cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: FFTW 3.3.8: The 1d Discrete Fourier Transform (DFT) cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167:
cannam@167:

cannam@167: Next: , Previous: , Up: What FFTW Really Computes   [Contents][Index]

cannam@167:
cannam@167:
cannam@167: cannam@167:

4.8.1 The 1d Discrete Fourier Transform (DFT)

cannam@167: cannam@167: cannam@167: cannam@167:

The forward (FFTW_FORWARD) discrete Fourier transform (DFT) of a cannam@167: 1d complex array X of size n computes an array Y, cannam@167: where: cannam@167:

.
cannam@167: The backward (FFTW_BACKWARD) DFT computes: cannam@167:
.
cannam@167:

cannam@167: cannam@167:

FFTW computes an unnormalized transform, in that there is no coefficient cannam@167: in front of the summation in the DFT. In other words, applying the cannam@167: forward and then the backward transform will multiply the input by cannam@167: n. cannam@167:

cannam@167: cannam@167:

From above, an FFTW_FORWARD transform corresponds to a sign of cannam@167: -1 in the exponent of the DFT. Note also that we use the cannam@167: standard “in-order” output ordering—the k-th output cannam@167: corresponds to the frequency k/n (or k/T, where T cannam@167: is your total sampling period). For those who like to think in terms of cannam@167: positive and negative frequencies, this means that the positive cannam@167: frequencies are stored in the first half of the output and the negative cannam@167: frequencies are stored in backwards order in the second half of the cannam@167: output. (The frequency -k/n is the same as the frequency cannam@167: (n-k)/n.) cannam@167:

cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: