Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:39:23 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-dft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include t3b.h -sign 1 */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 138 FP additions, 118 FP multiplications,
|
Chris@10
|
32 * (or, 92 additions, 72 multiplications, 46 fused multiply/add),
|
Chris@10
|
33 * 90 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "t3b.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
40 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
Chris@10
|
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
43 {
|
Chris@10
|
44 INT m;
|
Chris@10
|
45 R *x;
|
Chris@10
|
46 x = ii;
|
Chris@10
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
|
Chris@10
|
48 V T19, T1u, T1p, T1x, T1m, T1w, T1t, TI;
|
Chris@10
|
49 {
|
Chris@10
|
50 V T2, T8, T3, Td;
|
Chris@10
|
51 T2 = LDW(&(W[0]));
|
Chris@10
|
52 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
53 T3 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
54 Td = LDW(&(W[TWVL * 6]));
|
Chris@10
|
55 {
|
Chris@10
|
56 V T7, T1g, T1F, T23, T1n, Tp, T18, T27, T1P, T1I, TU, T1L, T28, T1S, T1o;
|
Chris@10
|
57 V TE, T1l, T1j, T26, T2e;
|
Chris@10
|
58 {
|
Chris@10
|
59 V T1, T1e, T5, T1b;
|
Chris@10
|
60 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
61 T1e = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
62 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
63 T1b = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
64 {
|
Chris@10
|
65 V TA, Tx, TQ, T1O, T10, Th, T1G, T1R, T17, T1J, To, Ts, TR, Tv, TK;
|
Chris@10
|
66 V TM, TP, Ty, TB;
|
Chris@10
|
67 {
|
Chris@10
|
68 V Tq, Tt, T13, T16, Tk, Tn;
|
Chris@10
|
69 {
|
Chris@10
|
70 V Tl, Ti, T11, T14, TV, Tc, T6, Tb, Tf, TW, TY, T1f;
|
Chris@10
|
71 {
|
Chris@10
|
72 V T1d, Ta, T9, T4;
|
Chris@10
|
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
74 TA = VZMULJ(T2, T8);
|
Chris@10
|
75 T9 = VZMUL(T2, T8);
|
Chris@10
|
76 Tx = VZMUL(T8, T3);
|
Chris@10
|
77 Tl = VZMULJ(T8, T3);
|
Chris@10
|
78 T4 = VZMUL(T2, T3);
|
Chris@10
|
79 Tq = VZMULJ(T2, T3);
|
Chris@10
|
80 Tt = VZMULJ(T2, Td);
|
Chris@10
|
81 Ti = VZMULJ(T8, Td);
|
Chris@10
|
82 T11 = VZMULJ(TA, Td);
|
Chris@10
|
83 T14 = VZMULJ(TA, T3);
|
Chris@10
|
84 TQ = VZMUL(TA, T3);
|
Chris@10
|
85 T1d = VZMULJ(T9, Td);
|
Chris@10
|
86 TV = VZMUL(T9, T3);
|
Chris@10
|
87 Tc = VZMULJ(T9, T3);
|
Chris@10
|
88 T6 = VZMUL(T4, T5);
|
Chris@10
|
89 Tb = VZMUL(T9, Ta);
|
Chris@10
|
90 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
91 TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
92 TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
93 T1f = VZMUL(T1d, T1e);
|
Chris@10
|
94 }
|
Chris@10
|
95 {
|
Chris@10
|
96 V T1D, TX, TZ, T15, T1E, Tg, T12, T1c, Te, Tj, Tm;
|
Chris@10
|
97 T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
98 T1c = VZMUL(Tc, T1b);
|
Chris@10
|
99 Te = VZMULJ(Tc, Td);
|
Chris@10
|
100 T7 = VSUB(T1, T6);
|
Chris@10
|
101 T1D = VADD(T1, T6);
|
Chris@10
|
102 TX = VZMUL(TV, TW);
|
Chris@10
|
103 TZ = VZMUL(T8, TY);
|
Chris@10
|
104 T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
105 T13 = VZMUL(T11, T12);
|
Chris@10
|
106 T1g = VSUB(T1c, T1f);
|
Chris@10
|
107 T1E = VADD(T1c, T1f);
|
Chris@10
|
108 Tg = VZMUL(Te, Tf);
|
Chris@10
|
109 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
|
Chris@10
|
110 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
111 T1O = VADD(TX, TZ);
|
Chris@10
|
112 T10 = VSUB(TX, TZ);
|
Chris@10
|
113 T16 = VZMUL(T14, T15);
|
Chris@10
|
114 T1F = VSUB(T1D, T1E);
|
Chris@10
|
115 T23 = VADD(T1D, T1E);
|
Chris@10
|
116 Th = VSUB(Tb, Tg);
|
Chris@10
|
117 T1G = VADD(Tb, Tg);
|
Chris@10
|
118 Tk = VZMUL(Ti, Tj);
|
Chris@10
|
119 Tn = VZMUL(Tl, Tm);
|
Chris@10
|
120 }
|
Chris@10
|
121 }
|
Chris@10
|
122 {
|
Chris@10
|
123 V Tr, Tu, TJ, TL, TO;
|
Chris@10
|
124 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
125 T1R = VADD(T13, T16);
|
Chris@10
|
126 T17 = VSUB(T13, T16);
|
Chris@10
|
127 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
|
Chris@10
|
128 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
129 TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
130 TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
131 T1J = VADD(Tk, Tn);
|
Chris@10
|
132 To = VSUB(Tk, Tn);
|
Chris@10
|
133 Ts = VZMUL(Tq, Tr);
|
Chris@10
|
134 TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
135 Tv = VZMUL(Tt, Tu);
|
Chris@10
|
136 TK = VZMUL(T3, TJ);
|
Chris@10
|
137 TM = VZMUL(Td, TL);
|
Chris@10
|
138 TP = VZMUL(T2, TO);
|
Chris@10
|
139 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
140 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
141 }
|
Chris@10
|
142 }
|
Chris@10
|
143 {
|
Chris@10
|
144 V T1N, Tw, T1H, TN, Tz, TC, T1i, TT, T1K, TS;
|
Chris@10
|
145 T1n = VSUB(Th, To);
|
Chris@10
|
146 Tp = VADD(Th, To);
|
Chris@10
|
147 TS = VZMUL(TQ, TR);
|
Chris@10
|
148 T1N = VADD(Ts, Tv);
|
Chris@10
|
149 Tw = VSUB(Ts, Tv);
|
Chris@10
|
150 T1H = VADD(TK, TM);
|
Chris@10
|
151 TN = VSUB(TK, TM);
|
Chris@10
|
152 Tz = VZMUL(Tx, Ty);
|
Chris@10
|
153 TC = VZMUL(TA, TB);
|
Chris@10
|
154 T18 = VSUB(T10, T17);
|
Chris@10
|
155 T1i = VADD(T10, T17);
|
Chris@10
|
156 TT = VSUB(TP, TS);
|
Chris@10
|
157 T1K = VADD(TP, TS);
|
Chris@10
|
158 T27 = VADD(T1N, T1O);
|
Chris@10
|
159 T1P = VSUB(T1N, T1O);
|
Chris@10
|
160 {
|
Chris@10
|
161 V TD, T1Q, T24, T1h, T25;
|
Chris@10
|
162 TD = VSUB(Tz, TC);
|
Chris@10
|
163 T1Q = VADD(Tz, TC);
|
Chris@10
|
164 T1I = VSUB(T1G, T1H);
|
Chris@10
|
165 T24 = VADD(T1G, T1H);
|
Chris@10
|
166 T1h = VADD(TN, TT);
|
Chris@10
|
167 TU = VSUB(TN, TT);
|
Chris@10
|
168 T25 = VADD(T1J, T1K);
|
Chris@10
|
169 T1L = VSUB(T1J, T1K);
|
Chris@10
|
170 T28 = VADD(T1Q, T1R);
|
Chris@10
|
171 T1S = VSUB(T1Q, T1R);
|
Chris@10
|
172 T1o = VSUB(Tw, TD);
|
Chris@10
|
173 TE = VADD(Tw, TD);
|
Chris@10
|
174 T1l = VSUB(T1h, T1i);
|
Chris@10
|
175 T1j = VADD(T1h, T1i);
|
Chris@10
|
176 T26 = VADD(T24, T25);
|
Chris@10
|
177 T2e = VSUB(T24, T25);
|
Chris@10
|
178 }
|
Chris@10
|
179 }
|
Chris@10
|
180 }
|
Chris@10
|
181 }
|
Chris@10
|
182 {
|
Chris@10
|
183 V T1M, T1Z, T1Y, T1T, T29, T2f, TH, TF, T1k, T1C;
|
Chris@10
|
184 T1M = VADD(T1I, T1L);
|
Chris@10
|
185 T1Z = VSUB(T1I, T1L);
|
Chris@10
|
186 T1Y = VSUB(T1P, T1S);
|
Chris@10
|
187 T1T = VADD(T1P, T1S);
|
Chris@10
|
188 T29 = VADD(T27, T28);
|
Chris@10
|
189 T2f = VSUB(T27, T28);
|
Chris@10
|
190 TH = VSUB(Tp, TE);
|
Chris@10
|
191 TF = VADD(Tp, TE);
|
Chris@10
|
192 T1k = VFNMS(LDK(KP250000000), T1j, T1g);
|
Chris@10
|
193 T1C = VADD(T1g, T1j);
|
Chris@10
|
194 {
|
Chris@10
|
195 V T1W, T2c, TG, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, T1B;
|
Chris@10
|
196 T19 = VFMA(LDK(KP618033988), T18, TU);
|
Chris@10
|
197 T1u = VFNMS(LDK(KP618033988), TU, T18);
|
Chris@10
|
198 T1W = VSUB(T1M, T1T);
|
Chris@10
|
199 T1U = VADD(T1M, T1T);
|
Chris@10
|
200 T2c = VSUB(T26, T29);
|
Chris@10
|
201 T2a = VADD(T26, T29);
|
Chris@10
|
202 TG = VFNMS(LDK(KP250000000), TF, T7);
|
Chris@10
|
203 T1B = VADD(T7, TF);
|
Chris@10
|
204 T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f));
|
Chris@10
|
205 T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e));
|
Chris@10
|
206 T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z));
|
Chris@10
|
207 T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y));
|
Chris@10
|
208 ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0]));
|
Chris@10
|
209 T1V = VFNMS(LDK(KP250000000), T1U, T1F);
|
Chris@10
|
210 ST(&(x[0]), VADD(T23, T2a), ms, &(x[0]));
|
Chris@10
|
211 T2b = VFNMS(LDK(KP250000000), T2a, T23);
|
Chris@10
|
212 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
213 ST(&(x[WS(rs, 15)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
214 T1p = VFMA(LDK(KP618033988), T1o, T1n);
|
Chris@10
|
215 T1x = VFNMS(LDK(KP618033988), T1n, T1o);
|
Chris@10
|
216 {
|
Chris@10
|
217 V T21, T1X, T2h, T2d;
|
Chris@10
|
218 T21 = VFMA(LDK(KP559016994), T1W, T1V);
|
Chris@10
|
219 T1X = VFNMS(LDK(KP559016994), T1W, T1V);
|
Chris@10
|
220 T2h = VFNMS(LDK(KP559016994), T2c, T2b);
|
Chris@10
|
221 T2d = VFMA(LDK(KP559016994), T2c, T2b);
|
Chris@10
|
222 ST(&(x[WS(rs, 18)]), VFMAI(T20, T1X), ms, &(x[0]));
|
Chris@10
|
223 ST(&(x[WS(rs, 2)]), VFNMSI(T20, T1X), ms, &(x[0]));
|
Chris@10
|
224 ST(&(x[WS(rs, 14)]), VFNMSI(T22, T21), ms, &(x[0]));
|
Chris@10
|
225 ST(&(x[WS(rs, 6)]), VFMAI(T22, T21), ms, &(x[0]));
|
Chris@10
|
226 ST(&(x[WS(rs, 16)]), VFMAI(T2g, T2d), ms, &(x[0]));
|
Chris@10
|
227 ST(&(x[WS(rs, 4)]), VFNMSI(T2g, T2d), ms, &(x[0]));
|
Chris@10
|
228 ST(&(x[WS(rs, 12)]), VFNMSI(T2i, T2h), ms, &(x[0]));
|
Chris@10
|
229 ST(&(x[WS(rs, 8)]), VFMAI(T2i, T2h), ms, &(x[0]));
|
Chris@10
|
230 T1m = VFMA(LDK(KP559016994), T1l, T1k);
|
Chris@10
|
231 T1w = VFNMS(LDK(KP559016994), T1l, T1k);
|
Chris@10
|
232 T1t = VFNMS(LDK(KP559016994), TH, TG);
|
Chris@10
|
233 TI = VFMA(LDK(KP559016994), TH, TG);
|
Chris@10
|
234 }
|
Chris@10
|
235 }
|
Chris@10
|
236 }
|
Chris@10
|
237 }
|
Chris@10
|
238 }
|
Chris@10
|
239 {
|
Chris@10
|
240 V T1A, T1y, T1q, T1s, T1a, T1r, T1z, T1v;
|
Chris@10
|
241 T1A = VFMA(LDK(KP951056516), T1x, T1w);
|
Chris@10
|
242 T1y = VFNMS(LDK(KP951056516), T1x, T1w);
|
Chris@10
|
243 T1q = VFMA(LDK(KP951056516), T1p, T1m);
|
Chris@10
|
244 T1s = VFNMS(LDK(KP951056516), T1p, T1m);
|
Chris@10
|
245 T1a = VFNMS(LDK(KP951056516), T19, TI);
|
Chris@10
|
246 T1r = VFMA(LDK(KP951056516), T19, TI);
|
Chris@10
|
247 T1z = VFNMS(LDK(KP951056516), T1u, T1t);
|
Chris@10
|
248 T1v = VFMA(LDK(KP951056516), T1u, T1t);
|
Chris@10
|
249 ST(&(x[WS(rs, 9)]), VFMAI(T1s, T1r), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
250 ST(&(x[WS(rs, 11)]), VFNMSI(T1s, T1r), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
251 ST(&(x[WS(rs, 1)]), VFMAI(T1q, T1a), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
252 ST(&(x[WS(rs, 19)]), VFNMSI(T1q, T1a), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
253 ST(&(x[WS(rs, 17)]), VFMAI(T1y, T1v), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
254 ST(&(x[WS(rs, 3)]), VFNMSI(T1y, T1v), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
255 ST(&(x[WS(rs, 13)]), VFMAI(T1A, T1z), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
256 ST(&(x[WS(rs, 7)]), VFNMSI(T1A, T1z), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
257 }
|
Chris@10
|
258 }
|
Chris@10
|
259 }
|
Chris@10
|
260 VLEAVE();
|
Chris@10
|
261 }
|
Chris@10
|
262
|
Chris@10
|
263 static const tw_instr twinstr[] = {
|
Chris@10
|
264 VTW(0, 1),
|
Chris@10
|
265 VTW(0, 3),
|
Chris@10
|
266 VTW(0, 9),
|
Chris@10
|
267 VTW(0, 19),
|
Chris@10
|
268 {TW_NEXT, VL, 0}
|
Chris@10
|
269 };
|
Chris@10
|
270
|
Chris@10
|
271 static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 };
|
Chris@10
|
272
|
Chris@10
|
273 void XSIMD(codelet_t3bv_20) (planner *p) {
|
Chris@10
|
274 X(kdft_dit_register) (p, t3bv_20, &desc);
|
Chris@10
|
275 }
|
Chris@10
|
276 #else /* HAVE_FMA */
|
Chris@10
|
277
|
Chris@10
|
278 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3bv_20 -include t3b.h -sign 1 */
|
Chris@10
|
279
|
Chris@10
|
280 /*
|
Chris@10
|
281 * This function contains 138 FP additions, 92 FP multiplications,
|
Chris@10
|
282 * (or, 126 additions, 80 multiplications, 12 fused multiply/add),
|
Chris@10
|
283 * 73 stack variables, 4 constants, and 40 memory accesses
|
Chris@10
|
284 */
|
Chris@10
|
285 #include "t3b.h"
|
Chris@10
|
286
|
Chris@10
|
287 static void t3bv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
288 {
|
Chris@10
|
289 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
Chris@10
|
290 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
Chris@10
|
291 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
292 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
Chris@10
|
293 {
|
Chris@10
|
294 INT m;
|
Chris@10
|
295 R *x;
|
Chris@10
|
296 x = ii;
|
Chris@10
|
297 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) {
|
Chris@10
|
298 V T2, T8, T9, TA, T3, Tc, T4, TV, T14, Tl, Tq, Tx, TQ, Td, Te;
|
Chris@10
|
299 V T1g, Ti, Tt, T11;
|
Chris@10
|
300 T2 = LDW(&(W[0]));
|
Chris@10
|
301 T8 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
302 T9 = VZMUL(T2, T8);
|
Chris@10
|
303 TA = VZMULJ(T2, T8);
|
Chris@10
|
304 T3 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
305 Tc = VZMULJ(T9, T3);
|
Chris@10
|
306 T4 = VZMUL(T2, T3);
|
Chris@10
|
307 TV = VZMUL(T9, T3);
|
Chris@10
|
308 T14 = VZMULJ(TA, T3);
|
Chris@10
|
309 Tl = VZMULJ(T8, T3);
|
Chris@10
|
310 Tq = VZMULJ(T2, T3);
|
Chris@10
|
311 Tx = VZMUL(T8, T3);
|
Chris@10
|
312 TQ = VZMUL(TA, T3);
|
Chris@10
|
313 Td = LDW(&(W[TWVL * 6]));
|
Chris@10
|
314 Te = VZMULJ(Tc, Td);
|
Chris@10
|
315 T1g = VZMULJ(T9, Td);
|
Chris@10
|
316 Ti = VZMULJ(T8, Td);
|
Chris@10
|
317 Tt = VZMULJ(T2, Td);
|
Chris@10
|
318 T11 = VZMULJ(TA, Td);
|
Chris@10
|
319 {
|
Chris@10
|
320 V T7, T1j, T1U, T2a, TU, T1n, T1o, T18, Tp, TE, TF, T26, T27, T28, T1M;
|
Chris@10
|
321 V T1P, T1W, T1b, T1c, T1k, T23, T24, T25, T1F, T1I, T1V, T1B, T1C;
|
Chris@10
|
322 {
|
Chris@10
|
323 V T1, T1i, T6, T1f, T1h, T5, T1e, T1S, T1T;
|
Chris@10
|
324 T1 = LD(&(x[0]), ms, &(x[0]));
|
Chris@10
|
325 T1h = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
326 T1i = VZMUL(T1g, T1h);
|
Chris@10
|
327 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
Chris@10
|
328 T6 = VZMUL(T4, T5);
|
Chris@10
|
329 T1e = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
330 T1f = VZMUL(Tc, T1e);
|
Chris@10
|
331 T7 = VSUB(T1, T6);
|
Chris@10
|
332 T1j = VSUB(T1f, T1i);
|
Chris@10
|
333 T1S = VADD(T1, T6);
|
Chris@10
|
334 T1T = VADD(T1f, T1i);
|
Chris@10
|
335 T1U = VSUB(T1S, T1T);
|
Chris@10
|
336 T2a = VADD(T1S, T1T);
|
Chris@10
|
337 }
|
Chris@10
|
338 {
|
Chris@10
|
339 V Th, T1D, T10, T1L, T17, T1O, To, T1G, Tw, T1K, TN, T1E, TT, T1H, TD;
|
Chris@10
|
340 V T1N;
|
Chris@10
|
341 {
|
Chris@10
|
342 V Tb, Tg, Ta, Tf;
|
Chris@10
|
343 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
Chris@10
|
344 Tb = VZMUL(T9, Ta);
|
Chris@10
|
345 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
Chris@10
|
346 Tg = VZMUL(Te, Tf);
|
Chris@10
|
347 Th = VSUB(Tb, Tg);
|
Chris@10
|
348 T1D = VADD(Tb, Tg);
|
Chris@10
|
349 }
|
Chris@10
|
350 {
|
Chris@10
|
351 V TX, TZ, TW, TY;
|
Chris@10
|
352 TW = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
353 TX = VZMUL(TV, TW);
|
Chris@10
|
354 TY = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
355 TZ = VZMUL(T8, TY);
|
Chris@10
|
356 T10 = VSUB(TX, TZ);
|
Chris@10
|
357 T1L = VADD(TX, TZ);
|
Chris@10
|
358 }
|
Chris@10
|
359 {
|
Chris@10
|
360 V T13, T16, T12, T15;
|
Chris@10
|
361 T12 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
362 T13 = VZMUL(T11, T12);
|
Chris@10
|
363 T15 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
364 T16 = VZMUL(T14, T15);
|
Chris@10
|
365 T17 = VSUB(T13, T16);
|
Chris@10
|
366 T1O = VADD(T13, T16);
|
Chris@10
|
367 }
|
Chris@10
|
368 {
|
Chris@10
|
369 V Tk, Tn, Tj, Tm;
|
Chris@10
|
370 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0]));
|
Chris@10
|
371 Tk = VZMUL(Ti, Tj);
|
Chris@10
|
372 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
Chris@10
|
373 Tn = VZMUL(Tl, Tm);
|
Chris@10
|
374 To = VSUB(Tk, Tn);
|
Chris@10
|
375 T1G = VADD(Tk, Tn);
|
Chris@10
|
376 }
|
Chris@10
|
377 {
|
Chris@10
|
378 V Ts, Tv, Tr, Tu;
|
Chris@10
|
379 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
Chris@10
|
380 Ts = VZMUL(Tq, Tr);
|
Chris@10
|
381 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0]));
|
Chris@10
|
382 Tv = VZMUL(Tt, Tu);
|
Chris@10
|
383 Tw = VSUB(Ts, Tv);
|
Chris@10
|
384 T1K = VADD(Ts, Tv);
|
Chris@10
|
385 }
|
Chris@10
|
386 {
|
Chris@10
|
387 V TK, TM, TJ, TL;
|
Chris@10
|
388 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
389 TK = VZMUL(T3, TJ);
|
Chris@10
|
390 TL = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
391 TM = VZMUL(Td, TL);
|
Chris@10
|
392 TN = VSUB(TK, TM);
|
Chris@10
|
393 T1E = VADD(TK, TM);
|
Chris@10
|
394 }
|
Chris@10
|
395 {
|
Chris@10
|
396 V TP, TS, TO, TR;
|
Chris@10
|
397 TO = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
398 TP = VZMUL(T2, TO);
|
Chris@10
|
399 TR = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
400 TS = VZMUL(TQ, TR);
|
Chris@10
|
401 TT = VSUB(TP, TS);
|
Chris@10
|
402 T1H = VADD(TP, TS);
|
Chris@10
|
403 }
|
Chris@10
|
404 {
|
Chris@10
|
405 V Tz, TC, Ty, TB;
|
Chris@10
|
406 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
Chris@10
|
407 Tz = VZMUL(Tx, Ty);
|
Chris@10
|
408 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
Chris@10
|
409 TC = VZMUL(TA, TB);
|
Chris@10
|
410 TD = VSUB(Tz, TC);
|
Chris@10
|
411 T1N = VADD(Tz, TC);
|
Chris@10
|
412 }
|
Chris@10
|
413 TU = VSUB(TN, TT);
|
Chris@10
|
414 T1n = VSUB(Th, To);
|
Chris@10
|
415 T1o = VSUB(Tw, TD);
|
Chris@10
|
416 T18 = VSUB(T10, T17);
|
Chris@10
|
417 Tp = VADD(Th, To);
|
Chris@10
|
418 TE = VADD(Tw, TD);
|
Chris@10
|
419 TF = VADD(Tp, TE);
|
Chris@10
|
420 T26 = VADD(T1K, T1L);
|
Chris@10
|
421 T27 = VADD(T1N, T1O);
|
Chris@10
|
422 T28 = VADD(T26, T27);
|
Chris@10
|
423 T1M = VSUB(T1K, T1L);
|
Chris@10
|
424 T1P = VSUB(T1N, T1O);
|
Chris@10
|
425 T1W = VADD(T1M, T1P);
|
Chris@10
|
426 T1b = VADD(TN, TT);
|
Chris@10
|
427 T1c = VADD(T10, T17);
|
Chris@10
|
428 T1k = VADD(T1b, T1c);
|
Chris@10
|
429 T23 = VADD(T1D, T1E);
|
Chris@10
|
430 T24 = VADD(T1G, T1H);
|
Chris@10
|
431 T25 = VADD(T23, T24);
|
Chris@10
|
432 T1F = VSUB(T1D, T1E);
|
Chris@10
|
433 T1I = VSUB(T1G, T1H);
|
Chris@10
|
434 T1V = VADD(T1F, T1I);
|
Chris@10
|
435 }
|
Chris@10
|
436 T1B = VADD(T7, TF);
|
Chris@10
|
437 T1C = VBYI(VADD(T1j, T1k));
|
Chris@10
|
438 ST(&(x[WS(rs, 15)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
439 ST(&(x[WS(rs, 5)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
440 {
|
Chris@10
|
441 V T29, T2b, T2c, T2g, T2i, T2e, T2f, T2h, T2d;
|
Chris@10
|
442 T29 = VMUL(LDK(KP559016994), VSUB(T25, T28));
|
Chris@10
|
443 T2b = VADD(T25, T28);
|
Chris@10
|
444 T2c = VFNMS(LDK(KP250000000), T2b, T2a);
|
Chris@10
|
445 T2e = VSUB(T23, T24);
|
Chris@10
|
446 T2f = VSUB(T26, T27);
|
Chris@10
|
447 T2g = VBYI(VFMA(LDK(KP951056516), T2e, VMUL(LDK(KP587785252), T2f)));
|
Chris@10
|
448 T2i = VBYI(VFNMS(LDK(KP951056516), T2f, VMUL(LDK(KP587785252), T2e)));
|
Chris@10
|
449 ST(&(x[0]), VADD(T2a, T2b), ms, &(x[0]));
|
Chris@10
|
450 T2h = VSUB(T2c, T29);
|
Chris@10
|
451 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0]));
|
Chris@10
|
452 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0]));
|
Chris@10
|
453 T2d = VADD(T29, T2c);
|
Chris@10
|
454 ST(&(x[WS(rs, 4)]), VSUB(T2d, T2g), ms, &(x[0]));
|
Chris@10
|
455 ST(&(x[WS(rs, 16)]), VADD(T2g, T2d), ms, &(x[0]));
|
Chris@10
|
456 }
|
Chris@10
|
457 {
|
Chris@10
|
458 V T1Z, T1X, T1Y, T1R, T21, T1J, T1Q, T22, T20;
|
Chris@10
|
459 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W));
|
Chris@10
|
460 T1X = VADD(T1V, T1W);
|
Chris@10
|
461 T1Y = VFNMS(LDK(KP250000000), T1X, T1U);
|
Chris@10
|
462 T1J = VSUB(T1F, T1I);
|
Chris@10
|
463 T1Q = VSUB(T1M, T1P);
|
Chris@10
|
464 T1R = VBYI(VFNMS(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J)));
|
Chris@10
|
465 T21 = VBYI(VFMA(LDK(KP951056516), T1J, VMUL(LDK(KP587785252), T1Q)));
|
Chris@10
|
466 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0]));
|
Chris@10
|
467 T22 = VADD(T1Z, T1Y);
|
Chris@10
|
468 ST(&(x[WS(rs, 6)]), VADD(T21, T22), ms, &(x[0]));
|
Chris@10
|
469 ST(&(x[WS(rs, 14)]), VSUB(T22, T21), ms, &(x[0]));
|
Chris@10
|
470 T20 = VSUB(T1Y, T1Z);
|
Chris@10
|
471 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0]));
|
Chris@10
|
472 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0]));
|
Chris@10
|
473 }
|
Chris@10
|
474 {
|
Chris@10
|
475 V T19, T1p, T1w, T1u, T1m, T1x, TI, T1t;
|
Chris@10
|
476 T19 = VFNMS(LDK(KP951056516), T18, VMUL(LDK(KP587785252), TU));
|
Chris@10
|
477 T1p = VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1n));
|
Chris@10
|
478 T1w = VFMA(LDK(KP951056516), T1n, VMUL(LDK(KP587785252), T1o));
|
Chris@10
|
479 T1u = VFMA(LDK(KP951056516), TU, VMUL(LDK(KP587785252), T18));
|
Chris@10
|
480 {
|
Chris@10
|
481 V T1d, T1l, TG, TH;
|
Chris@10
|
482 T1d = VMUL(LDK(KP559016994), VSUB(T1b, T1c));
|
Chris@10
|
483 T1l = VFNMS(LDK(KP250000000), T1k, T1j);
|
Chris@10
|
484 T1m = VSUB(T1d, T1l);
|
Chris@10
|
485 T1x = VADD(T1d, T1l);
|
Chris@10
|
486 TG = VFNMS(LDK(KP250000000), TF, T7);
|
Chris@10
|
487 TH = VMUL(LDK(KP559016994), VSUB(Tp, TE));
|
Chris@10
|
488 TI = VSUB(TG, TH);
|
Chris@10
|
489 T1t = VADD(TH, TG);
|
Chris@10
|
490 }
|
Chris@10
|
491 {
|
Chris@10
|
492 V T1a, T1q, T1z, T1A;
|
Chris@10
|
493 T1a = VSUB(TI, T19);
|
Chris@10
|
494 T1q = VBYI(VSUB(T1m, T1p));
|
Chris@10
|
495 ST(&(x[WS(rs, 17)]), VSUB(T1a, T1q), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
496 ST(&(x[WS(rs, 3)]), VADD(T1a, T1q), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
497 T1z = VADD(T1t, T1u);
|
Chris@10
|
498 T1A = VBYI(VSUB(T1x, T1w));
|
Chris@10
|
499 ST(&(x[WS(rs, 11)]), VSUB(T1z, T1A), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
500 ST(&(x[WS(rs, 9)]), VADD(T1z, T1A), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
501 }
|
Chris@10
|
502 {
|
Chris@10
|
503 V T1r, T1s, T1v, T1y;
|
Chris@10
|
504 T1r = VADD(TI, T19);
|
Chris@10
|
505 T1s = VBYI(VADD(T1p, T1m));
|
Chris@10
|
506 ST(&(x[WS(rs, 13)]), VSUB(T1r, T1s), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
507 ST(&(x[WS(rs, 7)]), VADD(T1r, T1s), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
508 T1v = VSUB(T1t, T1u);
|
Chris@10
|
509 T1y = VBYI(VADD(T1w, T1x));
|
Chris@10
|
510 ST(&(x[WS(rs, 19)]), VSUB(T1v, T1y), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
511 ST(&(x[WS(rs, 1)]), VADD(T1v, T1y), ms, &(x[WS(rs, 1)]));
|
Chris@10
|
512 }
|
Chris@10
|
513 }
|
Chris@10
|
514 }
|
Chris@10
|
515 }
|
Chris@10
|
516 }
|
Chris@10
|
517 VLEAVE();
|
Chris@10
|
518 }
|
Chris@10
|
519
|
Chris@10
|
520 static const tw_instr twinstr[] = {
|
Chris@10
|
521 VTW(0, 1),
|
Chris@10
|
522 VTW(0, 3),
|
Chris@10
|
523 VTW(0, 9),
|
Chris@10
|
524 VTW(0, 19),
|
Chris@10
|
525 {TW_NEXT, VL, 0}
|
Chris@10
|
526 };
|
Chris@10
|
527
|
Chris@10
|
528 static const ct_desc desc = { 20, XSIMD_STRING("t3bv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 };
|
Chris@10
|
529
|
Chris@10
|
530 void XSIMD(codelet_t3bv_20) (planner *p) {
|
Chris@10
|
531 X(kdft_dit_register) (p, t3bv_20, &desc);
|
Chris@10
|
532 }
|
Chris@10
|
533 #endif /* HAVE_FMA */
|