central_t_distribution<%1%>&)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+         BOOST_MATH_STD_USING
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy()))
+               return (RealType)r;
+         if(v <= 2)
+            return policies::raise_domain_error<RealType>(
+               function, 
+               "The non-central t distribution has no defined variance for degrees of freedom <= 2: got v=%1%.", v, Policy());
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::variance(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
+      }
+
+      // RealType standard_deviation(const non_central_t_distribution<RealType, Policy>& dist)
+      // standard_deviation provided by derived accessors.
+
+      template <class RealType, class Policy>
+      inline RealType skewness(const non_central_t_distribution<RealType, Policy>& dist)
+      { // skewness = sqrt(l).
+         const char* function = "skewness(const non_central_t_distribution<%1%>&)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy()))
+               return (RealType)r;
+         if(v <= 3)
+            return policies::raise_domain_error<RealType>(
+               function, 
+               "The non-central t distribution has no defined skewness for degrees of freedom <= 3: got v=%1%.", v, Policy());;
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::skewness(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
+      }
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis_excess(const non_central_t_distribution<RealType, Policy>& dist)
+      { 
+         const char* function = "kurtosis_excess(const non_central_t_distribution<%1%>&)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy()))
+               return (RealType)r;
+         if(v <= 4)
+            return policies::raise_domain_error<RealType>(
+               function, 
+               "The non-central t distribution has no defined kurtosis for degrees of freedom <= 4: got v=%1%.", v, Policy());;
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::kurtosis_excess(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
+      } // kurtosis_excess
+
+      template <class RealType, class Policy>
+      inline RealType kurtosis(const non_central_t_distribution<RealType, Policy>& dist)
+      {
+         return kurtosis_excess(dist) + 3;
+      }
+
+      template <class RealType, class Policy>
+      inline RealType pdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& t)
+      { // Probability Density/Mass Function.
+         const char* function = "pdf(non_central_t_distribution<%1%>, %1%)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy())
+            ||
+         !detail::check_x(
+            function,
+            t,
+            &r,
+            Policy()))
+               return (RealType)r;
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::non_central_t_pdf(static_cast<value_type>(v), 
+               static_cast<value_type>(l), 
+               static_cast<value_type>(t), 
+               Policy()),
+            function);
+      } // pdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& x)
+      { 
+         const char* function = "boost::math::cdf(non_central_t_distribution<%1%>&, %1%)";
+//   was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy())
+            ||
+         !detail::check_x(
+            function,
+            x,
+            &r,
+            Policy()))
+               return (RealType)r;
+          if ((boost::math::isinf)(v))
+          { // Infinite degrees of freedom, so use normal distribution located at delta.
+             normal_distribution<RealType, Policy> n(l, 1); 
+             cdf(n, x);
+              //return cdf(normal_distribution<RealType, Policy>(l, 1), x);
+          }
+
+         if(l == 0)
+         { // NO non-centrality, so use Student's t instead.
+            return cdf(students_t_distribution<RealType, Policy>(v), x);
+         }
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::non_central_t_cdf(
+               static_cast<value_type>(v), 
+               static_cast<value_type>(l), 
+               static_cast<value_type>(x), 
+               false, Policy()),
+            function);
+      } // cdf
+
+      template <class RealType, class Policy>
+      RealType cdf(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
+      { // Complemented Cumulative Distribution Function
+  // was       const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
+         const char* function = "boost::math::cdf(const complement(non_central_t_distribution<%1%>&), %1%)";
+         typedef typename policies::evaluation<RealType, Policy>::type value_type;
+         typedef typename policies::normalise<
+            Policy, 
+            policies::promote_float<false>, 
+            policies::promote_double<false>, 
+            policies::discrete_quantile<>,
+            policies::assert_undefined<> >::type forwarding_policy;
+
+         non_central_t_distribution<RealType, Policy> const& dist = c.dist;
+         RealType x = c.param;
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality(); // aka delta
+         RealType r;
+         if(!detail::check_df_gt0_to_inf(
+            function,
+            v, &r, Policy())
+            ||
+         !detail::check_finite(
+            function,
+            l,
+            &r,
+            Policy())
+            ||
+         !detail::check_x(
+            function,
+            x,
+            &r,
+            Policy()))
+               return (RealType)r;
+
+         if ((boost::math::isinf)(v))
+         { // Infinite degrees of freedom, so use normal distribution located at delta.
+             normal_distribution<RealType, Policy> n(l, 1); 
+             return cdf(complement(n, x));
+         }
+         if(l == 0)
+         { // zero non-centrality so use Student's t distribution.
+            return cdf(complement(students_t_distribution<RealType, Policy>(v), x));
+         }
+         return policies::checked_narrowing_cast<RealType, forwarding_policy>(
+            detail::non_central_t_cdf(
+               static_cast<value_type>(v), 
+               static_cast<value_type>(l), 
+               static_cast<value_type>(x), 
+               true, Policy()),
+            function);
+      } // ccdf
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const non_central_t_distribution<RealType, Policy>& dist, const RealType& p)
+      { // Quantile (or Percent Point) function.
+         static const char* function = "quantile(const non_central_t_distribution<%1%>, %1%)";
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy());
+      } // quantile
+
+      template <class RealType, class Policy>
+      inline RealType quantile(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
+      { // Quantile (or Percent Point) function.
+         static const char* function = "quantile(const complement(non_central_t_distribution<%1%>, %1%))";
+         non_central_t_distribution<RealType, Policy> const& dist = c.dist;
+         RealType q = c.param;
+         RealType v = dist.degrees_of_freedom();
+         RealType l = dist.non_centrality();
+         return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy());
+      } // quantile complement.
+
+   } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/normal.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,329 @@
+//  Copyright John Maddock 2006, 2007.
+//  Copyright Paul A. Bristow 2006, 2007.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_NORMAL_HPP
+#define BOOST_STATS_NORMAL_HPP
+
+// http://en.wikipedia.org/wiki/Normal_distribution
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
+// Also:
+// Weisstein, Eric W. "Normal Distribution."
+// From MathWorld--A Wolfram Web Resource.
+// http://mathworld.wolfram.com/NormalDistribution.html
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/erf.hpp> // for erf/erfc.
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+template <class RealType = double, class Policy = policies::policy<> >
+class normal_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   normal_distribution(RealType l_mean = 0, RealType sd = 1)
+      : m_mean(l_mean), m_sd(sd)
+   { // Default is a 'standard' normal distribution N01.
+     static const char* function = "boost::math::normal_distribution<%1%>::normal_distribution";
+
+     RealType result;
+     detail::check_scale(function, sd, &result, Policy());
+     detail::check_location(function, l_mean, &result, Policy());
+   }
+
+   RealType mean()const
+   { // alias for location.
+      return m_mean;
+   }
+
+   RealType standard_deviation()const
+   { // alias for scale.
+      return m_sd;
+   }
+
+   // Synonyms, provided to allow generic use of find_location and find_scale.
+   RealType location()const
+   { // location.
+      return m_mean;
+   }
+   RealType scale()const
+   { // scale.
+      return m_sd;
+   }
+
+private:
+   //
+   // Data members:
+   //
+   RealType m_mean;  // distribution mean or location.
+   RealType m_sd;    // distribution standard deviation or scale.
+}; // class normal_distribution
+
+typedef normal_distribution<double> normal;
+
+#ifdef BOOST_MSVC
+#pragma warning(push)
+#pragma warning(disable:4127)
+#endif
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const normal_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+  if (std::numeric_limits<RealType>::has_infinity)
+  { 
+     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
+  }
+  else
+  { // Can only use max_value.
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
+  }
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const normal_distribution<RealType, Policy>& /*dist*/)
+{ // This is range values for random variable x where cdf rises from 0 to 1, and outside it, the pdf is zero.
+  if (std::numeric_limits<RealType>::has_infinity)
+  { 
+     return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
+  }
+  else
+  { // Can only use max_value.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(-max_value<RealType>(),  max_value<RealType>()); // - to + max value.
+  }
+}
+
+#ifdef BOOST_MSVC
+#pragma warning(pop)
+#endif
+
+template <class RealType, class Policy>
+inline RealType pdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType sd = dist.standard_deviation();
+   RealType mean = dist.mean();
+
+   static const char* function = "boost::math::pdf(const normal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(false == detail::check_scale(function, sd, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_location(function, mean, &result, Policy()))
+   {
+      return result;
+   }
+   if((boost::math::isinf)(x))
+   {
+     return 0; // pdf + and - infinity is zero.
+   }
+   // Below produces MSVC 4127 warnings, so the above used instead.
+   //if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
+   //{ // pdf + and - infinity is zero.
+   //  return 0;
+   //}
+   if(false == detail::check_x(function, x, &result, Policy()))
+   {
+      return result;
+   }
+
+   RealType exponent = x - mean;
+   exponent *= -exponent;
+   exponent /= 2 * sd * sd;
+
+   result = exp(exponent);
+   result /= sd * sqrt(2 * constants::pi<RealType>());
+
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const normal_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType sd = dist.standard_deviation();
+   RealType mean = dist.mean();
+   static const char* function = "boost::math::cdf(const normal_distribution<%1%>&, %1%)";
+   RealType result = 0;
+   if(false == detail::check_scale(function, sd, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::check_location(function, mean, &result, Policy()))
+   {
+      return result;
+   }
+   if((boost::math::isinf)(x))
+   {
+     if(x < 0) return 0; // -infinity
+     return 1; // + infinity
+   }
+   // These produce MSVC 4127 warnings, so the above used instead.
+   //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
+   //{ // cdf +infinity is unity.
+   //  return 1;
+   //}
+   //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
+   //{ // cdf -infinity is zero.
+   //  return 0;
+   //}
+   if(false == detail::check_x(function, x, &result, Policy()))
+   {
+     return result;
+   }
+   RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
+   result = boost::math::erfc(-diff, Policy()) / 2;
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const normal_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType sd = dist.standard_deviation();
+   RealType mean = dist.mean();
+   static const char* function = "boost::math::quantile(const normal_distribution<%1%>&, %1%)";
+
+   RealType result = 0;
+   if(false == detail::check_scale(function, sd, &result, Policy()))
+      return result;
+   if(false == detail::check_location(function, mean, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   result= boost::math::erfc_inv(2 * p, Policy());
+   result = -result;
+   result *= sd * constants::root_two<RealType>();
+   result += mean;
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<normal_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType sd = c.dist.standard_deviation();
+   RealType mean = c.dist.mean();
+   RealType x = c.param;
+   static const char* function = "boost::math::cdf(const complement(normal_distribution<%1%>&), %1%)";
+
+   RealType result = 0;
+   if(false == detail::check_scale(function, sd, &result, Policy()))
+      return result;
+   if(false == detail::check_location(function, mean, &result, Policy()))
+      return result;
+   if((boost::math::isinf)(x))
+   {
+     if(x < 0) return 1; // cdf complement -infinity is unity.
+     return 0; // cdf complement +infinity is zero
+   }
+   // These produce MSVC 4127 warnings, so the above used instead.
+   //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
+   //{ // cdf complement +infinity is zero.
+   //  return 0;
+   //}
+   //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
+   //{ // cdf complement -infinity is unity.
+   //  return 1;
+   //}
+   if(false == detail::check_x(function, x, &result, Policy()))
+      return result;
+
+   RealType diff = (x - mean) / (sd * constants::root_two<RealType>());
+   result = boost::math::erfc(diff, Policy()) / 2;
+   return result;
+} // cdf complement
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<normal_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   RealType sd = c.dist.standard_deviation();
+   RealType mean = c.dist.mean();
+   static const char* function = "boost::math::quantile(const complement(normal_distribution<%1%>&), %1%)";
+   RealType result = 0;
+   if(false == detail::check_scale(function, sd, &result, Policy()))
+      return result;
+   if(false == detail::check_location(function, mean, &result, Policy()))
+      return result;
+   RealType q = c.param;
+   if(false == detail::check_probability(function, q, &result, Policy()))
+      return result;
+   result = boost::math::erfc_inv(2 * q, Policy());
+   result *= sd * constants::root_two<RealType>();
+   result += mean;
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType mean(const normal_distribution<RealType, Policy>& dist)
+{
+   return dist.mean();
+}
+
+template <class RealType, class Policy>
+inline RealType standard_deviation(const normal_distribution<RealType, Policy>& dist)
+{
+   return dist.standard_deviation();
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const normal_distribution<RealType, Policy>& dist)
+{
+   return dist.mean();
+}
+
+template <class RealType, class Policy>
+inline RealType median(const normal_distribution<RealType, Policy>& dist)
+{
+   return dist.mean();
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const normal_distribution<RealType, Policy>& /*dist*/)
+{
+   return 0;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const normal_distribution<RealType, Policy>& /*dist*/)
+{
+   return 3;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const normal_distribution<RealType, Policy>& /*dist*/)
+{
+   return 0;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_NORMAL_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/pareto.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,444 @@
+//  Copyright John Maddock 2007.
+//  Copyright Paul A. Bristow 2007, 2009
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_PARETO_HPP
+#define BOOST_STATS_PARETO_HPP
+
+// http://en.wikipedia.org/wiki/Pareto_distribution
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
+// Also:
+// Weisstein, Eric W. "Pareto Distribution."
+// From MathWorld--A Wolfram Web Resource.
+// http://mathworld.wolfram.com/ParetoDistribution.html
+// Handbook of Statistical Distributions with Applications, K Krishnamoorthy, ISBN 1-58488-635-8, Chapter 23, pp 257 - 267.
+// Caution KK's a and b are the reverse of Mathworld!
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/special_functions/powm1.hpp>
+
+#include <utility> // for BOOST_CURRENT_VALUE?
+
+namespace boost
+{
+  namespace math
+  {
+    namespace detail
+    { // Parameter checking.
+      template <class RealType, class Policy>
+      inline bool check_pareto_scale(
+        const char* function,
+        RealType scale,
+        RealType* result, const Policy& pol)
+      {
+        if((boost::math::isfinite)(scale))
+        { // any > 0 finite value is OK.
+          if (scale > 0)
+          {
+            return true;
+          }
+          else
+          {
+            *result = policies::raise_domain_error<RealType>(
+              function,
+              "Scale parameter is %1%, but must be > 0!", scale, pol);
+            return false;
+          }
+        }
+        else
+        { // Not finite.
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Scale parameter is %1%, but must be finite!", scale, pol);
+          return false;
+        }
+      } // bool check_pareto_scale
+
+      template <class RealType, class Policy>
+      inline bool check_pareto_shape(
+        const char* function,
+        RealType shape,
+        RealType* result, const Policy& pol)
+      {
+        if((boost::math::isfinite)(shape))
+        { // Any finite value > 0 is OK.
+          if (shape > 0)
+          {
+            return true;
+          }
+          else
+          {
+            *result = policies::raise_domain_error<RealType>(
+              function,
+              "Shape parameter is %1%, but must be > 0!", shape, pol);
+            return false;
+          }
+        }
+        else
+        { // Not finite.
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Shape parameter is %1%, but must be finite!", shape, pol);
+          return false;
+        }
+      } // bool check_pareto_shape(
+
+      template <class RealType, class Policy>
+      inline bool check_pareto_x(
+        const char* function,
+        RealType const& x,
+        RealType* result, const Policy& pol)
+      {
+        if((boost::math::isfinite)(x))
+        { //
+          if (x > 0)
+          {
+            return true;
+          }
+          else
+          {
+            *result = policies::raise_domain_error<RealType>(
+              function,
+              "x parameter is %1%, but must be > 0 !", x, pol);
+            return false;
+          }
+        }
+        else
+        { // Not finite..
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "x parameter is %1%, but must be finite!", x, pol);
+          return false;
+        }
+      } // bool check_pareto_x
+
+      template <class RealType, class Policy>
+      inline bool check_pareto( // distribution parameters.
+        const char* function,
+        RealType scale,
+        RealType shape,
+        RealType* result, const Policy& pol)
+      {
+        return check_pareto_scale(function, scale, result, pol)
+           && check_pareto_shape(function, shape, result, pol);
+      } // bool check_pareto(
+
+    } // namespace detail
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class pareto_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      pareto_distribution(RealType l_scale = 1, RealType l_shape = 1)
+        : m_scale(l_scale), m_shape(l_shape)
+      { // Constructor.
+        RealType result = 0;
+        detail::check_pareto("boost::math::pareto_distribution<%1%>::pareto_distribution", l_scale, l_shape, &result, Policy());
+      }
+
+      RealType scale()const
+      { // AKA Xm and Wolfram b and beta
+        return m_scale;
+      }
+
+      RealType shape()const
+      { // AKA k and Wolfram a and alpha
+        return m_shape;
+      }
+    private:
+      // Data members:
+      RealType m_scale;  // distribution scale (xm) or beta
+      RealType m_shape;  // distribution shape (k) or alpha
+    };
+
+    typedef pareto_distribution<double> pareto; // Convenience to allow pareto(2., 3.);
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const pareto_distribution<RealType, Policy>& /*dist*/)
+    { // Range of permissible values for random variable x.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // scale zero to + infinity.
+    } // range
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const pareto_distribution<RealType, Policy>& dist)
+    { // Range of supported values for random variable x.
+      // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+      using boost::math::tools::max_value;
+      return std::pair<RealType, RealType>(dist.scale(), max_value<RealType>() ); // scale to + infinity.
+    } // support
+
+    template <class RealType, class Policy>
+    inline RealType pdf(const pareto_distribution<RealType, Policy>& dist, const RealType& x)
+    {
+      BOOST_MATH_STD_USING  // for ADL of std function pow.
+      static const char* function = "boost::math::pdf(const pareto_distribution<%1%>&, %1%)";
+      RealType scale = dist.scale();
+      RealType shape = dist.shape();
+      RealType result = 0;
+      if(false == (detail::check_pareto_x(function, x, &result, Policy())
+         && detail::check_pareto(function, scale, shape, &result, Policy())))
+         return result;
+      if (x < scale)
+      { // regardless of shape, pdf is zero (or should be disallow x < scale and throw an exception?).
+        return 0;
+      }
+      result = shape * pow(scale, shape) / pow(x, shape+1);
+      return result;
+    } // pdf
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const pareto_distribution<RealType, Policy>& dist, const RealType& x)
+    {
+      BOOST_MATH_STD_USING  // for ADL of std function pow.
+      static const char* function = "boost::math::cdf(const pareto_distribution<%1%>&, %1%)";
+      RealType scale = dist.scale();
+      RealType shape = dist.shape();
+      RealType result = 0;
+
+      if(false == (detail::check_pareto_x(function, x, &result, Policy())
+         && detail::check_pareto(function, scale, shape, &result, Policy())))
+         return result;
+
+      if (x <= scale)
+      { // regardless of shape, cdf is zero.
+        return 0;
+      }
+
+      // result = RealType(1) - pow((scale / x), shape);
+      result = -boost::math::powm1(scale/x, shape, Policy()); // should be more accurate.
+      return result;
+    } // cdf
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const pareto_distribution<RealType, Policy>& dist, const RealType& p)
+    {
+      BOOST_MATH_STD_USING  // for ADL of std function pow.
+      static const char* function = "boost::math::quantile(const pareto_distribution<%1%>&, %1%)";
+      RealType result = 0;
+      RealType scale = dist.scale();
+      RealType shape = dist.shape();
+      if(false == (detail::check_probability(function, p, &result, Policy())
+           && detail::check_pareto(function, scale, shape, &result, Policy())))
+      {
+        return result;
+      }
+      if (p == 0)
+      {
+        return scale; // x must be scale (or less).
+      }
+      if (p == 1)
+      {
+        return policies::raise_overflow_error<RealType>(function, 0, Policy()); // x = + infinity.
+      }
+      result = scale /
+        (pow((1 - p), 1 / shape));
+      // K. Krishnamoorthy,  ISBN 1-58488-635-8 eq 23.1.3
+      return result;
+    } // quantile
+
+    template <class RealType, class Policy>
+    inline RealType cdf(const complemented2_type<pareto_distribution<RealType, Policy>, RealType>& c)
+    {
+       BOOST_MATH_STD_USING  // for ADL of std function pow.
+       static const char* function = "boost::math::cdf(const pareto_distribution<%1%>&, %1%)";
+       RealType result = 0;
+       RealType x = c.param;
+       RealType scale = c.dist.scale();
+       RealType shape = c.dist.shape();
+       if(false == (detail::check_pareto_x(function, x, &result, Policy())
+           && detail::check_pareto(function, scale, shape, &result, Policy())))
+         return result;
+
+       if (x <= scale)
+       { // regardless of shape, cdf is zero, and complement is unity.
+         return 1;
+       }
+       result = pow((scale/x), shape);
+
+       return result;
+    } // cdf complement
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<pareto_distribution<RealType, Policy>, RealType>& c)
+    {
+      BOOST_MATH_STD_USING  // for ADL of std function pow.
+      static const char* function = "boost::math::quantile(const pareto_distribution<%1%>&, %1%)";
+      RealType result = 0;
+      RealType q = c.param;
+      RealType scale = c.dist.scale();
+      RealType shape = c.dist.shape();
+      if(false == (detail::check_probability(function, q, &result, Policy())
+           && detail::check_pareto(function, scale, shape, &result, Policy())))
+      {
+        return result;
+      }
+      if (q == 1)
+      {
+        return scale; // x must be scale (or less).
+      }
+      if (q == 0)
+      {
+         return policies::raise_overflow_error<RealType>(function, 0, Policy()); // x = + infinity.
+      }
+      result = scale / (pow(q, 1 / shape));
+      // K. Krishnamoorthy,  ISBN 1-58488-635-8 eq 23.1.3
+      return result;
+    } // quantile complement
+
+    template <class RealType, class Policy>
+    inline RealType mean(const pareto_distribution<RealType, Policy>& dist)
+    {
+      RealType result = 0;
+      static const char* function = "boost::math::mean(const pareto_distribution<%1%>&, %1%)";
+      if(false == detail::check_pareto(function, dist.scale(), dist.shape(), &result, Policy()))
+      {
+        return result;
+      }
+      if (dist.shape() > RealType(1))
+      {
+        return dist.shape() * dist.scale() / (dist.shape() - 1);
+      }
+      else
+      {
+        using boost::math::tools::max_value;
+        return max_value<RealType>(); // +infinity.
+      }
+    } // mean
+
+    template <class RealType, class Policy>
+    inline RealType mode(const pareto_distribution<RealType, Policy>& dist)
+    {
+      return dist.scale();
+    } // mode
+
+    template <class RealType, class Policy>
+    inline RealType median(const pareto_distribution<RealType, Policy>& dist)
+    {
+      RealType result = 0;
+      static const char* function = "boost::math::median(const pareto_distribution<%1%>&, %1%)";
+      if(false == detail::check_pareto(function, dist.scale(), dist.shape(), &result, Policy()))
+      {
+        return result;
+      }
+      BOOST_MATH_STD_USING
+      return dist.scale() * pow(RealType(2), (1/dist.shape()));
+    } // median
+
+    template <class RealType, class Policy>
+    inline RealType variance(const pareto_distribution<RealType, Policy>& dist)
+    {
+      RealType result = 0;
+      RealType scale = dist.scale();
+      RealType shape = dist.shape();
+      static const char* function = "boost::math::variance(const pareto_distribution<%1%>&, %1%)";
+      if(false == detail::check_pareto(function, scale, shape, &result, Policy()))
+      {
+        return result;
+      }
+      if (shape > 2)
+      {
+        result = (scale * scale * shape) /
+         ((shape - 1) *  (shape - 1) * (shape - 2));
+      }
+      else
+      {
+        result = policies::raise_domain_error<RealType>(
+          function,
+          "variance is undefined for shape <= 2, but got %1%.", dist.shape(), Policy());
+      }
+      return result;
+    } // variance
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const pareto_distribution<RealType, Policy>& dist)
+    {
+      BOOST_MATH_STD_USING
+      RealType result = 0;
+      RealType shape = dist.shape();
+      static const char* function = "boost::math::pdf(const pareto_distribution<%1%>&, %1%)";
+      if(false == detail::check_pareto(function, dist.scale(), shape, &result, Policy()))
+      {
+        return result;
+      }
+      if (shape > 3)
+      {
+        result = sqrt((shape - 2) / shape) *
+          2 * (shape + 1) /
+          (shape - 3);
+      }
+      else
+      {
+        result = policies::raise_domain_error<RealType>(
+          function,
+          "skewness is undefined for shape <= 3, but got %1%.", dist.shape(), Policy());
+      }
+      return result;
+    } // skewness
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const pareto_distribution<RealType, Policy>& dist)
+    {
+      RealType result = 0;
+      RealType shape = dist.shape();
+      static const char* function = "boost::math::pdf(const pareto_distribution<%1%>&, %1%)";
+      if(false == detail::check_pareto(function, dist.scale(), shape, &result, Policy()))
+      {
+        return result;
+      }
+      if (shape > 4)
+      {
+        result = 3 * ((shape - 2) * (3 * shape * shape + shape + 2)) /
+          (shape * (shape - 3) * (shape - 4));
+      }
+      else
+      {
+        result = policies::raise_domain_error<RealType>(
+          function,
+          "kurtosis_excess is undefined for shape <= 4, but got %1%.", shape, Policy());
+      }
+      return result;
+    } // kurtosis
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const pareto_distribution<RealType, Policy>& dist)
+    {
+      RealType result = 0;
+      RealType shape = dist.shape();
+      static const char* function = "boost::math::pdf(const pareto_distribution<%1%>&, %1%)";
+      if(false == detail::check_pareto(function, dist.scale(), shape, &result, Policy()))
+      {
+        return result;
+      }
+      if (shape > 4)
+      {
+        result = 6 * ((shape * shape * shape) + (shape * shape) - 6 * shape - 2) /
+          (shape * (shape - 3) * (shape - 4));
+      }
+      else
+      {
+        result = policies::raise_domain_error<RealType>(
+          function,
+          "kurtosis_excess is undefined for shape <= 4, but got %1%.", dist.shape(), Policy());
+      }
+      return result;
+    } // kurtosis_excess
+
+    } // namespace math
+  } // namespace boost
+
+  // This include must be at the end, *after* the accessors
+  // for this distribution have been defined, in order to
+  // keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_PARETO_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/poisson.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,527 @@
+// boost\math\distributions\poisson.hpp
+
+// Copyright John Maddock 2006.
+// Copyright Paul A. Bristow 2007.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Poisson distribution is a discrete probability distribution.
+// It expresses the probability of a number (k) of
+// events, occurrences, failures or arrivals occurring in a fixed time,
+// assuming these events occur with a known average or mean rate (lambda)
+// and are independent of the time since the last event.
+// The distribution was discovered by Simeon-Denis Poisson (1781-1840).
+
+// Parameter lambda is the mean number of events in the given time interval.
+// The random variate k is the number of events, occurrences or arrivals.
+// k argument may be integral, signed, or unsigned, or floating point.
+// If necessary, it has already been promoted from an integral type.
+
+// Note that the Poisson distribution
+// (like others including the binomial, negative binomial & Bernoulli)
+// is strictly defined as a discrete function:
+// only integral values of k are envisaged.
+// However because the method of calculation uses a continuous gamma function,
+// it is convenient to treat it as if a continous function,
+// and permit non-integral values of k.
+// To enforce the strict mathematical model, users should use floor or ceil functions
+// on k outside this function to ensure that k is integral.
+
+// See http://en.wikipedia.org/wiki/Poisson_distribution
+// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
+
+#ifndef BOOST_MATH_SPECIAL_POISSON_HPP
+#define BOOST_MATH_SPECIAL_POISSON_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
+#include <boost/math/special_functions/trunc.hpp> // for incomplete gamma. gamma_q
+#include <boost/math/distributions/complement.hpp> // complements
+#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
+#include <boost/math/special_functions/fpclassify.hpp> // isnan.
+#include <boost/math/special_functions/factorials.hpp> // factorials.
+#include <boost/math/tools/roots.hpp> // for root finding.
+#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
+
+#include <utility>
+
+namespace boost
+{
+  namespace math
+  {
+    namespace poisson_detail
+    {
+      // Common error checking routines for Poisson distribution functions.
+      // These are convoluted, & apparently redundant, to try to ensure that
+      // checks are always performed, even if exceptions are not enabled.
+
+      template <class RealType, class Policy>
+      inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol)
+      {
+        if(!(boost::math::isfinite)(mean) || (mean < 0))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Mean argument is %1%, but must be >= 0 !", mean, pol);
+          return false;
+        }
+        return true;
+      } // bool check_mean
+
+      template <class RealType, class Policy>
+      inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol)
+      { // mean == 0 is considered an error.
+        if( !(boost::math::isfinite)(mean) || (mean <= 0))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Mean argument is %1%, but must be > 0 !", mean, pol);
+          return false;
+        }
+        return true;
+      } // bool check_mean_NZ
+
+      template <class RealType, class Policy>
+      inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol)
+      { // Only one check, so this is redundant really but should be optimized away.
+        return check_mean_NZ(function, mean, result, pol);
+      } // bool check_dist
+
+      template <class RealType, class Policy>
+      inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol)
+      {
+        if((k < 0) || !(boost::math::isfinite)(k))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Number of events k argument is %1%, but must be >= 0 !", k, pol);
+          return false;
+        }
+        return true;
+      } // bool check_k
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol)
+      {
+        if((check_dist(function, mean, result, pol) == false) ||
+          (check_k(function, k, result, pol) == false))
+        {
+          return false;
+        }
+        return true;
+      } // bool check_dist_and_k
+
+      template <class RealType, class Policy>
+      inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol)
+      { // Check 0 <= p <= 1
+        if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1))
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol);
+          return false;
+        }
+        return true;
+      } // bool check_prob
+
+      template <class RealType, class Policy>
+      inline bool check_dist_and_prob(const char* function, RealType mean,  RealType p, RealType* result, const Policy& pol)
+      {
+        if((check_dist(function, mean, result, pol) == false) ||
+          (check_prob(function, p, result, pol) == false))
+        {
+          return false;
+        }
+        return true;
+      } // bool check_dist_and_prob
+
+    } // namespace poisson_detail
+
+    template <class RealType = double, class Policy = policies::policy<> >
+    class poisson_distribution
+    {
+    public:
+      typedef RealType value_type;
+      typedef Policy policy_type;
+
+      poisson_distribution(RealType l_mean = 1) : m_l(l_mean) // mean (lambda).
+      { // Expected mean number of events that occur during the given interval.
+        RealType r;
+        poisson_detail::check_dist(
+           "boost::math::poisson_distribution<%1%>::poisson_distribution",
+          m_l,
+          &r, Policy());
+      } // poisson_distribution constructor.
+
+      RealType mean() const
+      { // Private data getter function.
+        return m_l;
+      }
+    private:
+      // Data member, initialized by constructor.
+      RealType m_l; // mean number of occurrences.
+    }; // template <class RealType, class Policy> class poisson_distribution
+
+    typedef poisson_distribution<double> poisson; // Reserved name of type double.
+
+    // Non-member functions to give properties of the distribution.
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */)
+    { // Range of permissible values for random variable k.
+       using boost::math::tools::max_value;
+       return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
+    }
+
+    template <class RealType, class Policy>
+    inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */)
+    { // Range of supported values for random variable k.
+       // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+       using boost::math::tools::max_value;
+       return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
+    }
+
+    template <class RealType, class Policy>
+    inline RealType mean(const poisson_distribution<RealType, Policy>& dist)
+    { // Mean of poisson distribution = lambda.
+      return dist.mean();
+    } // mean
+
+    template <class RealType, class Policy>
+    inline RealType mode(const poisson_distribution<RealType, Policy>& dist)
+    { // mode.
+      BOOST_MATH_STD_USING // ADL of std functions.
+      return floor(dist.mean());
+    }
+
+    //template <class RealType, class Policy>
+    //inline RealType median(const poisson_distribution<RealType, Policy>& dist)
+    //{ // median = approximately lambda + 1/3 - 0.2/lambda
+    //  RealType l = dist.mean();
+    //  return dist.mean() + static_cast<RealType>(0.3333333333333333333333333333333333333333333333)
+    //   - static_cast<RealType>(0.2) / l;
+    //} // BUT this formula appears to be out-by-one compared to quantile(half)
+    // Query posted on Wikipedia.
+    // Now implemented via quantile(half) in derived accessors.
+
+    template <class RealType, class Policy>
+    inline RealType variance(const poisson_distribution<RealType, Policy>& dist)
+    { // variance.
+      return dist.mean();
+    }
+
+    // RealType standard_deviation(const poisson_distribution<RealType, Policy>& dist)
+    // standard_deviation provided by derived accessors.
+
+    template <class RealType, class Policy>
+    inline RealType skewness(const poisson_distribution<RealType, Policy>& dist)
+    { // skewness = sqrt(l).
+      BOOST_MATH_STD_USING // ADL of std functions.
+      return 1 / sqrt(dist.mean());
+    }
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis_excess(const poisson_distribution<RealType, Policy>& dist)
+    { // skewness = sqrt(l).
+      return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31.
+      // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
+      // is more convenient because the kurtosis excess of a normal distribution is zero
+      // whereas the true kurtosis is 3.
+    } // RealType kurtosis_excess
+
+    template <class RealType, class Policy>
+    inline RealType kurtosis(const poisson_distribution<RealType, Policy>& dist)
+    { // kurtosis is 4th moment about the mean = u4 / sd ^ 4
+      // http://en.wikipedia.org/wiki/Curtosis
+      // kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails).
+      // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
+      return 3 + 1 / dist.mean(); // NIST.
+      // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess
+      // is more convenient because the kurtosis excess of a normal distribution is zero
+      // whereas the true kurtosis is 3.
+    } // RealType kurtosis
+
+    template <class RealType, class Policy>
+    RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Probability Density/Mass Function.
+      // Probability that there are EXACTLY k occurrences (or arrivals).
+      BOOST_FPU_EXCEPTION_GUARD
+
+      BOOST_MATH_STD_USING // for ADL of std functions.
+
+      RealType mean = dist.mean();
+      // Error check:
+      RealType result = 0;
+      if(false == poisson_detail::check_dist_and_k(
+        "boost::math::pdf(const poisson_distribution<%1%>&, %1%)",
+        mean,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+
+      // Special case of mean zero, regardless of the number of events k.
+      if (mean == 0)
+      { // Probability for any k is zero.
+        return 0;
+      }
+      if (k == 0)
+      { // mean ^ k = 1, and k! = 1, so can simplify.
+        return exp(-mean);
+      }
+      return boost::math::gamma_p_derivative(k+1, mean, Policy());
+    } // pdf
+
+    template <class RealType, class Policy>
+    RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k)
+    { // Cumulative Distribution Function Poisson.
+      // The random variate k is the number of occurrences(or arrivals)
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // If necessary, it has already been promoted from an integral type.
+      // Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf).
+
+      // But note that the Poisson distribution
+      // (like others including the binomial, negative binomial & Bernoulli)
+      // is strictly defined as a discrete function: only integral values of k are envisaged.
+      // However because of the method of calculation using a continuous gamma function,
+      // it is convenient to treat it as if it is a continous function
+      // and permit non-integral values of k.
+      // To enforce the strict mathematical model, users should use floor or ceil functions
+      // outside this function to ensure that k is integral.
+
+      // The terms are not summed directly (at least for larger k)
+      // instead the incomplete gamma integral is employed,
+
+      BOOST_MATH_STD_USING // for ADL of std function exp.
+
+      RealType mean = dist.mean();
+      // Error checks:
+      RealType result = 0;
+      if(false == poisson_detail::check_dist_and_k(
+        "boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
+        mean,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special cases:
+      if (mean == 0)
+      { // Probability for any k is zero.
+        return 0;
+      }
+      if (k == 0)
+      { // return pdf(dist, static_cast<RealType>(0));
+        // but mean (and k) have already been checked,
+        // so this avoids unnecessary repeated checks.
+       return exp(-mean);
+      }
+      // For small integral k could use a finite sum -
+      // it's cheaper than the gamma function.
+      // BUT this is now done efficiently by gamma_q function.
+      // Calculate poisson cdf using the gamma_q function.
+      return gamma_q(k+1, mean, Policy());
+    } // binomial cdf
+
+    template <class RealType, class Policy>
+    RealType cdf(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
+    { // Complemented Cumulative Distribution Function Poisson
+      // The random variate k is the number of events, occurrences or arrivals.
+      // k argument may be integral, signed, or unsigned, or floating point.
+      // If necessary, it has already been promoted from an integral type.
+      // But note that the Poisson distribution
+      // (like others including the binomial, negative binomial & Bernoulli)
+      // is strictly defined as a discrete function: only integral values of k are envisaged.
+      // However because of the method of calculation using a continuous gamma function,
+      // it is convenient to treat it as is it is a continous function
+      // and permit non-integral values of k.
+      // To enforce the strict mathematical model, users should use floor or ceil functions
+      // outside this function to ensure that k is integral.
+
+      // Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf).
+      // The terms are not summed directly (at least for larger k)
+      // instead the incomplete gamma integral is employed,
+
+      RealType const& k = c.param;
+      poisson_distribution<RealType, Policy> const& dist = c.dist;
+
+      RealType mean = dist.mean();
+
+      // Error checks:
+      RealType result = 0;
+      if(false == poisson_detail::check_dist_and_k(
+        "boost::math::cdf(const poisson_distribution<%1%>&, %1%)",
+        mean,
+        k,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special case of mean, regardless of the number of events k.
+      if (mean == 0)
+      { // Probability for any k is unity, complement of zero.
+        return 1;
+      }
+      if (k == 0)
+      { // Avoid repeated checks on k and mean in gamma_p.
+         return -boost::math::expm1(-mean, Policy());
+      }
+      // Unlike un-complemented cdf (sum from 0 to k),
+      // can't use finite sum from k+1 to infinity for small integral k,
+      // anyway it is now done efficiently by gamma_p.
+      return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function.
+      // CCDF = gamma_p(k+1, lambda)
+    } // poisson ccdf
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const poisson_distribution<RealType, Policy>& dist, const RealType& p)
+    { // Quantile (or Percent Point) Poisson function.
+      // Return the number of expected events k for a given probability p.
+      static const char* function = "boost::math::quantile(const poisson_distribution<%1%>&, %1%)";
+      RealType result = 0; // of Argument checks:
+      if(false == poisson_detail::check_prob(
+        function,
+        p,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special case:
+      if (dist.mean() == 0)
+      { // if mean = 0 then p = 0, so k can be anything?
+         if (false == poisson_detail::check_mean_NZ(
+         function,
+         dist.mean(),
+         &result, Policy()))
+        {
+          return result;
+        }
+      }
+      if(p == 0)
+      {
+         return 0; // Exact result regardless of discrete-quantile Policy
+      }
+      if(p == 1)
+      {
+         return policies::raise_overflow_error<RealType>(function, 0, Policy());
+      }
+      typedef typename Policy::discrete_quantile_type discrete_type;
+      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+      RealType guess, factor = 8;
+      RealType z = dist.mean();
+      if(z < 1)
+         guess = z;
+      else
+         guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, RealType(1-p), Policy());
+      if(z > 5)
+      {
+         if(z > 1000)
+            factor = 1.01f;
+         else if(z > 50)
+            factor = 1.1f;
+         else if(guess > 10)
+            factor = 1.25f;
+         else
+            factor = 2;
+         if(guess < 1.1)
+            factor = 8;
+      }
+
+      return detail::inverse_discrete_quantile(
+         dist,
+         p,
+         false,
+         guess,
+         factor,
+         RealType(1),
+         discrete_type(),
+         max_iter);
+   } // quantile
+
+    template <class RealType, class Policy>
+    inline RealType quantile(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c)
+    { // Quantile (or Percent Point) of Poisson function.
+      // Return the number of expected events k for a given
+      // complement of the probability q.
+      //
+      // Error checks:
+      static const char* function = "boost::math::quantile(complement(const poisson_distribution<%1%>&, %1%))";
+      RealType q = c.param;
+      const poisson_distribution<RealType, Policy>& dist = c.dist;
+      RealType result = 0;  // of argument checks.
+      if(false == poisson_detail::check_prob(
+        function,
+        q,
+        &result, Policy()))
+      {
+        return result;
+      }
+      // Special case:
+      if (dist.mean() == 0)
+      { // if mean = 0 then p = 0, so k can be anything?
+         if (false == poisson_detail::check_mean_NZ(
+         function,
+         dist.mean(),
+         &result, Policy()))
+        {
+          return result;
+        }
+      }
+      if(q == 0)
+      {
+         return policies::raise_overflow_error<RealType>(function, 0, Policy());
+      }
+      if(q == 1)
+      {
+         return 0;  // Exact result regardless of discrete-quantile Policy
+      }
+      typedef typename Policy::discrete_quantile_type discrete_type;
+      boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+      RealType guess, factor = 8;
+      RealType z = dist.mean();
+      if(z < 1)
+         guess = z;
+      else
+         guess = boost::math::detail::inverse_poisson_cornish_fisher(z, RealType(1-q), q, Policy());
+      if(z > 5)
+      {
+         if(z > 1000)
+            factor = 1.01f;
+         else if(z > 50)
+            factor = 1.1f;
+         else if(guess > 10)
+            factor = 1.25f;
+         else
+            factor = 2;
+         if(guess < 1.1)
+            factor = 8;
+      }
+
+      return detail::inverse_discrete_quantile(
+         dist,
+         q,
+         true,
+         guess,
+         factor,
+         RealType(1),
+         discrete_type(),
+         max_iter);
+   } // quantile complement.
+
+  } // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+#include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
+
+#endif // BOOST_MATH_SPECIAL_POISSON_HPP
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/rayleigh.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,301 @@
+//  Copyright Paul A. Bristow 2007.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_rayleigh_HPP
+#define BOOST_STATS_rayleigh_HPP
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/special_functions/log1p.hpp>
+#include <boost/math/special_functions/expm1.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/config/no_tr1/cmath.hpp>
+
+#ifdef BOOST_MSVC
+# pragma warning(push)
+# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
+#endif
+
+#include <utility>
+
+namespace boost{ namespace math{
+
+namespace detail
+{ // Error checks:
+  template <class RealType, class Policy>
+  inline bool verify_sigma(const char* function, RealType sigma, RealType* presult, const Policy& pol)
+  {
+     if((sigma <= 0) || (!(boost::math::isfinite)(sigma)))
+     {
+        *presult = policies::raise_domain_error<RealType>(
+           function,
+           "The scale parameter \"sigma\" must be > 0 and finite, but was: %1%.", sigma, pol);
+        return false;
+     }
+     return true;
+  } // bool verify_sigma
+
+  template <class RealType, class Policy>
+  inline bool verify_rayleigh_x(const char* function, RealType x, RealType* presult, const Policy& pol)
+  {
+     if((x < 0) || (boost::math::isnan)(x))
+     {
+        *presult = policies::raise_domain_error<RealType>(
+           function,
+           "The random variable must be >= 0, but was: %1%.", x, pol);
+        return false;
+     }
+     return true;
+  } // bool verify_rayleigh_x
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class rayleigh_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   rayleigh_distribution(RealType l_sigma = 1)
+      : m_sigma(l_sigma)
+   {
+      RealType err;
+      detail::verify_sigma("boost::math::rayleigh_distribution<%1%>::rayleigh_distribution", l_sigma, &err, Policy());
+   } // rayleigh_distribution
+
+   RealType sigma()const
+   { // Accessor.
+     return m_sigma;
+   }
+
+private:
+   RealType m_sigma;
+}; // class rayleigh_distribution
+
+typedef rayleigh_distribution<double> rayleigh;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const rayleigh_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const rayleigh_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const rayleigh_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std function exp.
+
+   RealType sigma = dist.sigma();
+   RealType result = 0;
+   static const char* function = "boost::math::pdf(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
+   {
+      return result;
+   }
+   if((boost::math::isinf)(x))
+   {
+      return 0;
+   }
+   RealType sigmasqr = sigma * sigma;
+   result = x * (exp(-(x * x) / ( 2 * sigmasqr))) / sigmasqr;
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const rayleigh_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   RealType result = 0;
+   RealType sigma = dist.sigma();
+   static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+   {
+      return result;
+   }
+   if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
+   {
+      return result;
+   }
+   result = -boost::math::expm1(-x * x / ( 2 * sigma * sigma), Policy());
+   return result;
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const rayleigh_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   RealType result = 0;
+   RealType sigma = dist.sigma();
+   static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   if(p == 0)
+   {
+      return 0;
+   }
+   if(p == 1)
+   {
+     return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+   result = sqrt(-2 * sigma * sigma * boost::math::log1p(-p, Policy()));
+   return result;
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<rayleigh_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+
+   RealType result = 0;
+   RealType sigma = c.dist.sigma();
+   static const char* function = "boost::math::cdf(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+   {
+      return result;
+   }
+   RealType x = c.param;
+   if(false == detail::verify_rayleigh_x(function, x, &result, Policy()))
+   {
+      return result;
+   }
+   RealType ea = x * x / (2 * sigma * sigma);
+   // Fix for VC11/12 x64 bug in exp(float):
+   if (ea >= tools::max_value<RealType>())
+      return 0;
+   result =  exp(-ea);
+   return result;
+} // cdf complement
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<rayleigh_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions, log & sqrt.
+
+   RealType result = 0;
+   RealType sigma = c.dist.sigma();
+   static const char* function = "boost::math::quantile(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+   {
+      return result;
+   }
+   RealType q = c.param;
+   if(false == detail::check_probability(function, q, &result, Policy()))
+   {
+      return result;
+   }
+   if(q == 1)
+   {
+      return 0;
+   }
+   if(q == 0)
+   {
+     return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+   result = sqrt(-2 * sigma * sigma * log(q));
+   return result;
+} // quantile complement
+
+template <class RealType, class Policy>
+inline RealType mean(const rayleigh_distribution<RealType, Policy>& dist)
+{
+   RealType result = 0;
+   RealType sigma = dist.sigma();
+   static const char* function = "boost::math::mean(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+   {
+      return result;
+   }
+   using boost::math::constants::root_half_pi;
+   return sigma * root_half_pi<RealType>();
+} // mean
+
+template <class RealType, class Policy>
+inline RealType variance(const rayleigh_distribution<RealType, Policy>& dist)
+{
+   RealType result = 0;
+   RealType sigma = dist.sigma();
+   static const char* function = "boost::math::variance(const rayleigh_distribution<%1%>&, %1%)";
+   if(false == detail::verify_sigma(function, sigma, &result, Policy()))
+   {
+      return result;
+   }
+   using boost::math::constants::four_minus_pi;
+   return four_minus_pi<RealType>() * sigma * sigma / 2;
+} // variance
+
+template <class RealType, class Policy>
+inline RealType mode(const rayleigh_distribution<RealType, Policy>& dist)
+{
+   return dist.sigma();
+}
+
+template <class RealType, class Policy>
+inline RealType median(const rayleigh_distribution<RealType, Policy>& dist)
+{
+   using boost::math::constants::root_ln_four;
+   return root_ln_four<RealType>() * dist.sigma();
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const rayleigh_distribution<RealType, Policy>& /*dist*/)
+{
+  // using namespace boost::math::constants;
+  return static_cast<RealType>(0.63111065781893713819189935154422777984404221106391L);
+  // Computed using NTL at 150 bit, about 50 decimal digits.
+  // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const rayleigh_distribution<RealType, Policy>& /*dist*/)
+{
+  // using namespace boost::math::constants;
+  return static_cast<RealType>(3.2450893006876380628486604106197544154170667057995L);
+  // Computed using NTL at 150 bit, about 50 decimal digits.
+  // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
+  // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const rayleigh_distribution<RealType, Policy>& /*dist*/)
+{
+  //using namespace boost::math::constants;
+  // Computed using NTL at 150 bit, about 50 decimal digits.
+  return static_cast<RealType>(0.2450893006876380628486604106197544154170667057995L);
+  // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
+  //   (four_minus_pi<RealType>() * four_minus_pi<RealType>());
+} // kurtosis
+
+} // namespace math
+} // namespace boost
+
+#ifdef BOOST_MSVC
+# pragma warning(pop)
+#endif
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_rayleigh_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/skew_normal.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,719 @@
+//  Copyright Benjamin Sobotta 2012
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_SKEW_NORMAL_HPP
+#define BOOST_STATS_SKEW_NORMAL_HPP
+
+// http://en.wikipedia.org/wiki/Skew_normal_distribution
+// http://azzalini.stat.unipd.it/SN/
+// Also:
+// Azzalini, A. (1985). "A class of distributions which includes the normal ones".
+// Scand. J. Statist. 12: 171-178.
+
+#include <boost/math/distributions/fwd.hpp> // TODO add skew_normal distribution to fwd.hpp!
+#include <boost/math/special_functions/owens_t.hpp> // Owen's T function
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/normal.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/constants/constants.hpp>
+#include <boost/math/tools/tuple.hpp>
+#include <boost/math/tools/roots.hpp> // Newton-Raphson
+#include <boost/assert.hpp>
+#include <boost/math/distributions/detail/generic_mode.hpp> // pdf max finder.
+
+#include <utility>
+#include <algorithm> // std::lower_bound, std::distance
+
+namespace boost{ namespace math{
+
+  namespace detail
+  {
+    template <class RealType, class Policy>
+    inline bool check_skew_normal_shape(
+      const char* function,
+      RealType shape,
+      RealType* result,
+      const Policy& pol)
+    {
+      if(!(boost::math::isfinite)(shape))
+      {
+        *result =
+          policies::raise_domain_error<RealType>(function,
+          "Shape parameter is %1%, but must be finite!",
+          shape, pol);
+        return false;
+      }
+      return true;
+    }
+
+  } // namespace detail
+
+  template <class RealType = double, class Policy = policies::policy<> >
+  class skew_normal_distribution
+  {
+  public:
+    typedef RealType value_type;
+    typedef Policy policy_type;
+
+    skew_normal_distribution(RealType l_location = 0, RealType l_scale = 1, RealType l_shape = 0)
+      : location_(l_location), scale_(l_scale), shape_(l_shape)
+    { // Default is a 'standard' normal distribution N01. (shape=0 results in the normal distribution with no skew)
+      static const char* function = "boost::math::skew_normal_distribution<%1%>::skew_normal_distribution";
+
+      RealType result;
+      detail::check_scale(function, l_scale, &result, Policy());
+      detail::check_location(function, l_location, &result, Policy());
+      detail::check_skew_normal_shape(function, l_shape, &result, Policy());
+    }
+
+    RealType location()const
+    { 
+      return location_;
+    }
+
+    RealType scale()const
+    { 
+      return scale_;
+    }
+
+    RealType shape()const
+    { 
+      return shape_;
+    }
+
+
+  private:
+    //
+    // Data members:
+    //
+    RealType location_;  // distribution location.
+    RealType scale_;    // distribution scale.
+    RealType shape_;    // distribution shape.
+  }; // class skew_normal_distribution
+
+  typedef skew_normal_distribution<double> skew_normal;
+
+  template <class RealType, class Policy>
+  inline const std::pair<RealType, RealType> range(const skew_normal_distribution<RealType, Policy>& /*dist*/)
+  { // Range of permissible values for random variable x.
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(
+       std::numeric_limits<RealType>::has_infinity ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>(), 
+       std::numeric_limits<RealType>::has_infinity ? std::numeric_limits<RealType>::infinity() : max_value<RealType>()); // - to + max value.
+  }
+
+  template <class RealType, class Policy>
+  inline const std::pair<RealType, RealType> support(const skew_normal_distribution<RealType, Policy>& /*dist*/)
+  { // Range of supported values for random variable x.
+    // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(-max_value<RealType>(),  max_value<RealType>()); // - to + max value.
+  }
+
+  template <class RealType, class Policy>
+  inline RealType pdf(const skew_normal_distribution<RealType, Policy>& dist, const RealType& x)
+  {
+    const RealType scale = dist.scale();
+    const RealType location = dist.location();
+    const RealType shape = dist.shape();
+
+    static const char* function = "boost::math::pdf(const skew_normal_distribution<%1%>&, %1%)";
+
+    RealType result = 0;
+    if(false == detail::check_scale(function, scale, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_location(function, location, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
+    {
+      return result;
+    }
+    if((boost::math::isinf)(x))
+    {
+       return 0; // pdf + and - infinity is zero.
+    }
+    // Below produces MSVC 4127 warnings, so the above used instead.
+    //if(std::numeric_limits<RealType>::has_infinity && abs(x) == std::numeric_limits<RealType>::infinity())
+    //{ // pdf + and - infinity is zero.
+    //  return 0;
+    //}
+    if(false == detail::check_x(function, x, &result, Policy()))
+    {
+      return result;
+    }
+
+    const RealType transformed_x = (x-location)/scale;
+
+    normal_distribution<RealType, Policy> std_normal;
+
+    result = pdf(std_normal, transformed_x) * cdf(std_normal, shape*transformed_x) * 2 / scale;
+
+    return result;
+  } // pdf
+
+  template <class RealType, class Policy>
+  inline RealType cdf(const skew_normal_distribution<RealType, Policy>& dist, const RealType& x)
+  {
+    const RealType scale = dist.scale();
+    const RealType location = dist.location();
+    const RealType shape = dist.shape();
+
+    static const char* function = "boost::math::cdf(const skew_normal_distribution<%1%>&, %1%)";
+    RealType result = 0;
+    if(false == detail::check_scale(function, scale, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_location(function, location, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
+    {
+      return result;
+    }
+    if((boost::math::isinf)(x))
+    {
+      if(x < 0) return 0; // -infinity
+      return 1; // + infinity
+    }
+    // These produce MSVC 4127 warnings, so the above used instead.
+    //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
+    //{ // cdf +infinity is unity.
+    //  return 1;
+    //}
+    //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
+    //{ // cdf -infinity is zero.
+    //  return 0;
+    //}
+    if(false == detail::check_x(function, x, &result, Policy()))
+    {
+      return result;
+    }
+
+    const RealType transformed_x = (x-location)/scale;
+
+    normal_distribution<RealType, Policy> std_normal;
+
+    result = cdf(std_normal, transformed_x) - owens_t(transformed_x, shape)*static_cast<RealType>(2);
+
+    return result;
+  } // cdf
+
+  template <class RealType, class Policy>
+  inline RealType cdf(const complemented2_type<skew_normal_distribution<RealType, Policy>, RealType>& c)
+  {
+    const RealType scale = c.dist.scale();
+    const RealType location = c.dist.location();
+    const RealType shape = c.dist.shape();
+    const RealType x = c.param;
+
+    static const char* function = "boost::math::cdf(const complement(skew_normal_distribution<%1%>&), %1%)";
+
+    if((boost::math::isinf)(x))
+    {
+      if(x < 0) return 1; // cdf complement -infinity is unity.
+      return 0; // cdf complement +infinity is zero
+    }
+    // These produce MSVC 4127 warnings, so the above used instead.
+    //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
+    //{ // cdf complement +infinity is zero.
+    //  return 0;
+    //}
+    //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
+    //{ // cdf complement -infinity is unity.
+    //  return 1;
+    //}
+    RealType result = 0;
+    if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+    if(false == detail::check_location(function, location, &result, Policy()))
+      return result;
+    if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
+      return result;
+    if(false == detail::check_x(function, x, &result, Policy()))
+      return result;
+
+    const RealType transformed_x = (x-location)/scale;
+
+    normal_distribution<RealType, Policy> std_normal;
+
+    result = cdf(complement(std_normal, transformed_x)) + owens_t(transformed_x, shape)*static_cast<RealType>(2);
+    return result;
+  } // cdf complement
+
+  template <class RealType, class Policy>
+  inline RealType location(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    return dist.location();
+  }
+
+  template <class RealType, class Policy>
+  inline RealType scale(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    return dist.scale();
+  }
+
+  template <class RealType, class Policy>
+  inline RealType shape(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    return dist.shape();
+  }
+
+  template <class RealType, class Policy>
+  inline RealType mean(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    BOOST_MATH_STD_USING  // for ADL of std functions
+
+    using namespace boost::math::constants;
+
+    //const RealType delta = dist.shape() / sqrt(static_cast<RealType>(1)+dist.shape()*dist.shape());
+
+    //return dist.location() + dist.scale() * delta * root_two_div_pi<RealType>();
+
+    return dist.location() + dist.scale() * dist.shape() / sqrt(pi<RealType>()+pi<RealType>()*dist.shape()*dist.shape()) * root_two<RealType>();
+  }
+
+  template <class RealType, class Policy>
+  inline RealType variance(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    using namespace boost::math::constants;
+
+    const RealType delta2 = static_cast<RealType>(1) / (static_cast<RealType>(1)+static_cast<RealType>(1)/(dist.shape()*dist.shape()));
+    //const RealType inv_delta2 = static_cast<RealType>(1)+static_cast<RealType>(1)/(dist.shape()*dist.shape());
+
+    RealType variance = dist.scale()*dist.scale()*(static_cast<RealType>(1)-two_div_pi<RealType>()*delta2);
+    //RealType variance = dist.scale()*dist.scale()*(static_cast<RealType>(1)-two_div_pi<RealType>()/inv_delta2);
+
+    return variance;
+  }
+
+  namespace detail
+  {
+    /*
+      TODO No closed expression for mode, so use max of pdf.
+    */
+    
+    template <class RealType, class Policy>
+    inline RealType mode_fallback(const skew_normal_distribution<RealType, Policy>& dist)
+    { // mode.
+        static const char* function = "mode(skew_normal_distribution<%1%> const&)";
+        const RealType scale = dist.scale();
+        const RealType location = dist.location();
+        const RealType shape = dist.shape();
+        
+        RealType result;
+        if(!detail::check_scale(
+          function,
+          scale, &result, Policy())
+          ||
+        !detail::check_skew_normal_shape(
+          function,
+          shape,
+          &result,
+          Policy()))
+        return result;
+
+        if( shape == 0 )
+        {
+          return location;
+        }
+
+        if( shape < 0 )
+        {
+          skew_normal_distribution<RealType, Policy> D(0, 1, -shape);
+          result = mode_fallback(D);
+          result = location-scale*result;
+          return result;
+        }
+        
+        BOOST_MATH_STD_USING
+
+        // 21 elements
+        static const RealType shapes[] = {
+          0.0,
+          1.000000000000000e-004,
+          2.069138081114790e-004,
+          4.281332398719396e-004,
+          8.858667904100824e-004,
+          1.832980710832436e-003,
+          3.792690190732250e-003,
+          7.847599703514606e-003,
+          1.623776739188722e-002,
+          3.359818286283781e-002,
+          6.951927961775606e-002,
+          1.438449888287663e-001,
+          2.976351441631319e-001,
+          6.158482110660261e-001,
+          1.274274985703135e+000,
+          2.636650898730361e+000,
+          5.455594781168514e+000,
+          1.128837891684688e+001,
+          2.335721469090121e+001,
+          4.832930238571753e+001,
+          1.000000000000000e+002};
+
+        // 21 elements
+        static const RealType guess[] = {
+          0.0,
+          5.000050000525391e-005,
+          1.500015000148736e-004,
+          3.500035000350010e-004,
+          7.500075000752560e-004,
+          1.450014500145258e-003,
+          3.050030500305390e-003,
+          6.250062500624765e-003,
+          1.295012950129504e-002,
+          2.675026750267495e-002,
+          5.525055250552491e-002,
+          1.132511325113255e-001,
+          2.249522495224952e-001,
+          3.992539925399257e-001,
+          5.353553535535358e-001,
+          4.954549545495457e-001,
+          3.524535245352451e-001,
+          2.182521825218249e-001,
+          1.256512565125654e-001,
+          6.945069450694508e-002,
+          3.735037350373460e-002
+        };
+
+        const RealType* result_ptr = std::lower_bound(shapes, shapes+21, shape);
+
+        typedef typename std::iterator_traits<RealType*>::difference_type diff_type;
+        
+        const diff_type d = std::distance(shapes, result_ptr);
+        
+        BOOST_ASSERT(d > static_cast<diff_type>(0));
+
+        // refine
+        if(d < static_cast<diff_type>(21)) // shape smaller 100
+        {
+          result = guess[d-static_cast<diff_type>(1)]
+            + (guess[d]-guess[d-static_cast<diff_type>(1)])/(shapes[d]-shapes[d-static_cast<diff_type>(1)])
+            * (shape-shapes[d-static_cast<diff_type>(1)]);
+        }
+        else // shape greater 100
+        {
+          result = 1e-4;
+        }
+
+        skew_normal_distribution<RealType, Policy> helper(0, 1, shape);
+        
+        result = detail::generic_find_mode_01(helper, result, function);
+        
+        result = result*scale + location;
+        
+        return result;
+    } // mode_fallback
+    
+    
+    /*
+     * TODO No closed expression for mode, so use f'(x) = 0
+     */
+    template <class RealType, class Policy>
+    struct skew_normal_mode_functor
+    { 
+      skew_normal_mode_functor(const boost::math::skew_normal_distribution<RealType, Policy> dist)
+        : distribution(dist)
+      {
+      }
+
+      boost::math::tuple<RealType, RealType> operator()(RealType const& x)
+      {
+        normal_distribution<RealType, Policy> std_normal;
+        const RealType shape = distribution.shape();
+        const RealType pdf_x = pdf(distribution, x);
+        const RealType normpdf_x = pdf(std_normal, x);
+        const RealType normpdf_ax = pdf(std_normal, x*shape);
+        RealType fx = static_cast<RealType>(2)*shape*normpdf_ax*normpdf_x - x*pdf_x;
+        RealType dx = static_cast<RealType>(2)*shape*x*normpdf_x*normpdf_ax*(static_cast<RealType>(1) + shape*shape) + pdf_x + x*fx;
+        // return both function evaluation difference f(x) and 1st derivative f'(x).
+        return boost::math::make_tuple(fx, -dx);
+      }
+    private:
+      const boost::math::skew_normal_distribution<RealType, Policy> distribution;
+    };
+    
+  } // namespace detail
+  
+  template <class RealType, class Policy>
+  inline RealType mode(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    const RealType scale = dist.scale();
+    const RealType location = dist.location();
+    const RealType shape = dist.shape();
+
+    static const char* function = "boost::math::mode(const skew_normal_distribution<%1%>&, %1%)";
+
+    RealType result = 0;
+    if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+    if(false == detail::check_location(function, location, &result, Policy()))
+      return result;
+    if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
+      return result;
+
+    if( shape == 0 )
+    {
+      return location;
+    }
+
+    if( shape < 0 )
+    {
+      skew_normal_distribution<RealType, Policy> D(0, 1, -shape);
+      result = mode(D);
+      result = location-scale*result;
+      return result;
+    }
+
+    // 21 elements
+    static const RealType shapes[] = {
+      0.0,
+      static_cast<RealType>(1.000000000000000e-004),
+      static_cast<RealType>(2.069138081114790e-004),
+      static_cast<RealType>(4.281332398719396e-004),
+      static_cast<RealType>(8.858667904100824e-004),
+      static_cast<RealType>(1.832980710832436e-003),
+      static_cast<RealType>(3.792690190732250e-003),
+      static_cast<RealType>(7.847599703514606e-003),
+      static_cast<RealType>(1.623776739188722e-002),
+      static_cast<RealType>(3.359818286283781e-002),
+      static_cast<RealType>(6.951927961775606e-002),
+      static_cast<RealType>(1.438449888287663e-001),
+      static_cast<RealType>(2.976351441631319e-001),
+      static_cast<RealType>(6.158482110660261e-001),
+      static_cast<RealType>(1.274274985703135e+000),
+      static_cast<RealType>(2.636650898730361e+000),
+      static_cast<RealType>(5.455594781168514e+000),
+      static_cast<RealType>(1.128837891684688e+001),
+      static_cast<RealType>(2.335721469090121e+001),
+      static_cast<RealType>(4.832930238571753e+001),
+      static_cast<RealType>(1.000000000000000e+002)
+    };
+
+    // 21 elements
+    static const RealType guess[] = {
+      0.0,
+      static_cast<RealType>(5.000050000525391e-005),
+      static_cast<RealType>(1.500015000148736e-004),
+      static_cast<RealType>(3.500035000350010e-004),
+      static_cast<RealType>(7.500075000752560e-004),
+      static_cast<RealType>(1.450014500145258e-003),
+      static_cast<RealType>(3.050030500305390e-003),
+      static_cast<RealType>(6.250062500624765e-003),
+      static_cast<RealType>(1.295012950129504e-002),
+      static_cast<RealType>(2.675026750267495e-002),
+      static_cast<RealType>(5.525055250552491e-002),
+      static_cast<RealType>(1.132511325113255e-001),
+      static_cast<RealType>(2.249522495224952e-001),
+      static_cast<RealType>(3.992539925399257e-001),
+      static_cast<RealType>(5.353553535535358e-001),
+      static_cast<RealType>(4.954549545495457e-001),
+      static_cast<RealType>(3.524535245352451e-001),
+      static_cast<RealType>(2.182521825218249e-001),
+      static_cast<RealType>(1.256512565125654e-001),
+      static_cast<RealType>(6.945069450694508e-002),
+      static_cast<RealType>(3.735037350373460e-002)
+    };
+
+    const RealType* result_ptr = std::lower_bound(shapes, shapes+21, shape);
+
+    typedef typename std::iterator_traits<RealType*>::difference_type diff_type;
+    
+    const diff_type d = std::distance(shapes, result_ptr);
+    
+    BOOST_ASSERT(d > static_cast<diff_type>(0));
+
+    // TODO: make the search bounds smarter, depending on the shape parameter
+    RealType search_min = 0; // below zero was caught above
+    RealType search_max = 0.55f; // will never go above 0.55
+
+    // refine
+    if(d < static_cast<diff_type>(21)) // shape smaller 100
+    {
+      // it is safe to assume that d > 0, because shape==0.0 is caught earlier
+      result = guess[d-static_cast<diff_type>(1)]
+        + (guess[d]-guess[d-static_cast<diff_type>(1)])/(shapes[d]-shapes[d-static_cast<diff_type>(1)])
+        * (shape-shapes[d-static_cast<diff_type>(1)]);
+    }
+    else // shape greater 100
+    {
+      result = 1e-4f;
+      search_max = guess[19]; // set 19 instead of 20 to have a safety margin because the table may not be exact @ shape=100
+    }
+    
+    const int get_digits = policies::digits<RealType, Policy>();// get digits from policy, 
+    boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
+
+    skew_normal_distribution<RealType, Policy> helper(0, 1, shape);
+
+    result = tools::newton_raphson_iterate(detail::skew_normal_mode_functor<RealType, Policy>(helper), result,
+      search_min, search_max, get_digits, m);
+    
+    result = result*scale + location;
+
+    return result;
+  }
+  
+
+  
+  template <class RealType, class Policy>
+  inline RealType skewness(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    BOOST_MATH_STD_USING  // for ADL of std functions
+    using namespace boost::math::constants;
+
+    static const RealType factor = four_minus_pi<RealType>()/static_cast<RealType>(2);
+    const RealType delta = dist.shape() / sqrt(static_cast<RealType>(1)+dist.shape()*dist.shape());
+
+    return factor * pow(root_two_div_pi<RealType>() * delta, 3) /
+      pow(static_cast<RealType>(1)-two_div_pi<RealType>()*delta*delta, static_cast<RealType>(1.5));
+  }
+
+  template <class RealType, class Policy>
+  inline RealType kurtosis(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    return kurtosis_excess(dist)+static_cast<RealType>(3);
+  }
+
+  template <class RealType, class Policy>
+  inline RealType kurtosis_excess(const skew_normal_distribution<RealType, Policy>& dist)
+  {
+    using namespace boost::math::constants;
+
+    static const RealType factor = pi_minus_three<RealType>()*static_cast<RealType>(2);
+
+    const RealType delta2 = static_cast<RealType>(1) / (static_cast<RealType>(1)+static_cast<RealType>(1)/(dist.shape()*dist.shape()));
+
+    const RealType x = static_cast<RealType>(1)-two_div_pi<RealType>()*delta2;
+    const RealType y = two_div_pi<RealType>() * delta2;
+
+    return factor * y*y / (x*x);
+  }
+
+  namespace detail
+  {
+
+    template <class RealType, class Policy>
+    struct skew_normal_quantile_functor
+    { 
+      skew_normal_quantile_functor(const boost::math::skew_normal_distribution<RealType, Policy> dist, RealType const& p)
+        : distribution(dist), prob(p)
+      {
+      }
+
+      boost::math::tuple<RealType, RealType> operator()(RealType const& x)
+      {
+        RealType c = cdf(distribution, x);
+        RealType fx = c - prob;  // Difference cdf - value - to minimize.
+        RealType dx = pdf(distribution, x); // pdf is 1st derivative.
+        // return both function evaluation difference f(x) and 1st derivative f'(x).
+        return boost::math::make_tuple(fx, dx);
+      }
+    private:
+      const boost::math::skew_normal_distribution<RealType, Policy> distribution;
+      RealType prob; 
+    };
+
+  } // namespace detail
+
+  template <class RealType, class Policy>
+  inline RealType quantile(const skew_normal_distribution<RealType, Policy>& dist, const RealType& p)
+  {
+    const RealType scale = dist.scale();
+    const RealType location = dist.location();
+    const RealType shape = dist.shape();
+
+    static const char* function = "boost::math::quantile(const skew_normal_distribution<%1%>&, %1%)";
+
+    RealType result = 0;
+    if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+    if(false == detail::check_location(function, location, &result, Policy()))
+      return result;
+    if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
+      return result;
+    if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+    // Compute initial guess via Cornish-Fisher expansion.
+    RealType x = -boost::math::erfc_inv(2 * p, Policy()) * constants::root_two<RealType>();
+
+    // Avoid unnecessary computations if there is no skew.
+    if(shape != 0)
+    {
+      const RealType skew = skewness(dist);
+      const RealType exk = kurtosis_excess(dist);
+
+      x = x + (x*x-static_cast<RealType>(1))*skew/static_cast<RealType>(6)
+      + x*(x*x-static_cast<RealType>(3))*exk/static_cast<RealType>(24)
+      - x*(static_cast<RealType>(2)*x*x-static_cast<RealType>(5))*skew*skew/static_cast<RealType>(36);
+    } // if(shape != 0)
+
+    result = standard_deviation(dist)*x+mean(dist);
+
+    // handle special case of non-skew normal distribution.
+    if(shape == 0)
+      return result;
+
+    // refine the result by numerically searching the root of (p-cdf)
+
+    const RealType search_min = range(dist).first;
+    const RealType search_max = range(dist).second;
+
+    const int get_digits = policies::digits<RealType, Policy>();// get digits from policy, 
+    boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
+
+    result = tools::newton_raphson_iterate(detail::skew_normal_quantile_functor<RealType, Policy>(dist, p), result,
+      search_min, search_max, get_digits, m);
+
+    return result;
+  } // quantile
+
+  template <class RealType, class Policy>
+  inline RealType quantile(const complemented2_type<skew_normal_distribution<RealType, Policy>, RealType>& c)
+  {
+    const RealType scale = c.dist.scale();
+    const RealType location = c.dist.location();
+    const RealType shape = c.dist.shape();
+
+    static const char* function = "boost::math::quantile(const complement(skew_normal_distribution<%1%>&), %1%)";
+    RealType result = 0;
+    if(false == detail::check_scale(function, scale, &result, Policy()))
+      return result;
+    if(false == detail::check_location(function, location, &result, Policy()))
+      return result;
+    if(false == detail::check_skew_normal_shape(function, shape, &result, Policy()))
+      return result;
+    RealType q = c.param;
+    if(false == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+    skew_normal_distribution<RealType, Policy> D(-location, scale, -shape);
+
+    result = -quantile(D, q);
+
+    return result;
+  } // quantile
+
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_SKEW_NORMAL_HPP
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/students_t.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,493 @@
+//  Copyright John Maddock 2006.
+//  Copyright Paul A. Bristow 2006, 2012, 2017.
+//  Copyright Thomas Mang 2012.
+
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_STUDENTS_T_HPP
+#define BOOST_STATS_STUDENTS_T_HPP
+
+// http://en.wikipedia.org/wiki/Student%27s_t_distribution
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x).
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/normal.hpp> 
+
+#include <utility>
+
+#ifdef BOOST_MSVC
+# pragma warning(push)
+# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
+#endif
+
+namespace boost { namespace math {
+
+template <class RealType = double, class Policy = policies::policy<> >
+class students_t_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   students_t_distribution(RealType df) : df_(df)
+   { // Constructor.
+      RealType result;
+      detail::check_df_gt0_to_inf( // Checks that df > 0 or df == inf.
+         "boost::math::students_t_distribution<%1%>::students_t_distribution", df_, &result, Policy());
+   } // students_t_distribution
+
+   RealType degrees_of_freedom()const
+   {
+      return df_;
+   }
+
+   // Parameter estimation:
+   static RealType find_degrees_of_freedom(
+      RealType difference_from_mean,
+      RealType alpha,
+      RealType beta,
+      RealType sd,
+      RealType hint = 100);
+
+private:
+   // Data member:
+   RealType df_;  // degrees of freedom is a real number > 0 or +infinity.
+};
+
+typedef students_t_distribution<double> students_t; // Convenience typedef for double version.
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+  // Now including infinity.
+   using boost::math::tools::max_value;
+   //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+   return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+  // Now including infinity.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   //return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+   return std::pair<RealType, RealType>(((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? -std::numeric_limits<RealType>::infinity() : -max_value<RealType>()), ((::std::numeric_limits<RealType>::is_specialized & ::std::numeric_limits<RealType>::has_infinity) ? +std::numeric_limits<RealType>::infinity() : +max_value<RealType>()));
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_FPU_EXCEPTION_GUARD
+   BOOST_MATH_STD_USING  // for ADL of std functions.
+
+   RealType error_result;
+   if(false == detail::check_x_not_NaN(
+      "boost::math::pdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
+      return error_result;
+   RealType df = dist.degrees_of_freedom();
+   if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
+      "boost::math::pdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
+      return error_result;
+
+   RealType result;
+   if ((boost::math::isinf)(x))
+   { // - or +infinity.
+     result = static_cast<RealType>(0);
+     return result;
+   }
+   RealType limit = policies::get_epsilon<RealType, Policy>();
+   // Use policies so that if policy requests lower precision, 
+   // then get the normal distribution approximation earlier.
+   limit = static_cast<RealType>(1) / limit; // 1/eps
+   // for 64-bit double 1/eps = 4503599627370496
+   if (df > limit)
+   { // Special case for really big degrees_of_freedom > 1 / eps 
+     // - use normal distribution which is much faster and more accurate.
+     normal_distribution<RealType, Policy> n(0, 1); 
+     result = pdf(n, x);
+   }
+   else
+   { // 
+     RealType basem1 = x * x / df;
+     if(basem1 < 0.125)
+     {
+        result = exp(-boost::math::log1p(basem1, Policy()) * (1+df) / 2);
+     }
+     else
+     {
+        result = pow(1 / (1 + basem1), (df + 1) / 2);
+     }
+     result /= sqrt(df) * boost::math::beta(df / 2, RealType(0.5f), Policy());
+   }
+   return result;
+} // pdf
+
+template <class RealType, class Policy>
+inline RealType cdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   RealType error_result;
+   // degrees_of_freedom > 0 or infinity check:
+   RealType df = dist.degrees_of_freedom();
+   if (false == detail::check_df_gt0_to_inf(  // Check that df > 0 or == +infinity.
+     "boost::math::cdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
+   {
+     return error_result;
+   }
+   // Check for bad x first.
+   if(false == detail::check_x_not_NaN(
+      "boost::math::cdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
+   { 
+      return error_result;
+   }
+   if (x == 0)
+   { // Special case with exact result.
+     return static_cast<RealType>(0.5);
+   }
+   if ((boost::math::isinf)(x))
+   { // x == - or + infinity, regardless of df.
+     return ((x < 0) ? static_cast<RealType>(0) : static_cast<RealType>(1));
+   }
+
+   RealType limit = policies::get_epsilon<RealType, Policy>();
+   // Use policies so that if policy requests lower precision, 
+   // then get the normal distribution approximation earlier.
+   limit = static_cast<RealType>(1) / limit; // 1/eps
+   // for 64-bit double 1/eps = 4503599627370496
+   if (df > limit)
+   { // Special case for really big degrees_of_freedom > 1 / eps (perhaps infinite?)
+     // - use normal distribution which is much faster and more accurate.
+     normal_distribution<RealType, Policy> n(0, 1); 
+     RealType result = cdf(n, x);
+     return result;
+   }
+   else
+   { // normal df case.
+     //
+     // Calculate probability of Student's t using the incomplete beta function.
+     // probability = ibeta(degrees_of_freedom / 2, 1/2, degrees_of_freedom / (degrees_of_freedom + t*t))
+     //
+     // However when t is small compared to the degrees of freedom, that formula
+     // suffers from rounding error, use the identity formula to work around
+     // the problem:
+     //
+     // I[x](a,b) = 1 - I[1-x](b,a)
+     //
+     // and:
+     //
+     //     x = df / (df + t^2)
+     //
+     // so:
+     //
+     // 1 - x = t^2 / (df + t^2)
+     //
+     RealType x2 = x * x;
+     RealType probability;
+     if(df > 2 * x2)
+     {
+        RealType z = x2 / (df + x2);
+        probability = ibetac(static_cast<RealType>(0.5), df / 2, z, Policy()) / 2;
+     }
+     else
+     {
+        RealType z = df / (df + x2);
+        probability = ibeta(df / 2, static_cast<RealType>(0.5), z, Policy()) / 2;
+     }
+     return (x > 0 ? 1   - probability : probability);
+  }
+} // cdf
+
+template <class RealType, class Policy>
+inline RealType quantile(const students_t_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING // for ADL of std functions
+   //
+   // Obtain parameters:
+   RealType probability = p;
+ 
+   // Check for domain errors:
+   RealType df = dist.degrees_of_freedom();
+   static const char* function = "boost::math::quantile(const students_t_distribution<%1%>&, %1%)";
+   RealType error_result;
+   if(false == (detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
+      function, df, &error_result, Policy())
+         && detail::check_probability(function, probability, &error_result, Policy())))
+      return error_result;
+   // Special cases, regardless of degrees_of_freedom.
+   if (probability == 0)
+      return -policies::raise_overflow_error<RealType>(function, 0, Policy());
+   if (probability == 1)
+     return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   if (probability == static_cast<RealType>(0.5))
+     return 0;  //
+   //
+#if 0
+   // This next block is disabled in favour of a faster method than
+   // incomplete beta inverse, but code retained for future reference:
+   //
+   // Calculate quantile of Student's t using the incomplete beta function inverse:
+   probability = (probability > 0.5) ? 1 - probability : probability;
+   RealType t, x, y;
+   x = ibeta_inv(degrees_of_freedom / 2, RealType(0.5), 2 * probability, &y);
+   if(degrees_of_freedom * y > tools::max_value<RealType>() * x)
+      t = tools::overflow_error<RealType>(function);
+   else
+      t = sqrt(degrees_of_freedom * y / x);
+   //
+   // Figure out sign based on the size of p:
+   //
+   if(p < 0.5)
+      t = -t;
+
+   return t;
+#endif
+   //
+   // Depending on how many digits RealType has, this may forward
+   // to the incomplete beta inverse as above.  Otherwise uses a
+   // faster method that is accurate to ~15 digits everywhere
+   // and a couple of epsilon at double precision and in the central 
+   // region where most use cases will occur...
+   //
+   return boost::math::detail::fast_students_t_quantile(df, probability, Policy());
+} // quantile
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c)
+{
+   return cdf(c.dist, -c.param);
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c)
+{
+   return -quantile(c.dist, c.param);
+}
+
+//
+// Parameter estimation follows:
+//
+namespace detail{
+//
+// Functors for finding degrees of freedom:
+//
+template <class RealType, class Policy>
+struct sample_size_func
+{
+   sample_size_func(RealType a, RealType b, RealType s, RealType d)
+      : alpha(a), beta(b), ratio(s*s/(d*d)) {}
+
+   RealType operator()(const RealType& df)
+   {
+      if(df <= tools::min_value<RealType>())
+      { // 
+         return 1;
+      }
+      students_t_distribution<RealType, Policy> t(df);
+      RealType qa = quantile(complement(t, alpha));
+      RealType qb = quantile(complement(t, beta));
+      qa += qb;
+      qa *= qa;
+      qa *= ratio;
+      qa -= (df + 1);
+      return qa;
+   }
+   RealType alpha, beta, ratio;
+};
+
+}  // namespace detail
+
+template <class RealType, class Policy>
+RealType students_t_distribution<RealType, Policy>::find_degrees_of_freedom(
+      RealType difference_from_mean,
+      RealType alpha,
+      RealType beta,
+      RealType sd,
+      RealType hint)
+{
+   static const char* function = "boost::math::students_t_distribution<%1%>::find_degrees_of_freedom";
+   //
+   // Check for domain errors:
+   //
+   RealType error_result;
+   if(false == detail::check_probability(
+      function, alpha, &error_result, Policy())
+         && detail::check_probability(function, beta, &error_result, Policy()))
+      return error_result;
+
+   if(hint <= 0)
+      hint = 1;
+
+   detail::sample_size_func<RealType, Policy> f(alpha, beta, sd, difference_from_mean);
+   tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
+   boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
+   std::pair<RealType, RealType> r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy());
+   RealType result = r.first + (r.second - r.first) / 2;
+   if(max_iter >= policies::get_max_root_iterations<Policy>())
+   {
+      return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
+         " either there is no answer to how many degrees of freedom are required"
+         " or the answer is infinite.  Current best guess is %1%", result, Policy());
+   }
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const students_t_distribution<RealType, Policy>& /*dist*/)
+{
+  // Assume no checks on degrees of freedom are useful (unlike mean).
+   return 0; // Always zero by definition.
+}
+
+template <class RealType, class Policy>
+inline RealType median(const students_t_distribution<RealType, Policy>& /*dist*/)
+{
+   // Assume no checks on degrees of freedom are useful (unlike mean).
+   return 0; // Always zero by definition.
+}
+
+// See section 5.1 on moments at  http://en.wikipedia.org/wiki/Student%27s_t-distribution
+
+template <class RealType, class Policy>
+inline RealType mean(const students_t_distribution<RealType, Policy>& dist)
+{  // Revised for https://svn.boost.org/trac/boost/ticket/7177
+   RealType df = dist.degrees_of_freedom();
+   if(((boost::math::isnan)(df)) || (df <= 1) ) 
+   { // mean is undefined for moment <= 1!
+      return policies::raise_domain_error<RealType>(
+      "boost::math::mean(students_t_distribution<%1%> const&, %1%)",
+      "Mean is undefined for degrees of freedom < 1 but got %1%.", df, Policy());
+      return std::numeric_limits<RealType>::quiet_NaN();
+   }
+   return 0;
+} // mean
+
+template <class RealType, class Policy>
+inline RealType variance(const students_t_distribution<RealType, Policy>& dist)
+{ // http://en.wikipedia.org/wiki/Student%27s_t-distribution
+  // Revised for https://svn.boost.org/trac/boost/ticket/7177
+  RealType df = dist.degrees_of_freedom();
+  if ((boost::math::isnan)(df) || (df <= 2))
+  { // NaN or undefined for <= 2.
+     return policies::raise_domain_error<RealType>(
+      "boost::math::variance(students_t_distribution<%1%> const&, %1%)",
+      "variance is undefined for degrees of freedom <= 2, but got %1%.",
+      df, Policy());
+    return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
+  }
+  if ((boost::math::isinf)(df))
+  { // +infinity.
+    return 1;
+  }
+  RealType limit = policies::get_epsilon<RealType, Policy>();
+  // Use policies so that if policy requests lower precision, 
+  // then get the normal distribution approximation earlier.
+  limit = static_cast<RealType>(1) / limit; // 1/eps
+  // for 64-bit double 1/eps = 4503599627370496
+  if (df > limit)
+  { // Special case for really big degrees_of_freedom > 1 / eps.
+    return 1;
+  }
+  else
+  {
+    return df / (df - 2);
+  }
+} // variance
+
+template <class RealType, class Policy>
+inline RealType skewness(const students_t_distribution<RealType, Policy>& dist)
+{
+    RealType df = dist.degrees_of_freedom();
+   if( ((boost::math::isnan)(df)) || (dist.degrees_of_freedom() <= 3))
+   { // Undefined for moment k = 3.
+      return policies::raise_domain_error<RealType>(
+         "boost::math::skewness(students_t_distribution<%1%> const&, %1%)",
+         "Skewness is undefined for degrees of freedom <= 3, but got %1%.",
+         dist.degrees_of_freedom(), Policy());
+      return std::numeric_limits<RealType>::quiet_NaN();
+   }
+   return 0; // For all valid df, including infinity.
+} // skewness
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const students_t_distribution<RealType, Policy>& dist)
+{
+   RealType df = dist.degrees_of_freedom();
+   if(((boost::math::isnan)(df)) || (df <= 4))
+   { // Undefined or infinity for moment k = 4.
+      return policies::raise_domain_error<RealType>(
+       "boost::math::kurtosis(students_t_distribution<%1%> const&, %1%)",
+       "Kurtosis is undefined for degrees of freedom <= 4, but got %1%.",
+        df, Policy());
+        return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
+   }
+   if ((boost::math::isinf)(df))
+   { // +infinity.
+     return 3;
+   }
+   RealType limit = policies::get_epsilon<RealType, Policy>();
+   // Use policies so that if policy requests lower precision, 
+   // then get the normal distribution approximation earlier.
+   limit = static_cast<RealType>(1) / limit; // 1/eps
+   // for 64-bit double 1/eps = 4503599627370496
+   if (df > limit)
+   { // Special case for really big degrees_of_freedom > 1 / eps.
+     return 3;
+   }
+   else
+   {
+     //return 3 * (df - 2) / (df - 4); re-arranged to
+     return 6 / (df - 4) + 3;
+   }
+} // kurtosis
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const students_t_distribution<RealType, Policy>& dist)
+{
+   // see http://mathworld.wolfram.com/Kurtosis.html
+
+   RealType df = dist.degrees_of_freedom();
+   if(((boost::math::isnan)(df)) || (df <= 4))
+   { // Undefined or infinity for moment k = 4.
+     return policies::raise_domain_error<RealType>(
+       "boost::math::kurtosis_excess(students_t_distribution<%1%> const&, %1%)",
+       "Kurtosis_excess is undefined for degrees of freedom <= 4, but got %1%.",
+      df, Policy());
+     return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
+   }
+   if ((boost::math::isinf)(df))
+   { // +infinity.
+     return 0;
+   }
+   RealType limit = policies::get_epsilon<RealType, Policy>();
+   // Use policies so that if policy requests lower precision, 
+   // then get the normal distribution approximation earlier.
+   limit = static_cast<RealType>(1) / limit; // 1/eps
+   // for 64-bit double 1/eps = 4503599627370496
+   if (df > limit)
+   { // Special case for really big degrees_of_freedom > 1 / eps.
+     return 0;
+   }
+   else
+   {
+     return 6 / (df - 4);
+   }
+}
+
+} // namespace math
+} // namespace boost
+
+#ifdef BOOST_MSVC
+# pragma warning(pop)
+#endif
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_STUDENTS_T_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/triangular.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,531 @@
+//  Copyright John Maddock 2006, 2007.
+//  Copyright Paul A. Bristow 2006, 2007.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_TRIANGULAR_HPP
+#define BOOST_STATS_TRIANGULAR_HPP
+
+// http://mathworld.wolfram.com/TriangularDistribution.html
+// Note that the 'constructors' defined by Wolfram are difference from those here,
+// for example
+// N[variance[triangulardistribution{1, +2}, 1.5], 50] computes 
+// 0.041666666666666666666666666666666666666666666666667
+// TriangularDistribution{1, +2}, 1.5 is the analog of triangular_distribution(1, 1.5, 2)
+
+// http://en.wikipedia.org/wiki/Triangular_distribution
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/expm1.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+#include <boost/math/constants/constants.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+  namespace detail
+  {
+    template <class RealType, class Policy>
+    inline bool check_triangular_lower(
+      const char* function,
+      RealType lower,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(lower))
+      { // Any finite value is OK.
+        return true;
+      }
+      else
+      { // Not finite: infinity or NaN.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "Lower parameter is %1%, but must be finite!", lower, pol);
+        return false;
+      }
+    } // bool check_triangular_lower(
+
+    template <class RealType, class Policy>
+    inline bool check_triangular_mode(
+      const char* function,
+      RealType mode,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(mode))
+      { // any finite value is OK.
+        return true;
+      }
+      else
+      { // Not finite: infinity or NaN.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "Mode parameter is %1%, but must be finite!", mode, pol);
+        return false;
+      }
+    } // bool check_triangular_mode(
+
+    template <class RealType, class Policy>
+    inline bool check_triangular_upper(
+      const char* function,
+      RealType upper,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(upper))
+      { // any finite value is OK.
+        return true;
+      }
+      else
+      { // Not finite: infinity or NaN.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "Upper parameter is %1%, but must be finite!", upper, pol);
+        return false;
+      }
+    } // bool check_triangular_upper(
+
+    template <class RealType, class Policy>
+    inline bool check_triangular_x(
+      const char* function,
+      RealType const& x,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(x))
+      { // Any finite value is OK
+        return true;
+      }
+      else
+      { // Not finite: infinity or NaN.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "x parameter is %1%, but must be finite!", x, pol);
+        return false;
+      }
+    } // bool check_triangular_x
+
+    template <class RealType, class Policy>
+    inline bool check_triangular(
+      const char* function,
+      RealType lower,
+      RealType mode,
+      RealType upper,
+      RealType* result, const Policy& pol)
+    {
+      if ((check_triangular_lower(function, lower, result, pol) == false)
+        || (check_triangular_mode(function, mode, result, pol) == false)
+        || (check_triangular_upper(function, upper, result, pol) == false))
+      { // Some parameter not finite.
+        return false;
+      }
+      else if (lower >= upper) // lower == upper NOT useful.
+      { // lower >= upper.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "lower parameter is %1%, but must be less than upper!", lower, pol);
+        return false;
+      }
+      else
+      { // Check lower <= mode <= upper.
+        if (mode < lower)
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "mode parameter is %1%, but must be >= than lower!", lower, pol);
+          return false;
+        }
+        if (mode > upper)
+        {
+          *result = policies::raise_domain_error<RealType>(
+            function,
+            "mode parameter is %1%, but must be <= than upper!", upper, pol);
+          return false;
+        }
+        return true; // All OK.
+      }
+    } // bool check_triangular
+  } // namespace detail
+
+  template <class RealType = double, class Policy = policies::policy<> >
+  class triangular_distribution
+  {
+  public:
+    typedef RealType value_type;
+    typedef Policy policy_type;
+
+    triangular_distribution(RealType l_lower = -1, RealType l_mode = 0, RealType l_upper = 1)
+      : m_lower(l_lower), m_mode(l_mode), m_upper(l_upper) // Constructor.
+    { // Evans says 'standard triangular' is lower 0, mode 1/2, upper 1,
+      // has median sqrt(c/2) for c <=1/2 and 1 - sqrt(1-c)/2 for c >= 1/2
+      // But this -1, 0, 1 is more useful in most applications to approximate normal distribution,
+      // where the central value is the most likely and deviations either side equally likely.
+      RealType result;
+      detail::check_triangular("boost::math::triangular_distribution<%1%>::triangular_distribution",l_lower, l_mode, l_upper, &result, Policy());
+    }
+    // Accessor functions.
+    RealType lower()const
+    {
+      return m_lower;
+    }
+    RealType mode()const
+    {
+      return m_mode;
+    }
+    RealType upper()const
+    {
+      return m_upper;
+    }
+  private:
+    // Data members:
+    RealType m_lower;  // distribution lower aka a
+    RealType m_mode;  // distribution mode aka c
+    RealType m_upper;  // distribution upper aka b
+  }; // class triangular_distribution
+
+  typedef triangular_distribution<double> triangular;
+
+  template <class RealType, class Policy>
+  inline const std::pair<RealType, RealType> range(const triangular_distribution<RealType, Policy>& /* dist */)
+  { // Range of permissible values for random variable x.
+    using boost::math::tools::max_value;
+    return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
+  }
+
+  template <class RealType, class Policy>
+  inline const std::pair<RealType, RealType> support(const triangular_distribution<RealType, Policy>& dist)
+  { // Range of supported values for random variable x.
+    // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+    return std::pair<RealType, RealType>(dist.lower(), dist.upper());
+  }
+
+  template <class RealType, class Policy>
+  RealType pdf(const triangular_distribution<RealType, Policy>& dist, const RealType& x)
+  {
+    static const char* function = "boost::math::pdf(const triangular_distribution<%1%>&, %1%)";
+    RealType lower = dist.lower();
+    RealType mode = dist.mode();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular(function, lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_triangular_x(function, x, &result, Policy()))
+    {
+      return result;
+    }
+    if((x < lower) || (x > upper))
+    {
+      return 0;
+    }
+    if (x == lower)
+    { // (mode - lower) == 0 which would lead to divide by zero!
+      return (mode == lower) ? 2 / (upper - lower) : RealType(0);
+    }
+    else if (x == upper)
+    {
+      return (mode == upper) ? 2 / (upper - lower) : RealType(0);
+    }
+    else if (x <= mode)
+    {
+      return 2 * (x - lower) / ((upper - lower) * (mode - lower));
+    }
+    else
+    {  // (x > mode)
+      return 2 * (upper - x) / ((upper - lower) * (upper - mode));
+    }
+  } // RealType pdf(const triangular_distribution<RealType, Policy>& dist, const RealType& x)
+
+  template <class RealType, class Policy>
+  inline RealType cdf(const triangular_distribution<RealType, Policy>& dist, const RealType& x)
+  {
+    static const char* function = "boost::math::cdf(const triangular_distribution<%1%>&, %1%)";
+    RealType lower = dist.lower();
+    RealType mode = dist.mode();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular(function, lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_triangular_x(function, x, &result, Policy()))
+    {
+      return result;
+    }
+    if((x <= lower))
+    {
+      return 0;
+    }
+    if (x >= upper)
+    {
+      return 1;
+    }
+    // else lower < x < upper
+    if (x <= mode)
+    {
+      return ((x - lower) * (x - lower)) / ((upper - lower) * (mode - lower));
+    }
+    else
+    {
+      return 1 - (upper - x) *  (upper - x) / ((upper - lower) * (upper - mode));
+    }
+  } // RealType cdf(const triangular_distribution<RealType, Policy>& dist, const RealType& x)
+
+  template <class RealType, class Policy>
+  RealType quantile(const triangular_distribution<RealType, Policy>& dist, const RealType& p)
+  {
+    BOOST_MATH_STD_USING  // for ADL of std functions (sqrt).
+    static const char* function = "boost::math::quantile(const triangular_distribution<%1%>&, %1%)";
+    RealType lower = dist.lower();
+    RealType mode = dist.mode();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks
+    if(false == detail::check_triangular(function,lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_probability(function, p, &result, Policy()))
+    {
+      return result;
+    }
+    if(p == 0)
+    {
+      return lower;
+    }
+    if(p == 1)
+    {
+      return upper;
+    }
+    RealType p0 = (mode - lower) / (upper - lower);
+    RealType q = 1 - p;
+    if (p < p0)
+    {
+      result = sqrt((upper - lower) * (mode - lower) * p) + lower;
+    }
+    else if (p == p0)
+    {
+      result = mode;
+    }
+    else // p > p0
+    {
+      result = upper - sqrt((upper - lower) * (upper - mode) * q);
+    }
+    return result;
+
+  } // RealType quantile(const triangular_distribution<RealType, Policy>& dist, const RealType& q)
+
+  template <class RealType, class Policy>
+  RealType cdf(const complemented2_type<triangular_distribution<RealType, Policy>, RealType>& c)
+  {
+    static const char* function = "boost::math::cdf(const triangular_distribution<%1%>&, %1%)";
+    RealType lower = c.dist.lower();
+    RealType mode = c.dist.mode();
+    RealType upper = c.dist.upper();
+    RealType x = c.param;
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular(function, lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_triangular_x(function, x, &result, Policy()))
+    {
+      return result;
+    }
+    if (x <= lower)
+    {
+      return 1;
+    }
+    if (x >= upper)
+    {
+      return 0;
+    }
+    if (x <= mode)
+    {
+      return 1 - ((x - lower) * (x - lower)) / ((upper - lower) * (mode - lower));
+    }
+    else
+    {
+      return (upper - x) *  (upper - x) / ((upper - lower) * (upper - mode));
+    }
+  } // RealType cdf(const complemented2_type<triangular_distribution<RealType, Policy>, RealType>& c)
+
+  template <class RealType, class Policy>
+  RealType quantile(const complemented2_type<triangular_distribution<RealType, Policy>, RealType>& c)
+  {
+    BOOST_MATH_STD_USING  // Aid ADL for sqrt.
+    static const char* function = "boost::math::quantile(const triangular_distribution<%1%>&, %1%)";
+    RealType l = c.dist.lower();
+    RealType m = c.dist.mode();
+    RealType u = c.dist.upper();
+    RealType q = c.param; // probability 0 to 1.
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular(function, l, m, u, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_probability(function, q, &result, Policy()))
+    {
+      return result;
+    }
+    if(q == 0)
+    {
+      return u;
+    }
+    if(q == 1)
+    {
+      return l;
+    }
+    RealType lower = c.dist.lower();
+    RealType mode = c.dist.mode();
+    RealType upper = c.dist.upper();
+
+    RealType p = 1 - q;
+    RealType p0 = (mode - lower) / (upper - lower);
+    if(p < p0)
+    {
+      RealType s = (upper - lower) * (mode - lower);
+      s *= p;
+      result = sqrt((upper - lower) * (mode - lower) * p) + lower;
+    }
+    else if (p == p0)
+    {
+      result = mode;
+    }
+    else // p > p0
+    {
+      result = upper - sqrt((upper - lower) * (upper - mode) * q);
+    }
+    return result;
+  } // RealType quantile(const complemented2_type<triangular_distribution<RealType, Policy>, RealType>& c)
+
+  template <class RealType, class Policy>
+  inline RealType mean(const triangular_distribution<RealType, Policy>& dist)
+  {
+    static const char* function = "boost::math::mean(const triangular_distribution<%1%>&)";
+    RealType lower = dist.lower();
+    RealType mode = dist.mode();
+    RealType upper = dist.upper();
+    RealType result = 0;  // of checks.
+    if(false == detail::check_triangular(function, lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return (lower + upper + mode) / 3;
+  } // RealType mean(const triangular_distribution<RealType, Policy>& dist)
+
+
+  template <class RealType, class Policy>
+  inline RealType variance(const triangular_distribution<RealType, Policy>& dist)
+  {
+    static const char* function = "boost::math::mean(const triangular_distribution<%1%>&)";
+    RealType lower = dist.lower();
+    RealType mode = dist.mode();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular(function, lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return (lower * lower + upper * upper + mode * mode - lower * upper - lower * mode - upper * mode) / 18;
+  } // RealType variance(const triangular_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType mode(const triangular_distribution<RealType, Policy>& dist)
+  {
+    static const char* function = "boost::math::mode(const triangular_distribution<%1%>&)";
+    RealType mode = dist.mode();
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular_mode(function, mode, &result, Policy()))
+    { // This should never happen!
+      return result;
+    }
+    return mode;
+  } // RealType mode
+
+  template <class RealType, class Policy>
+  inline RealType median(const triangular_distribution<RealType, Policy>& dist)
+  {
+    BOOST_MATH_STD_USING // ADL of std functions.
+    static const char* function = "boost::math::median(const triangular_distribution<%1%>&)";
+    RealType mode = dist.mode();
+    RealType result = 0; // of checks.
+    if(false == detail::check_triangular_mode(function, mode, &result, Policy()))
+    { // This should never happen!
+      return result;
+    }
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    if (mode >= (upper + lower) / 2)
+    {
+      return lower + sqrt((upper - lower) * (mode - lower)) / constants::root_two<RealType>();
+    }
+    else
+    {
+      return upper - sqrt((upper - lower) * (upper - mode)) / constants::root_two<RealType>();
+    }
+  } // RealType mode
+
+  template <class RealType, class Policy>
+  inline RealType skewness(const triangular_distribution<RealType, Policy>& dist)
+  {
+    BOOST_MATH_STD_USING  // for ADL of std functions
+    using namespace boost::math::constants; // for root_two
+    static const char* function = "boost::math::skewness(const triangular_distribution<%1%>&)";
+
+    RealType lower = dist.lower();
+    RealType mode = dist.mode();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == boost::math::detail::check_triangular(function,lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return root_two<RealType>() * (lower + upper - 2 * mode) * (2 * lower - upper - mode) * (lower - 2 * upper + mode) /
+      (5 * pow((lower * lower + upper * upper + mode * mode 
+        - lower * upper - lower * mode - upper * mode), RealType(3)/RealType(2)));
+    // #11768: Skewness formula for triangular distribution is incorrect -  corrected 29 Oct 2015 for release 1.61.
+  } // RealType skewness(const triangular_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType kurtosis(const triangular_distribution<RealType, Policy>& dist)
+  { // These checks may be belt and braces as should have been checked on construction?
+    static const char* function = "boost::math::kurtosis(const triangular_distribution<%1%>&)";
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType mode = dist.mode();
+    RealType result = 0;  // of checks.
+    if(false == detail::check_triangular(function,lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return static_cast<RealType>(12)/5; //  12/5 = 2.4;
+  } // RealType kurtosis_excess(const triangular_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType kurtosis_excess(const triangular_distribution<RealType, Policy>& dist)
+  { // These checks may be belt and braces as should have been checked on construction?
+    static const char* function = "boost::math::kurtosis_excess(const triangular_distribution<%1%>&)";
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType mode = dist.mode();
+    RealType result = 0;  // of checks.
+    if(false == detail::check_triangular(function,lower, mode, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return static_cast<RealType>(-3)/5; // - 3/5 = -0.6
+    // Assuming mathworld really means kurtosis excess?  Wikipedia now corrected to match this.
+  }
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_TRIANGULAR_HPP
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/uniform.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,382 @@
+//  Copyright John Maddock 2006.
+//  Copyright Paul A. Bristow 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// TODO deal with infinity as special better - or remove.
+//
+
+#ifndef BOOST_STATS_UNIFORM_HPP
+#define BOOST_STATS_UNIFORM_HPP
+
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm
+// http://mathworld.wolfram.com/UniformDistribution.html
+// http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/UniformDistribution.html
+// http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+  namespace detail
+  {
+    template <class RealType, class Policy>
+    inline bool check_uniform_lower(
+      const char* function,
+      RealType lower,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(lower))
+      { // any finite value is OK.
+        return true;
+      }
+      else
+      { // Not finite.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "Lower parameter is %1%, but must be finite!", lower, pol);
+        return false;
+      }
+    } // bool check_uniform_lower(
+
+    template <class RealType, class Policy>
+    inline bool check_uniform_upper(
+      const char* function,
+      RealType upper,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(upper))
+      { // Any finite value is OK.
+        return true;
+      }
+      else
+      { // Not finite.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "Upper parameter is %1%, but must be finite!", upper, pol);
+        return false;
+      }
+    } // bool check_uniform_upper(
+
+    template <class RealType, class Policy>
+    inline bool check_uniform_x(
+      const char* function,
+      RealType const& x,
+      RealType* result, const Policy& pol)
+    {
+      if((boost::math::isfinite)(x))
+      { // Any finite value is OK
+        return true;
+      }
+      else
+      { // Not finite..
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "x parameter is %1%, but must be finite!", x, pol);
+        return false;
+      }
+    } // bool check_uniform_x
+
+    template <class RealType, class Policy>
+    inline bool check_uniform(
+      const char* function,
+      RealType lower,
+      RealType upper,
+      RealType* result, const Policy& pol)
+    {
+      if((check_uniform_lower(function, lower, result, pol) == false)
+        || (check_uniform_upper(function, upper, result, pol) == false))
+      {
+        return false;
+      }
+      else if (lower >= upper) // If lower == upper then 1 / (upper-lower) = 1/0 = +infinity!
+      { // upper and lower have been checked before, so must be lower >= upper.
+        *result = policies::raise_domain_error<RealType>(
+          function,
+          "lower parameter is %1%, but must be less than upper!", lower, pol);
+        return false;
+      }
+      else
+      { // All OK,
+        return true;
+      }
+    } // bool check_uniform(
+
+  } // namespace detail
+
+  template <class RealType = double, class Policy = policies::policy<> >
+  class uniform_distribution
+  {
+  public:
+    typedef RealType value_type;
+    typedef Policy policy_type;
+
+    uniform_distribution(RealType l_lower = 0, RealType l_upper = 1) // Constructor.
+      : m_lower(l_lower), m_upper(l_upper) // Default is standard uniform distribution.
+    {
+      RealType result;
+      detail::check_uniform("boost::math::uniform_distribution<%1%>::uniform_distribution", l_lower, l_upper, &result, Policy());
+    }
+    // Accessor functions.
+    RealType lower()const
+    {
+      return m_lower;
+    }
+
+    RealType upper()const
+    {
+      return m_upper;
+    }
+  private:
+    // Data members:
+    RealType m_lower;  // distribution lower aka a.
+    RealType m_upper;  // distribution upper aka b.
+  }; // class uniform_distribution
+
+  typedef uniform_distribution<double> uniform;
+
+  template <class RealType, class Policy>
+  inline const std::pair<RealType, RealType> range(const uniform_distribution<RealType, Policy>& /* dist */)
+  { // Range of permissible values for random variable x.
+     using boost::math::tools::max_value;
+     return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + 'infinity'.
+     // Note RealType infinity is NOT permitted, only max_value.
+  }
+
+  template <class RealType, class Policy>
+  inline const std::pair<RealType, RealType> support(const uniform_distribution<RealType, Policy>& dist)
+  { // Range of supported values for random variable x.
+     // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+     using boost::math::tools::max_value;
+     return std::pair<RealType, RealType>(dist.lower(),  dist.upper());
+  }
+
+  template <class RealType, class Policy>
+  inline RealType pdf(const uniform_distribution<RealType, Policy>& dist, const RealType& x)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::pdf(const uniform_distribution<%1%>&, %1%)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_uniform_x("boost::math::pdf(const uniform_distribution<%1%>&, %1%)", x, &result, Policy()))
+    {
+      return result;
+    }
+
+    if((x < lower) || (x > upper) )
+    {
+      return 0;
+    }
+    else
+    {
+      return 1 / (upper - lower);
+    }
+  } // RealType pdf(const uniform_distribution<RealType, Policy>& dist, const RealType& x)
+
+  template <class RealType, class Policy>
+  inline RealType cdf(const uniform_distribution<RealType, Policy>& dist, const RealType& x)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::cdf(const uniform_distribution<%1%>&, %1%)",lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_uniform_x("boost::math::cdf(const uniform_distribution<%1%>&, %1%)", x, &result, Policy()))
+    {
+      return result;
+    }
+    if (x < lower)
+    {
+      return 0;
+    }
+    if (x > upper)
+    {
+      return 1;
+    }
+    return (x - lower) / (upper - lower); // lower <= x <= upper
+  } // RealType cdf(const uniform_distribution<RealType, Policy>& dist, const RealType& x)
+
+  template <class RealType, class Policy>
+  inline RealType quantile(const uniform_distribution<RealType, Policy>& dist, const RealType& p)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks
+    if(false == detail::check_uniform("boost::math::quantile(const uniform_distribution<%1%>&, %1%)",lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_probability("boost::math::quantile(const uniform_distribution<%1%>&, %1%)", p, &result, Policy()))
+    {
+      return result;
+    }
+    if(p == 0)
+    {
+      return lower;
+    }
+    if(p == 1)
+    {
+      return upper;
+    }
+    return p * (upper - lower) + lower;
+  } // RealType quantile(const uniform_distribution<RealType, Policy>& dist, const RealType& p)
+
+  template <class RealType, class Policy>
+  inline RealType cdf(const complemented2_type<uniform_distribution<RealType, Policy>, RealType>& c)
+  {
+    RealType lower = c.dist.lower();
+    RealType upper = c.dist.upper();
+    RealType x = c.param;
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::cdf(const uniform_distribution<%1%>&, %1%)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_uniform_x("boost::math::cdf(const uniform_distribution<%1%>&, %1%)", x, &result, Policy()))
+    {
+      return result;
+    }
+    if (x < lower)
+    {
+      return 1;
+    }
+    if (x > upper)
+    {
+      return 0;
+    }
+    return (upper - x) / (upper - lower);
+  } // RealType cdf(const complemented2_type<uniform_distribution<RealType, Policy>, RealType>& c)
+
+  template <class RealType, class Policy>
+  inline RealType quantile(const complemented2_type<uniform_distribution<RealType, Policy>, RealType>& c)
+  {
+    RealType lower = c.dist.lower();
+    RealType upper = c.dist.upper();
+    RealType q = c.param;
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::quantile(const uniform_distribution<%1%>&, %1%)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    if(false == detail::check_probability("boost::math::quantile(const uniform_distribution<%1%>&, %1%)", q, &result, Policy()))
+    {
+       return result;
+    }
+    if(q == 0)
+    {
+       return upper;
+    }
+    if(q == 1)
+    {
+       return lower;
+    }
+    return -q * (upper - lower) + upper;
+  } // RealType quantile(const complemented2_type<uniform_distribution<RealType, Policy>, RealType>& c)
+
+  template <class RealType, class Policy>
+  inline RealType mean(const uniform_distribution<RealType, Policy>& dist)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0;  // of checks.
+    if(false == detail::check_uniform("boost::math::mean(const uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return (lower + upper ) / 2;
+  } // RealType mean(const uniform_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType variance(const uniform_distribution<RealType, Policy>& dist)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::variance(const uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return (upper - lower) * ( upper - lower) / 12;
+    // for standard uniform = 0.833333333333333333333333333333333333333333;
+  } // RealType variance(const uniform_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType mode(const uniform_distribution<RealType, Policy>& dist)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::mode(const uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    result = lower; // Any value [lower, upper] but arbitrarily choose lower.
+    return result;
+  }
+
+  template <class RealType, class Policy>
+  inline RealType median(const uniform_distribution<RealType, Policy>& dist)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::median(const uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return (lower + upper) / 2; //
+  }
+  template <class RealType, class Policy>
+  inline RealType skewness(const uniform_distribution<RealType, Policy>& dist)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0; // of checks.
+    if(false == detail::check_uniform("boost::math::skewness(const uniform_distribution<%1%>&)",lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return 0;
+  } // RealType skewness(const uniform_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType kurtosis_excess(const uniform_distribution<RealType, Policy>& dist)
+  {
+    RealType lower = dist.lower();
+    RealType upper = dist.upper();
+    RealType result = 0;  // of checks.
+    if(false == detail::check_uniform("boost::math::kurtosis_execess(const uniform_distribution<%1%>&)", lower, upper, &result, Policy()))
+    {
+      return result;
+    }
+    return static_cast<RealType>(-6)/5; //  -6/5 = -1.2;
+  } // RealType kurtosis_excess(const uniform_distribution<RealType, Policy>& dist)
+
+  template <class RealType, class Policy>
+  inline RealType kurtosis(const uniform_distribution<RealType, Policy>& dist)
+  {
+    return kurtosis_excess(dist) + 3;
+  }
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_UNIFORM_HPP
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/any/include/boost/math/distributions/weibull.hpp	Sat Feb 16 16:31:25 2019 +0000
@@ -0,0 +1,395 @@
+//  Copyright John Maddock 2006.
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#ifndef BOOST_STATS_WEIBULL_HPP
+#define BOOST_STATS_WEIBULL_HPP
+
+// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm
+// http://mathworld.wolfram.com/WeibullDistribution.html
+
+#include <boost/math/distributions/fwd.hpp>
+#include <boost/math/special_functions/gamma.hpp>
+#include <boost/math/special_functions/log1p.hpp>
+#include <boost/math/special_functions/expm1.hpp>
+#include <boost/math/distributions/detail/common_error_handling.hpp>
+#include <boost/math/distributions/complement.hpp>
+
+#include <utility>
+
+namespace boost{ namespace math
+{
+namespace detail{
+
+template <class RealType, class Policy>
+inline bool check_weibull_shape(
+      const char* function,
+      RealType shape,
+      RealType* result, const Policy& pol)
+{
+   if((shape <= 0) || !(boost::math::isfinite)(shape))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Shape parameter is %1%, but must be > 0 !", shape, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_weibull_x(
+      const char* function,
+      RealType const& x,
+      RealType* result, const Policy& pol)
+{
+   if((x < 0) || !(boost::math::isfinite)(x))
+   {
+      *result = policies::raise_domain_error<RealType>(
+         function,
+         "Random variate is %1% but must be >= 0 !", x, pol);
+      return false;
+   }
+   return true;
+}
+
+template <class RealType, class Policy>
+inline bool check_weibull(
+      const char* function,
+      RealType scale,
+      RealType shape,
+      RealType* result, const Policy& pol)
+{
+   return check_scale(function, scale, result, pol) && check_weibull_shape(function, shape, result, pol);
+}
+
+} // namespace detail
+
+template <class RealType = double, class Policy = policies::policy<> >
+class weibull_distribution
+{
+public:
+   typedef RealType value_type;
+   typedef Policy policy_type;
+
+   weibull_distribution(RealType l_shape, RealType l_scale = 1)
+      : m_shape(l_shape), m_scale(l_scale)
+   {
+      RealType result;
+      detail::check_weibull("boost::math::weibull_distribution<%1%>::weibull_distribution", l_scale, l_shape, &result, Policy());
+   }
+
+   RealType shape()const
+   {
+      return m_shape;
+   }
+
+   RealType scale()const
+   {
+      return m_scale;
+   }
+private:
+   //
+   // Data members:
+   //
+   RealType m_shape;     // distribution shape
+   RealType m_scale;     // distribution scale
+};
+
+typedef weibull_distribution<double> weibull;
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> range(const weibull_distribution<RealType, Policy>& /*dist*/)
+{ // Range of permissible values for random variable x.
+   using boost::math::tools::max_value;
+   return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
+}
+
+template <class RealType, class Policy>
+inline const std::pair<RealType, RealType> support(const weibull_distribution<RealType, Policy>& /*dist*/)
+{ // Range of supported values for random variable x.
+   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
+   using boost::math::tools::max_value;
+   using boost::math::tools::min_value;
+   return std::pair<RealType, RealType>(min_value<RealType>(),  max_value<RealType>());
+   // A discontinuity at x == 0, so only support down to min_value.
+}
+
+template <class RealType, class Policy>
+inline RealType pdf(const weibull_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::pdf(const weibull_distribution<%1%>, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_weibull_x(function, x, &result, Policy()))
+      return result;
+
+   if(x == 0)
+   {
+      if(shape == 1)
+      {
+         return 1 / scale;
+      }
+      if(shape > 1)
+      {
+         return 0;
+      }
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+   }
+   result = exp(-pow(x / scale, shape));
+   result *= pow(x / scale, shape - 1) * shape / scale;
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType cdf(const weibull_distribution<RealType, Policy>& dist, const RealType& x)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const weibull_distribution<%1%>, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_weibull_x(function, x, &result, Policy()))
+      return result;
+
+   result = -boost::math::expm1(-pow(x / scale, shape), Policy());
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const weibull_distribution<RealType, Policy>& dist, const RealType& p)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const weibull_distribution<%1%>, %1%)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, p, &result, Policy()))
+      return result;
+
+   if(p == 1)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = scale * pow(-boost::math::log1p(-p, Policy()), 1 / shape);
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType cdf(const complemented2_type<weibull_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::cdf(const weibull_distribution<%1%>, %1%)";
+
+   RealType shape = c.dist.shape();
+   RealType scale = c.dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_weibull_x(function, c.param, &result, Policy()))
+      return result;
+
+   result = exp(-pow(c.param / scale, shape));
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType quantile(const complemented2_type<weibull_distribution<RealType, Policy>, RealType>& c)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::quantile(const weibull_distribution<%1%>, %1%)";
+
+   RealType shape = c.dist.shape();
+   RealType scale = c.dist.scale();
+   RealType q = c.param;
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+   if(false == detail::check_probability(function, q, &result, Policy()))
+      return result;
+
+   if(q == 0)
+      return policies::raise_overflow_error<RealType>(function, 0, Policy());
+
+   result = scale * pow(-log(q), 1 / shape);
+
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mean(const weibull_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::mean(const weibull_distribution<%1%>)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+
+   result = scale * boost::math::tgamma(1 + 1 / shape, Policy());
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType variance(const weibull_distribution<RealType, Policy>& dist)
+{
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   static const char* function = "boost::math::variance(const weibull_distribution<%1%>)";
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+   {
+      return result;
+   }
+   result = boost::math::tgamma(1 + 1 / shape, Policy());
+   result *= -result;
+   result += boost::math::tgamma(1 + 2 / shape, Policy());
+   result *= scale * scale;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType mode(const weibull_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std function pow.
+
+   static const char* function = "boost::math::mode(const weibull_distribution<%1%>)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+   {
+      return result;
+   }
+   if(shape <= 1)
+      return 0;
+   result = scale * pow((shape - 1) / shape, 1 / shape);
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType median(const weibull_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std function pow.
+
+   static const char* function = "boost::math::median(const weibull_distribution<%1%>)";
+
+   RealType shape = dist.shape(); // Wikipedia k
+   RealType scale = dist.scale(); // Wikipedia lambda
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+   {
+      return result;
+   }
+   using boost::math::constants::ln_two;
+   result = scale * pow(ln_two<RealType>(), 1 / shape);
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType skewness(const weibull_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::skewness(const weibull_distribution<%1%>)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+   {
+      return result;
+   }
+   RealType g1, g2, g3, d;
+
+   g1 = boost::math::tgamma(1 + 1 / shape, Policy());
+   g2 = boost::math::tgamma(1 + 2 / shape, Policy());
+   g3 = boost::math::tgamma(1 + 3 / shape, Policy());
+   d = pow(g2 - g1 * g1, RealType(1.5));
+
+   result = (2 * g1 * g1 * g1 - 3 * g1 * g2 + g3) / d;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis_excess(const weibull_distribution<RealType, Policy>& dist)
+{
+   BOOST_MATH_STD_USING  // for ADL of std functions
+
+   static const char* function = "boost::math::kurtosis_excess(const weibull_distribution<%1%>)";
+
+   RealType shape = dist.shape();
+   RealType scale = dist.scale();
+
+   RealType result = 0;
+   if(false == detail::check_weibull(function, scale, shape, &result, Policy()))
+      return result;
+
+   RealType g1, g2, g3, g4, d, g1_2, g1_4;
+
+   g1 = boost::math::tgamma(1 + 1 / shape, Policy());
+   g2 = boost::math::tgamma(1 + 2 / shape, Policy());
+   g3 = boost::math::tgamma(1 + 3 / shape, Policy());
+   g4 = boost::math::tgamma(1 + 4 / shape, Policy());
+   g1_2 = g1 * g1;
+   g1_4 = g1_2 * g1_2;
+   d = g2 - g1_2;
+   d *= d;
+
+   result = -6 * g1_4 + 12 * g1_2 * g2 - 3 * g2 * g2 - 4 * g1 * g3 + g4;
+   result /= d;
+   return result;
+}
+
+template <class RealType, class Policy>
+inline RealType kurtosis(const weibull_distribution<RealType, Policy>& dist)
+{
+   return kurtosis_excess(dist) + 3;
+}
+
+} // namespace math
+} // namespace boost
+
+// This include must be at the end, *after* the accessors
+// for this distribution have been defined, in order to
+// keep compilers that support two-phase lookup happy.
+#include <boost/math/distributions/detail/derived_accessors.hpp>
+
+#endif // BOOST_STATS_WEIBULL_HPP
+
+