Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_12.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_12.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,646 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:11 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */ + +/* + * This function contains 142 FP additions, 92 FP multiplications, + * (or, 96 additions, 46 multiplications, 46 fused multiply/add), + * 65 stack variables, 2 constants, and 48 memory accesses + */ +#include "rdft/scalar/hc2cf.h" + +static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { + E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B; + E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q; + E TU, T1R; + { + E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4; + E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n; + Tm = Ip[0]; + Tn = Im[0]; + T1u = Tm + Tn; + T1x = Rp[0]; + T1y = Rm[0]; + T1z = T1x - T1y; + T1t = W[0]; + T1v = T1t * T1u; + T2c = T1t * T1z; + { + E Tc, Td, Th, Ti, Tb; + Tc = Ip[WS(rs, 4)]; + Td = Im[WS(rs, 4)]; + Te = Tc - Td; + Th = Rp[WS(rs, 4)]; + Ti = Rm[WS(rs, 4)]; + Tj = Th + Ti; + T1i = Tc + Td; + T1l = Th - Ti; + Tb = W[14]; + Tf = Tb * Te; + T1H = Tb * Tj; + } + { + E T2, T3, T7, T8; + T2 = Ip[WS(rs, 2)]; + T3 = Im[WS(rs, 2)]; + T4 = T2 - T3; + T1o = T2 + T3; + T7 = Rp[WS(rs, 2)]; + T8 = Rm[WS(rs, 2)]; + T9 = T7 + T8; + T1r = T7 - T8; + } + T1 = W[6]; + T5 = T1 * T4; + T1F = T1 * T9; + T1n = W[8]; + T1p = T1n * T1o; + T2a = T1n * T1r; + To = Tm - Tn; + T1E = T1x + T1y; + { + E T1j, T2G, T1h, T1k; + T1h = W[16]; + T1j = T1h * T1i; + T2G = T1h * T1l; + T1k = W[17]; + T1m = FNMS(T1k, T1l, T1j); + T2H = FMA(T1k, T1i, T2G); + } + { + E T6, Tg, T1q, T1w; + T6 = W[7]; + Ta = FNMS(T6, T9, T5); + T1G = FMA(T6, T4, T1F); + Tg = W[15]; + Tk = FNMS(Tg, Tj, Tf); + T1I = FMA(Tg, Te, T1H); + Tl = Ta + Tk; + T1J = T1G + T1I; + T1q = W[9]; + T1s = FNMS(T1q, T1r, T1p); + T2b = FMA(T1q, T1o, T2a); + T1w = W[1]; + T1A = FNMS(T1w, T1z, T1v); + T2d = FMA(T1w, T1u, T2c); + T1B = T1s + T1A; + T2I = T2b + T2d; + } + } + { + E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI; + E T17, T16, T25, T13, T15, TE, T1N, TF, TP; + { + E Tr, Ts, Tw, Tx, TY; + Tr = Ip[WS(rs, 3)]; + Ts = Im[WS(rs, 3)]; + Tt = Tr - Ts; + T11 = Tr + Ts; + Tw = Rp[WS(rs, 3)]; + Tx = Rm[WS(rs, 3)]; + TY = Tx - Tw; + Ty = Tw + Tx; + T10 = W[12]; + T23 = T10 * TY; + TX = W[13]; + TZ = TX * TY; + } + { + E TL, TM, TQ, TR, TK; + TL = Ip[WS(rs, 1)]; + TM = Im[WS(rs, 1)]; + TN = TL - TM; + TQ = Rp[WS(rs, 1)]; + TR = Rm[WS(rs, 1)]; + TS = TQ + TR; + T1b = TL + TM; + T1e = TQ - TR; + TK = W[2]; + TO = TK * TN; + T1P = TK * TS; + } + { + E TB, TC, T14, TG, TH, TA; + TB = Ip[WS(rs, 5)]; + TC = Im[WS(rs, 5)]; + TD = TB - TC; + TG = Rp[WS(rs, 5)]; + TH = Rm[WS(rs, 5)]; + TI = TG + TH; + T14 = TH - TG; + T17 = TB + TC; + T16 = W[20]; + T25 = T16 * T14; + T13 = W[21]; + T15 = T13 * T14; + TA = W[18]; + TE = TA * TD; + T1N = TA * TI; + } + T12 = FMA(T10, T11, TZ); + T18 = FMA(T16, T17, T15); + T19 = T12 + T18; + T24 = FNMS(TX, T11, T23); + T26 = FNMS(T13, T17, T25); + T2C = T24 + T26; + { + E Tu, T1L, Tq, Tv; + Tq = W[10]; + Tu = Tq * Tt; + T1L = Tq * Ty; + Tv = W[11]; + Tz = FNMS(Tv, Ty, Tu); + T1M = FMA(Tv, Tt, T1L); + } + { + E T1c, T2A, T1a, T1d; + T1a = W[4]; + T1c = T1a * T1b; + T2A = T1a * T1e; + T1d = W[5]; + T1f = FNMS(T1d, T1e, T1c); + T2B = FMA(T1d, T1b, T2A); + } + TF = W[19]; + TJ = FNMS(TF, TI, TE); + T1O = FMA(TF, TD, T1N); + TP = W[3]; + TT = FNMS(TP, TS, TO); + T1Q = FMA(TP, TN, T1P); + TU = TJ + TT; + T1R = T1O + T1Q; + } + { + E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z; + { + E Tp, TV, T2W, T2X; + Tp = Tl + To; + TV = Tz + TU; + TW = Tp - TV; + T2V = TV + Tp; + T2W = T2C - T2B; + T2X = T2H + T2I; + T2Y = T2W - T2X; + T30 = T2W + T2X; + } + { + E T1g, T1C, T1K, T1S; + T1g = T19 + T1f; + T1C = T1m + T1B; + T1D = T1g - T1C; + T1U = T1g + T1C; + T1K = T1E + T1J; + T1S = T1M + T1R; + T1T = T1K + T1S; + T2Z = T1K - T1S; + } + Ip[WS(rs, 3)] = KP500000000 * (TW + T1D); + Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30); + Im[WS(rs, 2)] = KP500000000 * (T1D - TW); + Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30); + Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U); + Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V); + Rp[0] = KP500000000 * (T1T + T1U); + Ip[0] = KP500000000 * (T2V + T2Y); + } + { + E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f; + E T2s; + { + E T1V, T1W, T2D, T2E; + T1V = FNMS(KP500000000, T1J, T1E); + T1W = Ta - Tk; + T1X = FNMS(KP866025403, T1W, T1V); + T2v = FMA(KP866025403, T1W, T1V); + T2D = FMA(KP500000000, T2C, T2B); + T2E = T18 - T12; + T2F = FNMS(KP866025403, T2E, T2D); + T2Q = FMA(KP866025403, T2E, T2D); + } + { + E T2J, T2K, T1Y, T1Z; + T2J = FNMS(KP500000000, T2I, T2H); + T2K = T1s - T1A; + T2L = FNMS(KP866025403, T2K, T2J); + T2R = FMA(KP866025403, T2K, T2J); + T1Y = FNMS(KP500000000, T1R, T1M); + T1Z = TJ - TT; + T20 = FNMS(KP866025403, T1Z, T1Y); + T2w = FMA(KP866025403, T1Z, T1Y); + } + { + E T22, T27, T2h, T2i; + T22 = FNMS(KP500000000, T19, T1f); + T27 = T24 - T26; + T28 = FNMS(KP866025403, T27, T22); + T2t = FMA(KP866025403, T27, T22); + T2h = FNMS(KP500000000, Tl, To); + T2i = T1I - T1G; + T2j = FNMS(KP866025403, T2i, T2h); + T2p = FMA(KP866025403, T2i, T2h); + } + { + E T2k, T2l, T29, T2e; + T2k = FNMS(KP500000000, TU, Tz); + T2l = T1Q - T1O; + T2m = FNMS(KP866025403, T2l, T2k); + T2q = FMA(KP866025403, T2l, T2k); + T29 = FNMS(KP500000000, T1B, T1m); + T2e = T2b - T2d; + T2f = FNMS(KP866025403, T2e, T29); + T2s = FMA(KP866025403, T2e, T29); + } + { + E T21, T2g, T2P, T2S; + T21 = T1X + T20; + T2g = T28 + T2f; + Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g); + Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g); + T2P = T2m + T2j; + T2S = T2Q + T2R; + Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S); + Im[WS(rs, 3)] = KP500000000 * (T2S - T2P); + } + { + E T2n, T2o, T2T, T2U; + T2n = T2j - T2m; + T2o = T2f - T28; + Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o); + Im[0] = KP500000000 * (T2o - T2n); + T2T = T1X - T20; + T2U = T2R - T2Q; + Rm[0] = KP500000000 * (T2T - T2U); + Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U); + } + { + E T2r, T2u, T2N, T2O; + T2r = T2p - T2q; + T2u = T2s - T2t; + Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u); + Im[WS(rs, 4)] = KP500000000 * (T2u - T2r); + T2N = T2v - T2w; + T2O = T2L - T2F; + Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O); + Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O); + } + { + E T2x, T2y, T2z, T2M; + T2x = T2v + T2w; + T2y = T2t + T2s; + Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y); + Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); + T2z = T2q + T2p; + T2M = T2F + T2L; + Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M); + Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M)); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 12}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, {96, 46, 46, 0} }; + +void X(codelet_hc2cfdft_12) (planner *p) { + X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */ + +/* + * This function contains 142 FP additions, 76 FP multiplications, + * (or, 112 additions, 46 multiplications, 30 fused multiply/add), + * 52 stack variables, 3 constants, and 48 memory accesses + */ +#include "rdft/scalar/hc2cf.h" + +static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP433012701, +0.433012701892219323381861585376468091735701313); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { + E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17; + E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h; + { + E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19; + E T1b; + { + E T2, T3, T6, T7; + Tk = Ip[0]; + Tl = Im[0]; + T1k = Tk + Tl; + T1m = Rp[0]; + T1n = Rm[0]; + T1o = T1m - T1n; + T2 = Ip[WS(rs, 2)]; + T3 = Im[WS(rs, 2)]; + T4 = T2 - T3; + T1f = T2 + T3; + T6 = Rp[WS(rs, 2)]; + T7 = Rm[WS(rs, 2)]; + T8 = T6 + T7; + T1h = T6 - T7; + { + E Tf, Tg, Tb, Tc; + Tf = Rp[WS(rs, 4)]; + Tg = Rm[WS(rs, 4)]; + Th = Tf + Tg; + T1c = Tf - Tg; + Tb = Ip[WS(rs, 4)]; + Tc = Im[WS(rs, 4)]; + Td = Tb - Tc; + T1a = Tb + Tc; + } + } + Tm = Tk - Tl; + T1t = T1m + T1n; + T19 = W[16]; + T1b = W[17]; + T1d = FNMS(T1b, T1c, T19 * T1a); + T2j = FMA(T19, T1c, T1b * T1a); + { + E T9, T1u, Ti, T1v; + { + E T1, T5, Ta, Te; + T1 = W[6]; + T5 = W[7]; + T9 = FNMS(T5, T8, T1 * T4); + T1u = FMA(T1, T8, T5 * T4); + Ta = W[14]; + Te = W[15]; + Ti = FNMS(Te, Th, Ta * Td); + T1v = FMA(Ta, Th, Te * Td); + } + Tj = T9 + Ti; + T1Y = KP433012701 * (T1v - T1u); + T1w = T1u + T1v; + T1G = KP433012701 * (T9 - Ti); + } + { + E T1i, T1S, T1p, T1T; + { + E T1e, T1g, T1j, T1l; + T1e = W[8]; + T1g = W[9]; + T1i = FNMS(T1g, T1h, T1e * T1f); + T1S = FMA(T1e, T1h, T1g * T1f); + T1j = W[0]; + T1l = W[1]; + T1p = FNMS(T1l, T1o, T1j * T1k); + T1T = FMA(T1j, T1o, T1l * T1k); + } + T1q = T1i + T1p; + T2q = KP433012701 * (T1i - T1p); + T1U = KP433012701 * (T1S - T1T); + T2k = T1S + T1T; + } + } + { + E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16; + { + E Tp, Tq, TC, TD; + Tp = Ip[WS(rs, 3)]; + Tq = Im[WS(rs, 3)]; + Tr = Tp - Tq; + TT = Tp + Tq; + { + E Tt, Tu, Ty, Tz; + Tt = Rp[WS(rs, 3)]; + Tu = Rm[WS(rs, 3)]; + Tv = Tt + Tu; + TV = Tt - Tu; + Ty = Ip[WS(rs, 5)]; + Tz = Im[WS(rs, 5)]; + TA = Ty - Tz; + TY = Ty + Tz; + } + TC = Rp[WS(rs, 5)]; + TD = Rm[WS(rs, 5)]; + TE = TC + TD; + T10 = TC - TD; + { + E TL, TM, TH, TI; + TL = Rp[WS(rs, 1)]; + TM = Rm[WS(rs, 1)]; + TN = TL + TM; + T14 = TM - TL; + TH = Ip[WS(rs, 1)]; + TI = Im[WS(rs, 1)]; + TJ = TH - TI; + T16 = TH + TI; + } + } + { + E To, Ts, T13, T15; + To = W[10]; + Ts = W[11]; + Tw = FNMS(Ts, Tv, To * Tr); + T1y = FMA(To, Tv, Ts * Tr); + T13 = W[5]; + T15 = W[4]; + T17 = FMA(T13, T14, T15 * T16); + T2g = FNMS(T13, T16, T15 * T14); + } + { + E TF, T1z, TO, T1A; + { + E Tx, TB, TG, TK; + Tx = W[18]; + TB = W[19]; + TF = FNMS(TB, TE, Tx * TA); + T1z = FMA(Tx, TE, TB * TA); + TG = W[2]; + TK = W[3]; + TO = FNMS(TK, TN, TG * TJ); + T1A = FMA(TG, TN, TK * TJ); + } + TP = TF + TO; + T21 = KP433012701 * (T1A - T1z); + T1B = T1z + T1A; + T1J = KP433012701 * (TF - TO); + } + { + E TW, T1O, T11, T1N; + { + E TS, TU, TX, TZ; + TS = W[12]; + TU = W[13]; + TW = FNMS(TU, TV, TS * TT); + T1O = FMA(TS, TV, TU * TT); + TX = W[20]; + TZ = W[21]; + T11 = FNMS(TZ, T10, TX * TY); + T1N = FMA(TX, T10, TZ * TY); + } + T12 = TW + T11; + T2u = KP433012701 * (T11 - TW); + T1P = KP433012701 * (T1N - T1O); + T2h = T1O + T1N; + } + } + { + E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n; + { + E Tn, TQ, T2i, T2l; + Tn = Tj + Tm; + TQ = Tw + TP; + TR = Tn - TQ; + T2f = TQ + Tn; + T2i = T2g - T2h; + T2l = T2j + T2k; + T2m = T2i - T2l; + T2o = T2i + T2l; + } + { + E T18, T1r, T1x, T1C; + T18 = T12 + T17; + T1r = T1d + T1q; + T1s = T18 - T1r; + T1E = T18 + T1r; + T1x = T1t + T1w; + T1C = T1y + T1B; + T1D = T1x + T1C; + T2n = T1x - T1C; + } + Ip[WS(rs, 3)] = KP500000000 * (TR + T1s); + Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o); + Im[WS(rs, 2)] = KP500000000 * (T1s - TR); + Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o); + Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E); + Im[WS(rs, 5)] = KP500000000 * (T2m - T2f); + Rp[0] = KP500000000 * (T1D + T1E); + Ip[0] = KP500000000 * (T2f + T2m); + } + { + E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V; + E T28; + { + E T1F, T2r, T2t, T1I; + T1F = FNMS(KP250000000, T1w, KP500000000 * T1t); + T1H = T1F - T1G; + T2b = T1F + T1G; + T2r = FNMS(KP500000000, T2j, KP250000000 * T2k); + T2s = T2q - T2r; + T2B = T2q + T2r; + T2t = FMA(KP250000000, T2h, KP500000000 * T2g); + T2v = T2t - T2u; + T2A = T2u + T2t; + T1I = FNMS(KP250000000, T1B, KP500000000 * T1y); + T1K = T1I - T1J; + T2c = T1I + T1J; + } + { + E T1M, T1X, T20, T1R; + T1M = FNMS(KP250000000, T12, KP500000000 * T17); + T1Q = T1M - T1P; + T29 = T1P + T1M; + T1X = FNMS(KP250000000, Tj, KP500000000 * Tm); + T1Z = T1X - T1Y; + T25 = T1Y + T1X; + T20 = FNMS(KP250000000, TP, KP500000000 * Tw); + T22 = T20 - T21; + T26 = T21 + T20; + T1R = FNMS(KP250000000, T1q, KP500000000 * T1d); + T1V = T1R - T1U; + T28 = T1R + T1U; + } + { + E T1L, T1W, T2p, T2w; + T1L = T1H + T1K; + T1W = T1Q + T1V; + Rp[WS(rs, 2)] = T1L - T1W; + Rm[WS(rs, 3)] = T1L + T1W; + T2p = T22 + T1Z; + T2w = T2s - T2v; + Ip[WS(rs, 2)] = T2p + T2w; + Im[WS(rs, 3)] = T2w - T2p; + } + { + E T23, T24, T2x, T2y; + T23 = T1Z - T22; + T24 = T1V - T1Q; + Ip[WS(rs, 5)] = T23 + T24; + Im[0] = T24 - T23; + T2x = T1H - T1K; + T2y = T2v + T2s; + Rm[0] = T2x - T2y; + Rp[WS(rs, 5)] = T2x + T2y; + } + { + E T27, T2a, T2z, T2C; + T27 = T25 - T26; + T2a = T28 - T29; + Ip[WS(rs, 1)] = T27 + T2a; + Im[WS(rs, 4)] = T2a - T27; + T2z = T2b - T2c; + T2C = T2A - T2B; + Rm[WS(rs, 4)] = T2z - T2C; + Rp[WS(rs, 1)] = T2z + T2C; + } + { + E T2d, T2e, T2D, T2E; + T2d = T2b + T2c; + T2e = T29 + T28; + Rm[WS(rs, 1)] = T2d - T2e; + Rp[WS(rs, 4)] = T2d + T2e; + T2D = T26 + T25; + T2E = T2A + T2B; + Ip[WS(rs, 4)] = T2D + T2E; + Im[WS(rs, 1)] = T2E - T2D; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 12}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, {112, 46, 30, 0} }; + +void X(codelet_hc2cfdft_12) (planner *p) { + X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT); +} +#endif