Mercurial > hg > sv-dependency-builds
view src/fftw-3.3.5/doc/html/1d-Real_002dodd-DFTs-_0028DSTs_0029.html @ 169:223a55898ab9 tip default
Add null config files
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Mon, 02 Mar 2020 14:03:47 +0000 |
parents | 7867fa7e1b6b |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual is for FFTW (version 3.3.5, 30 July 2016). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ --> <head> <title>FFTW 3.3.5: 1d Real-odd DFTs (DSTs)</title> <meta name="description" content="FFTW 3.3.5: 1d Real-odd DFTs (DSTs)"> <meta name="keywords" content="FFTW 3.3.5: 1d Real-odd DFTs (DSTs)"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <link href="index.html#Top" rel="start" title="Top"> <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> <link href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" rel="next" title="1d Discrete Hartley Transforms (DHTs)"> <link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="prev" title="1d Real-even DFTs (DCTs)"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.smallquotation {font-size: smaller} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.indentedblock {margin-left: 3.2em} div.lisp {margin-left: 3.2em} div.smalldisplay {margin-left: 3.2em} div.smallexample {margin-left: 3.2em} div.smallindentedblock {margin-left: 3.2em; font-size: smaller} div.smalllisp {margin-left: 3.2em} kbd {font-style:oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} pre.smalldisplay {font-family: inherit; font-size: smaller} pre.smallexample {font-size: smaller} pre.smallformat {font-family: inherit; font-size: smaller} pre.smalllisp {font-size: smaller} span.nocodebreak {white-space:nowrap} span.nolinebreak {white-space:nowrap} span.roman {font-family:serif; font-weight:normal} span.sansserif {font-family:sans-serif; font-weight:normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000"> <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029"></a> <div class="header"> <p> Next: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="n" rel="next">1d Discrete Hartley Transforms (DHTs)</a>, Previous: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="p" rel="prev">1d Real-even DFTs (DCTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> <hr> <a name="g_t1d-Real_002dodd-DFTs-_0028DSTs_0029-1"></a> <h4 class="subsection">4.8.4 1d Real-odd DFTs (DSTs)</h4> <p>The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized forward (and backward) DFTs as defined above, where the input array <em>X</em> of length <em>N</em> is purely real and is also <em>odd</em> symmetry. In this case, the output is odd symmetry and purely imaginary. <a name="index-real_002dodd-DFT-1"></a> <a name="index-RODFT-1"></a> </p> <a name="index-RODFT00"></a> <p>For the case of <code>RODFT00</code>, this odd symmetry means that <i>X<sub>j</sub> = -X<sub>N-j</sub></i>,where we take <em>X</em> to be periodic so that <i>X<sub>N</sub> = X</i><sub>0</sub>.Because of this redundancy, only the first <em>n</em> real numbers starting at <em>j=1</em> are actually stored (the <em>j=0</em> element is zero), where <em>N = 2(n+1)</em>. </p> <p>The proper definition of odd symmetry for <code>RODFT10</code>, <code>RODFT01</code>, and <code>RODFT11</code> transforms is somewhat more intricate because of the shifts by <em>1/2</em> of the input and/or output, although the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the odd symmetry, however, the cosine terms in the DFT all cancel and the remaining sine terms are written explicitly below. This formulation often leads people to call such a transform a <em>discrete sine transform</em> (DST), although it is really just a special case of the DFT. <a name="index-discrete-sine-transform-2"></a> <a name="index-DST-2"></a> </p> <p>In each of the definitions below, we transform a real array <em>X</em> of length <em>n</em> to a real array <em>Y</em> of length <em>n</em>: </p> <a name="RODFT00-_0028DST_002dI_0029"></a> <h4 class="subsubheading">RODFT00 (DST-I)</h4> <a name="index-RODFT00-1"></a> <p>An <code>RODFT00</code> transform (type-I DST) in FFTW is defined by: <center><img src="equation-rodft00.png" align="top">.</center></p> <a name="RODFT10-_0028DST_002dII_0029"></a> <h4 class="subsubheading">RODFT10 (DST-II)</h4> <a name="index-RODFT10"></a> <p>An <code>RODFT10</code> transform (type-II DST) in FFTW is defined by: <center><img src="equation-rodft10.png" align="top">.</center></p> <a name="RODFT01-_0028DST_002dIII_0029"></a> <h4 class="subsubheading">RODFT01 (DST-III)</h4> <a name="index-RODFT01"></a> <p>An <code>RODFT01</code> transform (type-III DST) in FFTW is defined by: <center><img src="equation-rodft01.png" align="top">.</center>In the case of <em>n=1</em>, this reduces to <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.</p> <a name="RODFT11-_0028DST_002dIV_0029"></a> <h4 class="subsubheading">RODFT11 (DST-IV)</h4> <a name="index-RODFT11"></a> <p>An <code>RODFT11</code> transform (type-IV DST) in FFTW is defined by: <center><img src="equation-rodft11.png" align="top">.</center></p> <a name="Inverses-and-Normalization-1"></a> <h4 class="subsubheading">Inverses and Normalization</h4> <p>These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW (hence the factors of <em>2</em> in front of the summations). The unnormalized inverse of <code>RODFT00</code> is <code>RODFT00</code>, of <code>RODFT10</code> is <code>RODFT01</code> and vice versa, and of <code>RODFT11</code> is <code>RODFT11</code>. Each unnormalized inverse results in the original array multiplied by <em>N</em>, where <em>N</em> is the <em>logical</em> DFT size. For <code>RODFT00</code>, <em>N=2(n+1)</em>; otherwise, <em>N=2n</em>. <a name="index-normalization-11"></a> </p> <p>In defining the discrete sine transform, some authors also include additional factors of √2(or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic change that makes the transform orthogonal, but sacrifices the direct equivalence to an antisymmetric DFT. </p> <hr> <div class="header"> <p> Next: <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="n" rel="next">1d Discrete Hartley Transforms (DHTs)</a>, Previous: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="p" rel="prev">1d Real-even DFTs (DCTs)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> </body> </html>