view src/fftw-3.3.3/dft/simd/common/t3bv_20.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sun Nov 25 07:39:23 EST 2012 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include t3b.h -sign 1 */

/*
 * This function contains 138 FP additions, 118 FP multiplications,
 * (or, 92 additions, 72 multiplications, 46 fused multiply/add),
 * 90 stack variables, 4 constants, and 40 memory accesses
 */
#include "t3b.h"

static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
     {
	  INT m;
	  R *x;
	  x = ii;
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
	       V T19, T1u, T1p, T1x, T1m, T1w, T1t, TI;
	       {
		    V T2, T8, T3, Td;
		    T2 = LDW(&(W[0]));
		    T8 = LDW(&(W[TWVL * 2]));
		    T3 = LDW(&(W[TWVL * 4]));
		    Td = LDW(&(W[TWVL * 6]));
		    {
			 V T7, T1g, T1F, T23, T1n, Tp, T18, T27, T1P, T1I, TU, T1L, T28, T1S, T1o;
			 V TE, T1l, T1j, T26, T2e;
			 {
			      V T1, T1e, T5, T1b;
			      T1 = LD(&(x[0]), ms, &(x[0]));
			      T1e = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
			      T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
			      T1b = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
			      {
				   V TA, Tx, TQ, T1O, T10, Th, T1G, T1R, T17, T1J, To, Ts, TR, Tv, TK;
				   V TM, TP, Ty, TB;
				   {
					V Tq, Tt, T13, T16, Tk, Tn;
					{
					     V Tl, Ti, T11, T14, TV, Tc, T6, Tb, Tf, TW, TY, T1f;
					     {
						  V T1d, Ta, T9, T4;
						  Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
						  TA = VZMULJ(T2, T8);
						  T9 = VZMUL(T2, T8);
						  Tx = VZMUL(T8, T3);
						  Tl = VZMULJ(T8, T3);
						  T4 = VZMUL(T2, T3);
						  Tq = VZMULJ(T2, T3);
						  Tt = VZMULJ(T2, Td);
						  Ti = VZMULJ(T8, Td);
						  T11 = VZMULJ(TA, Td);
						  T14 = VZMULJ(TA, T3);
						  TQ = VZMUL(TA, T3);
						  T1d = VZMULJ(T9, Td);
						  TV = VZMUL(T9, T3);
						  Tc = VZMULJ(T9, T3);
						  T6 = VZMUL(T4, T5);
						  Tb = VZMUL(T9, Ta);
						  Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
						  TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
						  TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
						  T1f = VZMUL(T1d, T1e);
					     }
					     {
						  V T1D, TX, TZ, T15, T1E, Tg, T12, T1c, Te, Tj, Tm;
						  T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
						  T1c = VZMUL(Tc, T1b);
						  Te = VZMULJ(Tc, Td);
						  T7 = VSUB(T1, T6);
						  T1D = VADD(T1, T6);
						  TX = VZMUL(TV, TW);
						  TZ = VZMUL(T8, TY);
						  T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
						  T13 = VZMUL(T11, T12);
						  T1g = VSUB(T1c, T1f);
						  T1E = VADD(T1c, T1f);
						  Tg = VZMUL(Te, Tf);
						  Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
						  Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
						  T1O = VADD(TX, TZ);
						  T10 = VSUB(TX, TZ);
						  T16 = VZMUL(T14, T15);
						  T1F = VSUB(T1D, T1E);
						  T23 = VADD(T1D, T1E);
						  Th = VSUB(Tb, Tg);
						  T1G = VADD(Tb, Tg);
						  Tk = VZMUL(Ti, Tj);
						  Tn = VZMUL(Tl, Tm);
					     }
					}
					{
					     V Tr, Tu, TJ, TL, TO;
					     Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
					     T1R = VADD(T13, T16);
					     T17 = VSUB(T13, T16);
					     Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
					     TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
					     TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
					     TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
					     T1J = VADD(Tk, Tn);
					     To = VSUB(Tk, Tn);
					     Ts = VZMUL(Tq, Tr);
					     TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
					     Tv = VZMUL(Tt, Tu);
					     TK = VZMUL(T3, TJ);
					     TM = VZMUL(Td, TL);
					     TP = VZMUL(T2, TO);
					     Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
					     TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
					}
				   }
				   {
					V T1N, Tw, T1H, TN, Tz, TC, T1i, TT, T1K, TS;
					T1n = VSUB(Th, To);
					Tp = VADD(Th, To);
					TS = VZMUL(TQ, TR);
					T1N = VADD(Ts, Tv);
					Tw = VSUB(Ts, Tv);
					T1H = VADD(TK, TM);
					TN = VSUB(TK, TM);
					Tz = VZMUL(Tx, Ty);
					TC = VZMUL(TA, TB);
					T18 = VSUB(T10, T17);
					T1i = VADD(T10, T17);
					TT = VSUB(TP, TS);
					T1K = VADD(TP, TS);
					T27 = VADD(T1N, T1O);
					T1P = VSUB(T1N, T1O);
					{
					     V TD, T1Q, T24, T1h, T25;
					     TD = VSUB(Tz, TC);
					     T1Q = VADD(Tz, TC);
					     T1I = VSUB(T1G, T1H);
					     T24 = VADD(T1G, T1H);
					     T1h = VADD(TN, TT);
					     TU = VSUB(TN, TT);
					     T25 = VADD(T1J, T1K);
					     T1L = VSUB(T1J, T1K);
					     T28 = VADD(T1Q, T1R);
					     T1S = VSUB(T1Q, T1R);
					     T1o = VSUB(Tw, TD);
					     TE = VADD(Tw, TD);
					     T1l = VSUB(T1h, T1i);
					     T1j = VADD(T1h, T1i);
					     T26 = VADD(T24, T25);
					     T2e = VSUB(T24, T25);
					}
				   }
			      }
			 }
			 {
			      V T1M, T1Z, T1Y, T1T, T29, T2f, TH, TF, T1k, T1C;
			      T1M = VADD(T1I, T1L);
			      T1Z = VSUB(T1I, T1L);
			      T1Y = VSUB(T1P, T1S);
			      T1T = VADD(T1P, T1S);
			      T29 = VADD(T27, T28);
			      T2f = VSUB(T27, T28);
			      TH = VSUB(Tp, TE);
			      TF = VADD(Tp, TE);
			      T1k = VFNMS(LDK(KP250000000), T1j, T1g);
			      T1C = VADD(T1g, T1j);
			      {
				   V T1W, T2c, TG, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, T1B;
				   T19 = VFMA(LDK(KP618033988), T18, TU);
				   T1u = VFNMS(LDK(KP618033988), TU, T18);
				   T1W = VSUB(T1M, T1T);
				   T1U = VADD(T1M, T1T);
				   T2c = VSUB(T26, T29);
				   T2a = VADD(T26, T29);
				   TG = VFNMS(LDK(KP250000000), TF, T7);
				   T1B = VADD(T7, TF);
				   T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f));
				   T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e));
				   T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z));
				   T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y));
				   ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0]));
				   T1V = VFNMS(LDK(KP250000000), T1U, T1F);
				   ST(&(x[0]), VADD(T23, T2a), ms, &(x[0]));
				   T2b = VFNMS(LDK(KP250000000), T2a, T23);
				   ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)]));
				   ST(&(x[WS(rs, 15)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)]));
				   T1p = VFMA(LDK(KP618033988), T1o, T1n);
				   T1x = VFNMS(LDK(KP618033988), T1n, T1o);
				   {
					V T21, T1X, T2h, T2d;
					T21 = VFMA(LDK(KP559016994), T1W, T1V);
					T1X = VFNMS(LDK(KP559016994), T1W, T1V);
					T2h = VFNMS(LDK(KP559016994), T2c, T2b);
					T2d = VFMA(LDK(KP559016994), T2c, T2b);
					ST(&(x[WS(rs, 18)]), VFMAI(T20, T1X), ms, &(x[0]));
					ST(&(x[WS(rs, 2)]), VFNMSI(T20, T1X), ms, &(x[0]));
					ST(&(x[WS(rs, 14)]), VFNMSI(T22, T21), ms, &(x[0]));
					ST(&(x[WS(rs, 6)]), VFMAI(T22, T21), ms, &(x[0]));
					ST(&(x[WS(rs, 16)]), VFMAI(T2g, T2d), ms, &(x[0]));
					ST(&(x[WS(rs, 4)]), VFNMSI(T2g, T2d), ms, &(x[0]));
					ST(&(x[WS(rs, 12)]), VFNMSI(T2i, T2h), ms, &(x[0]));
					ST(&(x[WS(rs, 8)]), VFMAI(T2i, T2h), ms, &(x[0]));
					T1m = VFMA(LDK(KP559016994), T1l, T1k);
					T1w = VFNMS(LDK(KP559016994), T1l, T1k);
					T1t = VFNMS(LDK(KP559016994), TH, TG);
					TI = VFMA(LDK(KP559016994), TH, TG);
				   }
			      }
			 }
		    }
	       }
	       {
		    V T1A, T1y, T1q, T1s, T1a, T1r, T1z, T1v;
		    T1A = VFMA(LDK(KP951056516), T1x, T1w);
		    T1y = VFNMS(LDK(KP951056516), T1x, T1w);
		    T1q = VFMA(LDK(KP951056516), T1p, T1m);
		    T1s = VFNMS(LDK(KP951056516), T1p, T1m);
		    T1a = VFNMS(LDK(KP951056516), T19, TI);
		    T1r = VFMA(LDK(KP951056516), T19, TI);
		    T1z = VFNMS(LDK(KP951056516), T1u, T1t);
		    T1v = VFMA(LDK(KP951056516), T1u, T1t);
		    ST(&(x[WS(rs, 9)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 11)]), VFNMSI(T1s, T1r), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 1)]), VFMAI(T1q, T1a), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 19)]), VFNMSI(T1q, T1a), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 17)]), VFMAI(T1y, T1v), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 3)]), VFNMSI(T1y, T1v), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 13)]), VFMAI(T1A, T1z), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 7)]), VFNMSI(T1A, T1z), ms, &(x[WS(rs, 1)]));
	       }
	  }
     }
     VLEAVE();
}

static const tw_instr twinstr[] = {
     VTW(0, 1),
     VTW(0, 3),
     VTW(0, 9),
     VTW(0, 19),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 };

void XSIMD(codelet_t3bv_20) (planner *p) {
     X(kdft_dit_register) (p, t3bv_20, &desc);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include t3b.h -sign 1 */

/*
 * This function contains 138 FP additions, 92 FP multiplications,
 * (or, 126 additions, 80 multiplications, 12 fused multiply/add),
 * 73 stack variables, 4 constants, and 40 memory accesses
 */
#include "t3b.h"

static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
     {
	  INT m;
	  R *x;
	  x = ii;
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
	       V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te;
	       V T1g, Ti, Tt, T11;
	       T2 = LDW(&(W[0]));
	       T8 = LDW(&(W[TWVL * 2]));
	       T9 = VZMUL(T2, T8);
	       TA = VZMULJ(T2, T8);
	       T3 = LDW(&(W[TWVL * 4]));
	       Tc = VZMULJ(T9, T3);
	       T4 = VZMUL(T2, T3);
	       TV = VZMUL(T9, T3);
	       T14 = VZMULJ(TA, T3);
	       Tl = VZMULJ(T8, T3);
	       Tq = VZMULJ(T2, T3);
	       Tx = VZMUL(T8, T3);
	       TQ = VZMUL(TA, T3);
	       Td = LDW(&(W[TWVL * 6]));
	       Te = VZMULJ(Tc, Td);
	       T1g = VZMULJ(T9, Td);
	       Ti = VZMULJ(T8, Td);
	       Tt = VZMULJ(T2, Td);
	       T11 = VZMULJ(TA, Td);
	       {
		    V T7, T1j, T1U, T2a, TU, T1n, T1o, T18, Tp, TE, TF, T26, T27, T28, T1M;
		    V T1P, T1W, T1b, T1c, T1k, T23, T24, T25, T1F, T1I, T1V, T1B, T1C;
		    {
			 V T1, T1i, T6, T1f, T1h, T5, T1e, T1S, T1T;
			 T1 = LD(&(x[0]), ms, &(x[0]));
			 T1h = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
			 T1i = VZMUL(T1g, T1h);
			 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
			 T6 = VZMUL(T4, T5);
			 T1e = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
			 T1f = VZMUL(Tc, T1e);
			 T7 = VSUB(T1, T6);
			 T1j = VSUB(T1f, T1i);
			 T1S = VADD(T1, T6);
			 T1T = VADD(T1f, T1i);
			 T1U = VSUB(T1S, T1T);
			 T2a = VADD(T1S, T1T);
		    }
		    {
			 V Th, T1D, T10, T1L, T17, T1O, To, T1G, Tw, T1K, TN, T1E, TT, T1H, TD;
			 V T1N;
			 {
			      V Tb, Tg, Ta, Tf;
			      Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
			      Tb = VZMUL(T9, Ta);
			      Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
			      Tg = VZMUL(Te, Tf);
			      Th = VSUB(Tb, Tg);
			      T1D = VADD(Tb, Tg);
			 }
			 {
			      V TX, TZ, TW, TY;
			      TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
			      TX = VZMUL(TV, TW);
			      TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
			      TZ = VZMUL(T8, TY);
			      T10 = VSUB(TX, TZ);
			      T1L = VADD(TX, TZ);
			 }
			 {
			      V T13, T16, T12, T15;
			      T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
			      T13 = VZMUL(T11, T12);
			      T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
			      T16 = VZMUL(T14, T15);
			      T17 = VSUB(T13, T16);
			      T1O = VADD(T13, T16);
			 }
			 {
			      V Tk, Tn, Tj, Tm;
			      Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
			      Tk = VZMUL(Ti, Tj);
			      Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
			      Tn = VZMUL(Tl, Tm);
			      To = VSUB(Tk, Tn);
			      T1G = VADD(Tk, Tn);
			 }
			 {
			      V Ts, Tv, Tr, Tu;
			      Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
			      Ts = VZMUL(Tq, Tr);
			      Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
			      Tv = VZMUL(Tt, Tu);
			      Tw = VSUB(Ts, Tv);
			      T1K = VADD(Ts, Tv);
			 }
			 {
			      V TK, TM, TJ, TL;
			      TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
			      TK = VZMUL(T3, TJ);
			      TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
			      TM = VZMUL(Td, TL);
			      TN = VSUB(TK, TM);
			      T1E = VADD(TK, TM);
			 }
			 {
			      V TP, TS, TO, TR;
			      TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
			      TP = VZMUL(T2, TO);
			      TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
			      TS = VZMUL(TQ, TR);
			      TT = VSUB(TP, TS);
			      T1H = VADD(TP, TS);
			 }
			 {
			      V Tz, TC, Ty, TB;
			      Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
			      Tz = VZMUL(Tx, Ty);
			      TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
			      TC = VZMUL(TA, TB);
			      TD = VSUB(Tz, TC);
			      T1N = VADD(Tz, TC);
			 }
			 TU = VSUB(TN, TT);
			 T1n = VSUB(Th, To);
			 T1o = VSUB(Tw, TD);
			 T18 = VSUB(T10, T17);
			 Tp = VADD(Th, To);
			 TE = VADD(Tw, TD);
			 TF = VADD(Tp, TE);
			 T26 = VADD(T1K, T1L);
			 T27 = VADD(T1N, T1O);
			 T28 = VADD(T26, T27);
			 T1M = VSUB(T1K, T1L);
			 T1P = VSUB(T1N, T1O);
			 T1W = VADD(T1M, T1P);
			 T1b = VADD(TN, TT);
			 T1c = VADD(T10, T17);
			 T1k = VADD(T1b, T1c);
			 T23 = VADD(T1D, T1E);
			 T24 = VADD(T1G, T1H);
			 T25 = VADD(T23, T24);
			 T1F = VSUB(T1D, T1E);
			 T1I = VSUB(T1G, T1H);
			 T1V = VADD(T1F, T1I);
		    }
		    T1B = VADD(T7, TF);
		    T1C = VBYI(VADD(T1j, T1k));
		    ST(&(x[WS(rs, 15)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 5)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)]));
		    {
			 V T29, T2b, T2c, T2g, T2i, T2e, T2f, T2h, T2d;
			 T29 = VMUL(LDK(KP559016994), VSUB(T25, T28));
			 T2b = VADD(T25, T28);
			 T2c = VFNMS(LDK(KP250000000), T2b, T2a);
			 T2e = VSUB(T23, T24);
			 T2f = VSUB(T26, T27);
			 T2g = VBYI(VFMA(LDK(KP951056516), T2e, VMUL(LDK(KP587785252), T2f)));
			 T2i = VBYI(VFNMS(LDK(KP951056516), T2f, VMUL(LDK(KP587785252), T2e)));
			 ST(&(x[0]), VADD(T2a, T2b), ms, &(x[0]));
			 T2h = VSUB(T2c, T29);
			 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0]));
			 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0]));
			 T2d = VADD(T29, T2c);
			 ST(&(x[WS(rs, 4)]), VSUB(T2d, T2g), ms, &(x[0]));
			 ST(&(x[WS(rs, 16)]), VADD(T2g, T2d), ms, &(x[0]));
		    }
		    {
			 V T1Z, T1X, T1Y, T1R, T21, T1J, T1Q, T22, T20;
			 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W));
			 T1X = VADD(T1V, T1W);
			 T1Y = VFNMS(LDK(KP250000000), T1X, T1U);
			 T1J = VSUB(T1F, T1I);
			 T1Q = VSUB(T1M, T1P);
			 T1R = VBYI(VFNMS(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J)));
			 T21 = VBYI(VFMA(LDK(KP951056516), T1J, VMUL(LDK(KP587785252), T1Q)));
			 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0]));
			 T22 = VADD(T1Z, T1Y);
			 ST(&(x[WS(rs, 6)]), VADD(T21, T22), ms, &(x[0]));
			 ST(&(x[WS(rs, 14)]), VSUB(T22, T21), ms, &(x[0]));
			 T20 = VSUB(T1Y, T1Z);
			 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0]));
			 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0]));
		    }
		    {
			 V T19, T1p, T1w, T1u, T1m, T1x, TI, T1t;
			 T19 = VFNMS(LDK(KP951056516), T18, VMUL(LDK(KP587785252), TU));
			 T1p = VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1n));
			 T1w = VFMA(LDK(KP951056516), T1n, VMUL(LDK(KP587785252), T1o));
			 T1u = VFMA(LDK(KP951056516), TU, VMUL(LDK(KP587785252), T18));
			 {
			      V T1d, T1l, TG, TH;
			      T1d = VMUL(LDK(KP559016994), VSUB(T1b, T1c));
			      T1l = VFNMS(LDK(KP250000000), T1k, T1j);
			      T1m = VSUB(T1d, T1l);
			      T1x = VADD(T1d, T1l);
			      TG = VFNMS(LDK(KP250000000), TF, T7);
			      TH = VMUL(LDK(KP559016994), VSUB(Tp, TE));
			      TI = VSUB(TG, TH);
			      T1t = VADD(TH, TG);
			 }
			 {
			      V T1a, T1q, T1z, T1A;
			      T1a = VSUB(TI, T19);
			      T1q = VBYI(VSUB(T1m, T1p));
			      ST(&(x[WS(rs, 17)]), VSUB(T1a, T1q), ms, &(x[WS(rs, 1)]));
			      ST(&(x[WS(rs, 3)]), VADD(T1a, T1q), ms, &(x[WS(rs, 1)]));
			      T1z = VADD(T1t, T1u);
			      T1A = VBYI(VSUB(T1x, T1w));
			      ST(&(x[WS(rs, 11)]), VSUB(T1z, T1A), ms, &(x[WS(rs, 1)]));
			      ST(&(x[WS(rs, 9)]), VADD(T1z, T1A), ms, &(x[WS(rs, 1)]));
			 }
			 {
			      V T1r, T1s, T1v, T1y;
			      T1r = VADD(TI, T19);
			      T1s = VBYI(VADD(T1p, T1m));
			      ST(&(x[WS(rs, 13)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)]));
			      ST(&(x[WS(rs, 7)]), VADD(T1r, T1s), ms, &(x[WS(rs, 1)]));
			      T1v = VSUB(T1t, T1u);
			      T1y = VBYI(VADD(T1w, T1x));
			      ST(&(x[WS(rs, 19)]), VSUB(T1v, T1y), ms, &(x[WS(rs, 1)]));
			      ST(&(x[WS(rs, 1)]), VADD(T1v, T1y), ms, &(x[WS(rs, 1)]));
			 }
		    }
	       }
	  }
     }
     VLEAVE();
}

static const tw_instr twinstr[] = {
     VTW(0, 1),
     VTW(0, 3),
     VTW(0, 9),
     VTW(0, 19),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 };

void XSIMD(codelet_t3bv_20) (planner *p) {
     X(kdft_dit_register) (p, t3bv_20, &desc);
}
#endif				/* HAVE_FMA */