diff src/fftw-3.3.8/simd-support/simd-vsx.h @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/simd-support/simd-vsx.h	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,299 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * VSX SIMD implementation added 2015 Erik Lindahl.
+ * Erik Lindahl places his modifications in the public domain.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
+#  error "VSX only works in single or double precision"
+#endif
+
+#ifdef FFTW_SINGLE
+#  define DS(d,s) s /* single-precision option */
+#  define SUFF(name) name ## s
+#else
+#  define DS(d,s) d /* double-precision option */
+#  define SUFF(name) name ## d
+#endif
+
+#define SIMD_SUFFIX  _vsx  /* for renaming */
+#define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
+#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
+#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
+
+#include <altivec.h>
+#include <stdio.h>
+
+typedef DS(vector double,vector float) V;
+
+#define VADD(a,b)   vec_add(a,b)
+#define VSUB(a,b)   vec_sub(a,b)
+#define VMUL(a,b)   vec_mul(a,b)
+#define VXOR(a,b)   vec_xor(a,b)
+#define UNPCKL(a,b) vec_mergel(a,b)
+#define UNPCKH(a,b) vec_mergeh(a,b)
+#ifdef FFTW_SINGLE
+#    define VDUPL(a)    ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
+#    define VDUPH(a)    ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
+#else
+#    define VDUPL(a)    ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
+#    define VDUPH(a)    ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
+#endif
+
+static inline V LDK(R f) { return vec_splats(f); }
+
+#define DVK(var, val) const R var = K(val)
+
+static inline V VCONJ(V x)
+{
+  const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0)));
+  return vec_xor(x, pmpm);
+}
+
+static inline V LDA(const R *x, INT ivs, const R *aligned_like)
+{
+#ifdef __ibmxl__
+  return vec_xl(0,(DS(double,float) *)x);
+#else
+  return (*(const V *)(x));
+#endif
+}
+
+static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
+{
+#ifdef __ibmxl__
+  vec_xst(v,0,x);
+#else
+  *(V *)x = v;
+#endif
+}
+
+static inline V FLIP_RI(V x)
+{
+#ifdef FFTW_SINGLE
+  const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 };
+#else
+  const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 };
+#endif
+  return vec_perm(x,x,perm);
+}
+
+#ifdef FFTW_SINGLE
+
+static inline V LD(const R *x, INT ivs, const R *aligned_like)
+{
+  const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
+
+  return vec_perm((vector float)vec_splats(*(double *)(x)),
+		  (vector float)vec_splats(*(double *)(x+ivs)),perm);
+}
+
+static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
+{
+  *(double *)(x+ovs) = vec_extract( (vector double)v, 1 );
+  *(double *)x       = vec_extract( (vector double)v, 0 );
+}
+#else
+/* DOUBLE */
+
+#  define LD LDA
+#  define ST STA
+
+#endif
+
+#define STM2 DS(STA,ST)
+#define STN2(x, v0, v1, ovs) /* nop */
+
+#ifdef FFTW_SINGLE
+
+#  define STM4(x, v, ovs, aligned_like) /* no-op */
+static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs)
+{
+    V xxx0, xxx1, xxx2, xxx3;
+    xxx0 = vec_mergeh(v0,v1);
+    xxx1 = vec_mergel(v0,v1);
+    xxx2 = vec_mergeh(v2,v3);
+    xxx3 = vec_mergel(v2,v3);
+    *(double *)x           = vec_extract( (vector double)xxx0, 0 );
+    *(double *)(x+ovs)     = vec_extract( (vector double)xxx0, 1 );
+    *(double *)(x+2*ovs)   = vec_extract( (vector double)xxx1, 0 );
+    *(double *)(x+3*ovs)   = vec_extract( (vector double)xxx1, 1 );
+    *(double *)(x+2)       = vec_extract( (vector double)xxx2, 0 );
+    *(double *)(x+ovs+2)   = vec_extract( (vector double)xxx2, 1 );
+    *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 );
+    *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 );
+}
+#else /* !FFTW_SINGLE */
+
+static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+     x[0]    = vec_extract(v,0);
+     x[ovs]  = vec_extract(v,1);
+}
+#  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
+#endif
+
+static inline V VBYI(V x)
+{
+     /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
+        but gcc and xlc treat the permutation bits differently, and
+        gcc-6 seems to generate incorrect code when using
+        __builtin_crypto_vpermxor() (i.e., VBYI() works for a small
+        test case but fails in the large).
+
+        Punt on vpermxor() for now and do the simple thing.
+     */
+     return FLIP_RI(VCONJ(x));
+}
+
+/* FMA support */
+#define VFMA(a, b, c)  vec_madd(a,b,c)
+#define VFNMS(a, b, c) vec_nmsub(a,b,c)
+#define VFMS(a, b, c)  vec_msub(a,b,c)
+#define VFMAI(b, c)    VADD(c, VBYI(b))
+#define VFNMSI(b, c)   VSUB(c, VBYI(b))
+#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
+#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
+#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
+
+static inline V VZMUL(V tx, V sr)
+{
+    V tr = VDUPL(tx);
+    V ti = VDUPH(tx);
+    tr = VMUL(sr, tr);
+    sr = VBYI(sr);
+    return VFMA(ti, sr, tr);
+}
+
+static inline V VZMULJ(V tx, V sr)
+{
+    V tr = VDUPL(tx);
+    V ti = VDUPH(tx);
+    tr = VMUL(sr, tr);
+    sr = VBYI(sr);
+    return VFNMS(ti, sr, tr);
+}
+
+static inline V VZMULI(V tx, V sr)
+{
+    V tr = VDUPL(tx);
+    V ti = VDUPH(tx);
+    ti = VMUL(ti, sr);
+    sr = VBYI(sr);
+    return VFMS(tr, sr, ti);
+}
+
+static inline V VZMULIJ(V tx, V sr)
+{
+    V tr = VDUPL(tx);
+    V ti = VDUPH(tx);
+    ti = VMUL(ti, sr);
+    sr = VBYI(sr);
+    return VFMA(tr, sr, ti);
+}
+
+/* twiddle storage #1: compact, slower */
+#ifdef FFTW_SINGLE
+#  define VTW1(v,x)  \
+  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+static inline V BYTW1(const R *t, V sr)
+{
+     V tx = LDA(t,0,t);
+     V tr = UNPCKH(tx, tx);
+     V ti = UNPCKL(tx, tx);
+     tr = VMUL(tr, sr);
+     sr = VBYI(sr);
+     return VFMA(ti, sr, tr);
+}
+static inline V BYTWJ1(const R *t, V sr)
+{
+     V tx = LDA(t,0,t);
+     V tr = UNPCKH(tx, tx);
+     V ti = UNPCKL(tx, tx);
+     tr = VMUL(tr, sr);
+     sr = VBYI(sr);
+     return VFNMS(ti, sr, tr);
+}
+#else /* !FFTW_SINGLE */
+#  define VTW1(v,x) {TW_CEXP, v, x}
+static inline V BYTW1(const R *t, V sr)
+{
+     V tx = LD(t, 1, t);
+     return VZMUL(tx, sr);
+}
+static inline V BYTWJ1(const R *t, V sr)
+{
+     V tx = LD(t, 1, t);
+     return VZMULJ(tx, sr);
+}
+#endif
+#define TWVL1 (VL)
+
+/* twiddle storage #2: twice the space, faster (when in cache) */
+#ifdef FFTW_SINGLE
+#  define VTW2(v,x)							\
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
+  {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
+#else /* !FFTW_SINGLE */
+#  define VTW2(v,x)							\
+  {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
+#endif
+#define TWVL2 (2 * VL)
+static inline V BYTW2(const R *t, V sr)
+{
+     V si = FLIP_RI(sr);
+     V ti = LDA(t+2*VL,0,t);
+     V tt = VMUL(ti, si);
+     V tr = LDA(t,0,t);
+     return VFMA(tr, sr, tt);
+}
+static inline V BYTWJ2(const R *t, V sr)
+{
+     V si = FLIP_RI(sr);
+     V tr = LDA(t,0,t);
+     V tt = VMUL(tr, sr);
+     V ti = LDA(t+2*VL,0,t);
+     return VFNMS(ti, si, tt);
+}
+
+/* twiddle storage #3 */
+#ifdef FFTW_SINGLE
+#  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
+#  define TWVL3 (VL)
+#else
+#  define VTW3(v,x) VTW1(v,x)
+#  define TWVL3 TWVL1
+#endif
+
+/* twiddle storage for split arrays */
+#ifdef FFTW_SINGLE
+#  define VTWS(v,x)							  \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
+    {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
+#else
+#  define VTWS(v,x)							  \
+    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
+#endif
+#define TWVLS (2 * VL)
+
+#define VLEAVE() /* nothing */
+
+#include "simd-common.h"