comparison src/fftw-3.3.8/simd-support/simd-vsx.h @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * VSX SIMD implementation added 2015 Erik Lindahl.
6 * Erik Lindahl places his modifications in the public domain.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
25 # error "VSX only works in single or double precision"
26 #endif
27
28 #ifdef FFTW_SINGLE
29 # define DS(d,s) s /* single-precision option */
30 # define SUFF(name) name ## s
31 #else
32 # define DS(d,s) d /* double-precision option */
33 # define SUFF(name) name ## d
34 #endif
35
36 #define SIMD_SUFFIX _vsx /* for renaming */
37 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
38 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
39 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
40
41 #include <altivec.h>
42 #include <stdio.h>
43
44 typedef DS(vector double,vector float) V;
45
46 #define VADD(a,b) vec_add(a,b)
47 #define VSUB(a,b) vec_sub(a,b)
48 #define VMUL(a,b) vec_mul(a,b)
49 #define VXOR(a,b) vec_xor(a,b)
50 #define UNPCKL(a,b) vec_mergel(a,b)
51 #define UNPCKH(a,b) vec_mergeh(a,b)
52 #ifdef FFTW_SINGLE
53 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,0,1,2,3,8,9,10,11,8,9,10,11}; vec_perm(a,a,perm); })
54 # define VDUPH(a) ({ const vector unsigned char perm = {4,5,6,7,4,5,6,7,12,13,14,15,12,13,14,15}; vec_perm(a,a,perm); })
55 #else
56 # define VDUPL(a) ({ const vector unsigned char perm = {0,1,2,3,4,5,6,7,0,1,2,3,4,5,6,7}; vec_perm(a,a,perm); })
57 # define VDUPH(a) ({ const vector unsigned char perm = {8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15}; vec_perm(a,a,perm); })
58 #endif
59
60 static inline V LDK(R f) { return vec_splats(f); }
61
62 #define DVK(var, val) const R var = K(val)
63
64 static inline V VCONJ(V x)
65 {
66 const V pmpm = vec_mergel(vec_splats((R)0.0),-(vec_splats((R)0.0)));
67 return vec_xor(x, pmpm);
68 }
69
70 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
71 {
72 #ifdef __ibmxl__
73 return vec_xl(0,(DS(double,float) *)x);
74 #else
75 return (*(const V *)(x));
76 #endif
77 }
78
79 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
80 {
81 #ifdef __ibmxl__
82 vec_xst(v,0,x);
83 #else
84 *(V *)x = v;
85 #endif
86 }
87
88 static inline V FLIP_RI(V x)
89 {
90 #ifdef FFTW_SINGLE
91 const vector unsigned char perm = { 4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11 };
92 #else
93 const vector unsigned char perm = { 8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7 };
94 #endif
95 return vec_perm(x,x,perm);
96 }
97
98 #ifdef FFTW_SINGLE
99
100 static inline V LD(const R *x, INT ivs, const R *aligned_like)
101 {
102 const vector unsigned char perm = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
103
104 return vec_perm((vector float)vec_splats(*(double *)(x)),
105 (vector float)vec_splats(*(double *)(x+ivs)),perm);
106 }
107
108 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
109 {
110 *(double *)(x+ovs) = vec_extract( (vector double)v, 1 );
111 *(double *)x = vec_extract( (vector double)v, 0 );
112 }
113 #else
114 /* DOUBLE */
115
116 # define LD LDA
117 # define ST STA
118
119 #endif
120
121 #define STM2 DS(STA,ST)
122 #define STN2(x, v0, v1, ovs) /* nop */
123
124 #ifdef FFTW_SINGLE
125
126 # define STM4(x, v, ovs, aligned_like) /* no-op */
127 static inline void STN4(R *x, V v0, V v1, V v2, V v3, int ovs)
128 {
129 V xxx0, xxx1, xxx2, xxx3;
130 xxx0 = vec_mergeh(v0,v1);
131 xxx1 = vec_mergel(v0,v1);
132 xxx2 = vec_mergeh(v2,v3);
133 xxx3 = vec_mergel(v2,v3);
134 *(double *)x = vec_extract( (vector double)xxx0, 0 );
135 *(double *)(x+ovs) = vec_extract( (vector double)xxx0, 1 );
136 *(double *)(x+2*ovs) = vec_extract( (vector double)xxx1, 0 );
137 *(double *)(x+3*ovs) = vec_extract( (vector double)xxx1, 1 );
138 *(double *)(x+2) = vec_extract( (vector double)xxx2, 0 );
139 *(double *)(x+ovs+2) = vec_extract( (vector double)xxx2, 1 );
140 *(double *)(x+2*ovs+2) = vec_extract( (vector double)xxx3, 0 );
141 *(double *)(x+3*ovs+2) = vec_extract( (vector double)xxx3, 1 );
142 }
143 #else /* !FFTW_SINGLE */
144
145 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
146 {
147 (void)aligned_like; /* UNUSED */
148 x[0] = vec_extract(v,0);
149 x[ovs] = vec_extract(v,1);
150 }
151 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
152 #endif
153
154 static inline V VBYI(V x)
155 {
156 /* FIXME [matteof 2017-09-21] It is possible to use vpermxor(),
157 but gcc and xlc treat the permutation bits differently, and
158 gcc-6 seems to generate incorrect code when using
159 __builtin_crypto_vpermxor() (i.e., VBYI() works for a small
160 test case but fails in the large).
161
162 Punt on vpermxor() for now and do the simple thing.
163 */
164 return FLIP_RI(VCONJ(x));
165 }
166
167 /* FMA support */
168 #define VFMA(a, b, c) vec_madd(a,b,c)
169 #define VFNMS(a, b, c) vec_nmsub(a,b,c)
170 #define VFMS(a, b, c) vec_msub(a,b,c)
171 #define VFMAI(b, c) VADD(c, VBYI(b))
172 #define VFNMSI(b, c) VSUB(c, VBYI(b))
173 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
174 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
175 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
176
177 static inline V VZMUL(V tx, V sr)
178 {
179 V tr = VDUPL(tx);
180 V ti = VDUPH(tx);
181 tr = VMUL(sr, tr);
182 sr = VBYI(sr);
183 return VFMA(ti, sr, tr);
184 }
185
186 static inline V VZMULJ(V tx, V sr)
187 {
188 V tr = VDUPL(tx);
189 V ti = VDUPH(tx);
190 tr = VMUL(sr, tr);
191 sr = VBYI(sr);
192 return VFNMS(ti, sr, tr);
193 }
194
195 static inline V VZMULI(V tx, V sr)
196 {
197 V tr = VDUPL(tx);
198 V ti = VDUPH(tx);
199 ti = VMUL(ti, sr);
200 sr = VBYI(sr);
201 return VFMS(tr, sr, ti);
202 }
203
204 static inline V VZMULIJ(V tx, V sr)
205 {
206 V tr = VDUPL(tx);
207 V ti = VDUPH(tx);
208 ti = VMUL(ti, sr);
209 sr = VBYI(sr);
210 return VFMA(tr, sr, ti);
211 }
212
213 /* twiddle storage #1: compact, slower */
214 #ifdef FFTW_SINGLE
215 # define VTW1(v,x) \
216 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
217 static inline V BYTW1(const R *t, V sr)
218 {
219 V tx = LDA(t,0,t);
220 V tr = UNPCKH(tx, tx);
221 V ti = UNPCKL(tx, tx);
222 tr = VMUL(tr, sr);
223 sr = VBYI(sr);
224 return VFMA(ti, sr, tr);
225 }
226 static inline V BYTWJ1(const R *t, V sr)
227 {
228 V tx = LDA(t,0,t);
229 V tr = UNPCKH(tx, tx);
230 V ti = UNPCKL(tx, tx);
231 tr = VMUL(tr, sr);
232 sr = VBYI(sr);
233 return VFNMS(ti, sr, tr);
234 }
235 #else /* !FFTW_SINGLE */
236 # define VTW1(v,x) {TW_CEXP, v, x}
237 static inline V BYTW1(const R *t, V sr)
238 {
239 V tx = LD(t, 1, t);
240 return VZMUL(tx, sr);
241 }
242 static inline V BYTWJ1(const R *t, V sr)
243 {
244 V tx = LD(t, 1, t);
245 return VZMULJ(tx, sr);
246 }
247 #endif
248 #define TWVL1 (VL)
249
250 /* twiddle storage #2: twice the space, faster (when in cache) */
251 #ifdef FFTW_SINGLE
252 # define VTW2(v,x) \
253 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
254 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
255 #else /* !FFTW_SINGLE */
256 # define VTW2(v,x) \
257 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
258 #endif
259 #define TWVL2 (2 * VL)
260 static inline V BYTW2(const R *t, V sr)
261 {
262 V si = FLIP_RI(sr);
263 V ti = LDA(t+2*VL,0,t);
264 V tt = VMUL(ti, si);
265 V tr = LDA(t,0,t);
266 return VFMA(tr, sr, tt);
267 }
268 static inline V BYTWJ2(const R *t, V sr)
269 {
270 V si = FLIP_RI(sr);
271 V tr = LDA(t,0,t);
272 V tt = VMUL(tr, sr);
273 V ti = LDA(t+2*VL,0,t);
274 return VFNMS(ti, si, tt);
275 }
276
277 /* twiddle storage #3 */
278 #ifdef FFTW_SINGLE
279 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
280 # define TWVL3 (VL)
281 #else
282 # define VTW3(v,x) VTW1(v,x)
283 # define TWVL3 TWVL1
284 #endif
285
286 /* twiddle storage for split arrays */
287 #ifdef FFTW_SINGLE
288 # define VTWS(v,x) \
289 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
290 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
291 #else
292 # define VTWS(v,x) \
293 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
294 #endif
295 #define TWVLS (2 * VL)
296
297 #define VLEAVE() /* nothing */
298
299 #include "simd-common.h"