view src/fftw-3.3.5/rdft/scalar/r2cb/hc2cbdft_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sat Jul 30 16:51:55 EDT 2016 */

#include "codelet-rdft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include hc2cb.h */

/*
 * This function contains 82 FP additions, 36 FP multiplications,
 * (or, 60 additions, 14 multiplications, 22 fused multiply/add),
 * 55 stack variables, 1 constants, and 32 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     {
	  INT m;
	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
	       E T1m, T1r, T1i, T1u, T1o, T1v, T1n, T1w, T1s;
	       {
		    E T1k, Tl, T1p, TE, TP, T1g, TM, T1b, T1f, T1a, TU, Tf, T1l, TH, Tw;
		    E T1q;
		    {
			 E TA, T3, TN, Tk, Th, T6, TO, TD, Tb, Tm, Ta, TK, Tp, Tc, Ts;
			 E Tt;
			 {
			      E T4, T5, TB, TC;
			      {
				   E T1, T2, Ti, Tj;
				   T1 = Rp[0];
				   T2 = Rm[WS(rs, 3)];
				   Ti = Ip[0];
				   Tj = Im[WS(rs, 3)];
				   T4 = Rp[WS(rs, 2)];
				   TA = T1 - T2;
				   T3 = T1 + T2;
				   TN = Ti - Tj;
				   Tk = Ti + Tj;
				   T5 = Rm[WS(rs, 1)];
				   TB = Ip[WS(rs, 2)];
				   TC = Im[WS(rs, 1)];
			      }
			      {
				   E T8, T9, Tn, To;
				   T8 = Rp[WS(rs, 1)];
				   Th = T4 - T5;
				   T6 = T4 + T5;
				   TO = TB - TC;
				   TD = TB + TC;
				   T9 = Rm[WS(rs, 2)];
				   Tn = Ip[WS(rs, 1)];
				   To = Im[WS(rs, 2)];
				   Tb = Rm[0];
				   Tm = T8 - T9;
				   Ta = T8 + T9;
				   TK = Tn - To;
				   Tp = Tn + To;
				   Tc = Rp[WS(rs, 3)];
				   Ts = Im[0];
				   Tt = Ip[WS(rs, 3)];
			      }
			 }
			 {
			      E Tr, Td, Tu, TL, Te, T7;
			      T1k = Tk - Th;
			      Tl = Th + Tk;
			      Tr = Tb - Tc;
			      Td = Tb + Tc;
			      TL = Tt - Ts;
			      Tu = Ts + Tt;
			      T1p = TA + TD;
			      TE = TA - TD;
			      TP = TN + TO;
			      T1g = TN - TO;
			      TM = TK + TL;
			      T1b = TL - TK;
			      T1f = Ta - Td;
			      Te = Ta + Td;
			      T1a = T3 - T6;
			      T7 = T3 + T6;
			      {
				   E Tq, TF, TG, Tv;
				   Tq = Tm + Tp;
				   TF = Tm - Tp;
				   TG = Tr - Tu;
				   Tv = Tr + Tu;
				   TU = T7 - Te;
				   Tf = T7 + Te;
				   T1l = TF - TG;
				   TH = TF + TG;
				   Tw = Tq - Tv;
				   T1q = Tq + Tv;
			      }
			 }
		    }
		    {
			 E TX, T10, T1c, T13, T1h, T1E, T1H, T1C, T1K, T1G, T1L, T1F;
			 {
			      E TQ, Tx, T1y, TI, Tg, Tz;
			      TX = TP - TM;
			      TQ = TM + TP;
			      Tx = FMA(KP707106781, Tw, Tl);
			      T10 = FNMS(KP707106781, Tw, Tl);
			      T1c = T1a + T1b;
			      T1y = T1a - T1b;
			      T13 = FNMS(KP707106781, TH, TE);
			      TI = FMA(KP707106781, TH, TE);
			      Tg = W[0];
			      Tz = W[1];
			      {
				   E T1B, T1A, T1x, T1J, T1z, T1D;
				   {
					E TR, Ty, TS, TJ;
					T1B = T1g - T1f;
					T1h = T1f + T1g;
					T1A = W[11];
					TR = Tg * TI;
					Ty = Tg * Tx;
					T1x = W[10];
					T1J = T1A * T1y;
					TS = FNMS(Tz, Tx, TR);
					TJ = FMA(Tz, TI, Ty);
					T1z = T1x * T1y;
					T1m = FMA(KP707106781, T1l, T1k);
					T1E = FNMS(KP707106781, T1l, T1k);
					Im[0] = TS - TQ;
					Ip[0] = TQ + TS;
					Rm[0] = Tf + TJ;
					Rp[0] = Tf - TJ;
					T1H = FMA(KP707106781, T1q, T1p);
					T1r = FNMS(KP707106781, T1q, T1p);
					T1D = W[12];
				   }
				   T1C = FNMS(T1A, T1B, T1z);
				   T1K = FMA(T1x, T1B, T1J);
				   T1G = W[13];
				   T1L = T1D * T1H;
				   T1F = T1D * T1E;
			      }
			 }
			 {
			      E TY, T16, T12, T17, T11;
			      {
				   E TW, TT, T15, TV, TZ, T1M, T1I;
				   TW = W[7];
				   T1M = FNMS(T1G, T1E, T1L);
				   T1I = FMA(T1G, T1H, T1F);
				   TT = W[6];
				   T15 = TW * TU;
				   Im[WS(rs, 3)] = T1M - T1K;
				   Ip[WS(rs, 3)] = T1K + T1M;
				   Rm[WS(rs, 3)] = T1C + T1I;
				   Rp[WS(rs, 3)] = T1C - T1I;
				   TV = TT * TU;
				   TZ = W[8];
				   TY = FNMS(TW, TX, TV);
				   T16 = FMA(TT, TX, T15);
				   T12 = W[9];
				   T17 = TZ * T13;
				   T11 = TZ * T10;
			      }
			      {
				   E T1e, T19, T1t, T1d, T1j, T18, T14;
				   T1e = W[3];
				   T18 = FNMS(T12, T10, T17);
				   T14 = FMA(T12, T13, T11);
				   T19 = W[2];
				   T1t = T1e * T1c;
				   Im[WS(rs, 2)] = T18 - T16;
				   Ip[WS(rs, 2)] = T16 + T18;
				   Rm[WS(rs, 2)] = TY + T14;
				   Rp[WS(rs, 2)] = TY - T14;
				   T1d = T19 * T1c;
				   T1j = W[4];
				   T1i = FNMS(T1e, T1h, T1d);
				   T1u = FMA(T19, T1h, T1t);
				   T1o = W[5];
				   T1v = T1j * T1r;
				   T1n = T1j * T1m;
			      }
			 }
		    }
	       }
	       T1w = FNMS(T1o, T1m, T1v);
	       T1s = FMA(T1o, T1r, T1n);
	       Im[WS(rs, 1)] = T1w - T1u;
	       Ip[WS(rs, 1)] = T1u + T1w;
	       Rm[WS(rs, 1)] = T1i + T1s;
	       Rp[WS(rs, 1)] = T1i - T1s;
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 8},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, {60, 14, 22, 0} };

void X(codelet_hc2cbdft_8) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include hc2cb.h */

/*
 * This function contains 82 FP additions, 32 FP multiplications,
 * (or, 68 additions, 18 multiplications, 14 fused multiply/add),
 * 30 stack variables, 1 constants, and 32 memory accesses
 */
#include "hc2cb.h"

static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     {
	  INT m;
	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
	       E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
	       E T1i;
	       {
		    E T3, TC, Tk, TM, T6, Th, TF, TN;
		    {
			 E T1, T2, Ti, Tj;
			 T1 = Rp[0];
			 T2 = Rm[WS(rs, 3)];
			 T3 = T1 + T2;
			 TC = T1 - T2;
			 Ti = Ip[0];
			 Tj = Im[WS(rs, 3)];
			 Tk = Ti + Tj;
			 TM = Ti - Tj;
		    }
		    {
			 E T4, T5, TD, TE;
			 T4 = Rp[WS(rs, 2)];
			 T5 = Rm[WS(rs, 1)];
			 T6 = T4 + T5;
			 Th = T4 - T5;
			 TD = Ip[WS(rs, 2)];
			 TE = Im[WS(rs, 1)];
			 TF = TD + TE;
			 TN = TD - TE;
		    }
		    T7 = T3 + T6;
		    T1d = Tk - Th;
		    T1h = TC + TF;
		    Tl = Th + Tk;
		    TG = TC - TF;
		    T14 = T3 - T6;
		    T19 = TM - TN;
		    TO = TM + TN;
	       }
	       {
		    E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
		    {
			 E T8, T9, Tn, To;
			 T8 = Rp[WS(rs, 1)];
			 T9 = Rm[WS(rs, 2)];
			 Ta = T8 + T9;
			 Tm = T8 - T9;
			 Tn = Ip[WS(rs, 1)];
			 To = Im[WS(rs, 2)];
			 Tp = Tn + To;
			 TJ = Tn - To;
		    }
		    {
			 E Tb, Tc, Ts, Tt;
			 Tb = Rm[0];
			 Tc = Rp[WS(rs, 3)];
			 Td = Tb + Tc;
			 Tr = Tb - Tc;
			 Ts = Im[0];
			 Tt = Ip[WS(rs, 3)];
			 Tu = Ts + Tt;
			 TK = Tt - Ts;
		    }
		    Te = Ta + Td;
		    TL = TJ + TK;
		    T18 = Ta - Td;
		    T15 = TK - TJ;
		    {
			 E Tz, TA, Tq, Tv;
			 Tz = Tm - Tp;
			 TA = Tr - Tu;
			 TB = KP707106781 * (Tz + TA);
			 T1e = KP707106781 * (Tz - TA);
			 Tq = Tm + Tp;
			 Tv = Tr + Tu;
			 Tw = KP707106781 * (Tq - Tv);
			 T1i = KP707106781 * (Tq + Tv);
		    }
	       }
	       {
		    E Tf, TP, TI, TQ;
		    Tf = T7 + Te;
		    TP = TL + TO;
		    {
			 E Tx, TH, Tg, Ty;
			 Tx = Tl + Tw;
			 TH = TB + TG;
			 Tg = W[0];
			 Ty = W[1];
			 TI = FMA(Tg, Tx, Ty * TH);
			 TQ = FNMS(Ty, Tx, Tg * TH);
		    }
		    Rp[0] = Tf - TI;
		    Ip[0] = TP + TQ;
		    Rm[0] = Tf + TI;
		    Im[0] = TQ - TP;
	       }
	       {
		    E T1r, T1x, T1w, T1y;
		    {
			 E T1o, T1q, T1n, T1p;
			 T1o = T14 - T15;
			 T1q = T19 - T18;
			 T1n = W[10];
			 T1p = W[11];
			 T1r = FNMS(T1p, T1q, T1n * T1o);
			 T1x = FMA(T1p, T1o, T1n * T1q);
		    }
		    {
			 E T1t, T1v, T1s, T1u;
			 T1t = T1d - T1e;
			 T1v = T1i + T1h;
			 T1s = W[12];
			 T1u = W[13];
			 T1w = FMA(T1s, T1t, T1u * T1v);
			 T1y = FNMS(T1u, T1t, T1s * T1v);
		    }
		    Rp[WS(rs, 3)] = T1r - T1w;
		    Ip[WS(rs, 3)] = T1x + T1y;
		    Rm[WS(rs, 3)] = T1r + T1w;
		    Im[WS(rs, 3)] = T1y - T1x;
	       }
	       {
		    E TV, T11, T10, T12;
		    {
			 E TS, TU, TR, TT;
			 TS = T7 - Te;
			 TU = TO - TL;
			 TR = W[6];
			 TT = W[7];
			 TV = FNMS(TT, TU, TR * TS);
			 T11 = FMA(TT, TS, TR * TU);
		    }
		    {
			 E TX, TZ, TW, TY;
			 TX = Tl - Tw;
			 TZ = TG - TB;
			 TW = W[8];
			 TY = W[9];
			 T10 = FMA(TW, TX, TY * TZ);
			 T12 = FNMS(TY, TX, TW * TZ);
		    }
		    Rp[WS(rs, 2)] = TV - T10;
		    Ip[WS(rs, 2)] = T11 + T12;
		    Rm[WS(rs, 2)] = TV + T10;
		    Im[WS(rs, 2)] = T12 - T11;
	       }
	       {
		    E T1b, T1l, T1k, T1m;
		    {
			 E T16, T1a, T13, T17;
			 T16 = T14 + T15;
			 T1a = T18 + T19;
			 T13 = W[2];
			 T17 = W[3];
			 T1b = FNMS(T17, T1a, T13 * T16);
			 T1l = FMA(T17, T16, T13 * T1a);
		    }
		    {
			 E T1f, T1j, T1c, T1g;
			 T1f = T1d + T1e;
			 T1j = T1h - T1i;
			 T1c = W[4];
			 T1g = W[5];
			 T1k = FMA(T1c, T1f, T1g * T1j);
			 T1m = FNMS(T1g, T1f, T1c * T1j);
		    }
		    Rp[WS(rs, 1)] = T1b - T1k;
		    Ip[WS(rs, 1)] = T1l + T1m;
		    Rm[WS(rs, 1)] = T1b + T1k;
		    Im[WS(rs, 1)] = T1m - T1l;
	       }
	  }
     }
}

static const tw_instr twinstr[] = {
     {TW_FULL, 1, 8},
     {TW_NEXT, 1, 0}
};

static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, {68, 18, 14, 0} };

void X(codelet_hc2cbdft_8) (planner *p) {
     X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT);
}
#endif				/* HAVE_FMA */