comparison src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_12.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
81:7029a4916348 82:d0c2a83c1364
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:07:11 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
29
30 /*
31 * This function contains 142 FP additions, 92 FP multiplications,
32 * (or, 96 additions, 46 multiplications, 46 fused multiply/add),
33 * 65 stack variables, 2 constants, and 48 memory accesses
34 */
35 #include "rdft/scalar/hc2cf.h"
36
37 static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41 {
42 INT m;
43 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
44 E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B;
45 E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q;
46 E TU, T1R;
47 {
48 E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4;
49 E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n;
50 Tm = Ip[0];
51 Tn = Im[0];
52 T1u = Tm + Tn;
53 T1x = Rp[0];
54 T1y = Rm[0];
55 T1z = T1x - T1y;
56 T1t = W[0];
57 T1v = T1t * T1u;
58 T2c = T1t * T1z;
59 {
60 E Tc, Td, Th, Ti, Tb;
61 Tc = Ip[WS(rs, 4)];
62 Td = Im[WS(rs, 4)];
63 Te = Tc - Td;
64 Th = Rp[WS(rs, 4)];
65 Ti = Rm[WS(rs, 4)];
66 Tj = Th + Ti;
67 T1i = Tc + Td;
68 T1l = Th - Ti;
69 Tb = W[14];
70 Tf = Tb * Te;
71 T1H = Tb * Tj;
72 }
73 {
74 E T2, T3, T7, T8;
75 T2 = Ip[WS(rs, 2)];
76 T3 = Im[WS(rs, 2)];
77 T4 = T2 - T3;
78 T1o = T2 + T3;
79 T7 = Rp[WS(rs, 2)];
80 T8 = Rm[WS(rs, 2)];
81 T9 = T7 + T8;
82 T1r = T7 - T8;
83 }
84 T1 = W[6];
85 T5 = T1 * T4;
86 T1F = T1 * T9;
87 T1n = W[8];
88 T1p = T1n * T1o;
89 T2a = T1n * T1r;
90 To = Tm - Tn;
91 T1E = T1x + T1y;
92 {
93 E T1j, T2G, T1h, T1k;
94 T1h = W[16];
95 T1j = T1h * T1i;
96 T2G = T1h * T1l;
97 T1k = W[17];
98 T1m = FNMS(T1k, T1l, T1j);
99 T2H = FMA(T1k, T1i, T2G);
100 }
101 {
102 E T6, Tg, T1q, T1w;
103 T6 = W[7];
104 Ta = FNMS(T6, T9, T5);
105 T1G = FMA(T6, T4, T1F);
106 Tg = W[15];
107 Tk = FNMS(Tg, Tj, Tf);
108 T1I = FMA(Tg, Te, T1H);
109 Tl = Ta + Tk;
110 T1J = T1G + T1I;
111 T1q = W[9];
112 T1s = FNMS(T1q, T1r, T1p);
113 T2b = FMA(T1q, T1o, T2a);
114 T1w = W[1];
115 T1A = FNMS(T1w, T1z, T1v);
116 T2d = FMA(T1w, T1u, T2c);
117 T1B = T1s + T1A;
118 T2I = T2b + T2d;
119 }
120 }
121 {
122 E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI;
123 E T17, T16, T25, T13, T15, TE, T1N, TF, TP;
124 {
125 E Tr, Ts, Tw, Tx, TY;
126 Tr = Ip[WS(rs, 3)];
127 Ts = Im[WS(rs, 3)];
128 Tt = Tr - Ts;
129 T11 = Tr + Ts;
130 Tw = Rp[WS(rs, 3)];
131 Tx = Rm[WS(rs, 3)];
132 TY = Tx - Tw;
133 Ty = Tw + Tx;
134 T10 = W[12];
135 T23 = T10 * TY;
136 TX = W[13];
137 TZ = TX * TY;
138 }
139 {
140 E TL, TM, TQ, TR, TK;
141 TL = Ip[WS(rs, 1)];
142 TM = Im[WS(rs, 1)];
143 TN = TL - TM;
144 TQ = Rp[WS(rs, 1)];
145 TR = Rm[WS(rs, 1)];
146 TS = TQ + TR;
147 T1b = TL + TM;
148 T1e = TQ - TR;
149 TK = W[2];
150 TO = TK * TN;
151 T1P = TK * TS;
152 }
153 {
154 E TB, TC, T14, TG, TH, TA;
155 TB = Ip[WS(rs, 5)];
156 TC = Im[WS(rs, 5)];
157 TD = TB - TC;
158 TG = Rp[WS(rs, 5)];
159 TH = Rm[WS(rs, 5)];
160 TI = TG + TH;
161 T14 = TH - TG;
162 T17 = TB + TC;
163 T16 = W[20];
164 T25 = T16 * T14;
165 T13 = W[21];
166 T15 = T13 * T14;
167 TA = W[18];
168 TE = TA * TD;
169 T1N = TA * TI;
170 }
171 T12 = FMA(T10, T11, TZ);
172 T18 = FMA(T16, T17, T15);
173 T19 = T12 + T18;
174 T24 = FNMS(TX, T11, T23);
175 T26 = FNMS(T13, T17, T25);
176 T2C = T24 + T26;
177 {
178 E Tu, T1L, Tq, Tv;
179 Tq = W[10];
180 Tu = Tq * Tt;
181 T1L = Tq * Ty;
182 Tv = W[11];
183 Tz = FNMS(Tv, Ty, Tu);
184 T1M = FMA(Tv, Tt, T1L);
185 }
186 {
187 E T1c, T2A, T1a, T1d;
188 T1a = W[4];
189 T1c = T1a * T1b;
190 T2A = T1a * T1e;
191 T1d = W[5];
192 T1f = FNMS(T1d, T1e, T1c);
193 T2B = FMA(T1d, T1b, T2A);
194 }
195 TF = W[19];
196 TJ = FNMS(TF, TI, TE);
197 T1O = FMA(TF, TD, T1N);
198 TP = W[3];
199 TT = FNMS(TP, TS, TO);
200 T1Q = FMA(TP, TN, T1P);
201 TU = TJ + TT;
202 T1R = T1O + T1Q;
203 }
204 {
205 E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z;
206 {
207 E Tp, TV, T2W, T2X;
208 Tp = Tl + To;
209 TV = Tz + TU;
210 TW = Tp - TV;
211 T2V = TV + Tp;
212 T2W = T2C - T2B;
213 T2X = T2H + T2I;
214 T2Y = T2W - T2X;
215 T30 = T2W + T2X;
216 }
217 {
218 E T1g, T1C, T1K, T1S;
219 T1g = T19 + T1f;
220 T1C = T1m + T1B;
221 T1D = T1g - T1C;
222 T1U = T1g + T1C;
223 T1K = T1E + T1J;
224 T1S = T1M + T1R;
225 T1T = T1K + T1S;
226 T2Z = T1K - T1S;
227 }
228 Ip[WS(rs, 3)] = KP500000000 * (TW + T1D);
229 Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30);
230 Im[WS(rs, 2)] = KP500000000 * (T1D - TW);
231 Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30);
232 Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U);
233 Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V);
234 Rp[0] = KP500000000 * (T1T + T1U);
235 Ip[0] = KP500000000 * (T2V + T2Y);
236 }
237 {
238 E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f;
239 E T2s;
240 {
241 E T1V, T1W, T2D, T2E;
242 T1V = FNMS(KP500000000, T1J, T1E);
243 T1W = Ta - Tk;
244 T1X = FNMS(KP866025403, T1W, T1V);
245 T2v = FMA(KP866025403, T1W, T1V);
246 T2D = FMA(KP500000000, T2C, T2B);
247 T2E = T18 - T12;
248 T2F = FNMS(KP866025403, T2E, T2D);
249 T2Q = FMA(KP866025403, T2E, T2D);
250 }
251 {
252 E T2J, T2K, T1Y, T1Z;
253 T2J = FNMS(KP500000000, T2I, T2H);
254 T2K = T1s - T1A;
255 T2L = FNMS(KP866025403, T2K, T2J);
256 T2R = FMA(KP866025403, T2K, T2J);
257 T1Y = FNMS(KP500000000, T1R, T1M);
258 T1Z = TJ - TT;
259 T20 = FNMS(KP866025403, T1Z, T1Y);
260 T2w = FMA(KP866025403, T1Z, T1Y);
261 }
262 {
263 E T22, T27, T2h, T2i;
264 T22 = FNMS(KP500000000, T19, T1f);
265 T27 = T24 - T26;
266 T28 = FNMS(KP866025403, T27, T22);
267 T2t = FMA(KP866025403, T27, T22);
268 T2h = FNMS(KP500000000, Tl, To);
269 T2i = T1I - T1G;
270 T2j = FNMS(KP866025403, T2i, T2h);
271 T2p = FMA(KP866025403, T2i, T2h);
272 }
273 {
274 E T2k, T2l, T29, T2e;
275 T2k = FNMS(KP500000000, TU, Tz);
276 T2l = T1Q - T1O;
277 T2m = FNMS(KP866025403, T2l, T2k);
278 T2q = FMA(KP866025403, T2l, T2k);
279 T29 = FNMS(KP500000000, T1B, T1m);
280 T2e = T2b - T2d;
281 T2f = FNMS(KP866025403, T2e, T29);
282 T2s = FMA(KP866025403, T2e, T29);
283 }
284 {
285 E T21, T2g, T2P, T2S;
286 T21 = T1X + T20;
287 T2g = T28 + T2f;
288 Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g);
289 Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g);
290 T2P = T2m + T2j;
291 T2S = T2Q + T2R;
292 Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S);
293 Im[WS(rs, 3)] = KP500000000 * (T2S - T2P);
294 }
295 {
296 E T2n, T2o, T2T, T2U;
297 T2n = T2j - T2m;
298 T2o = T2f - T28;
299 Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o);
300 Im[0] = KP500000000 * (T2o - T2n);
301 T2T = T1X - T20;
302 T2U = T2R - T2Q;
303 Rm[0] = KP500000000 * (T2T - T2U);
304 Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U);
305 }
306 {
307 E T2r, T2u, T2N, T2O;
308 T2r = T2p - T2q;
309 T2u = T2s - T2t;
310 Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u);
311 Im[WS(rs, 4)] = KP500000000 * (T2u - T2r);
312 T2N = T2v - T2w;
313 T2O = T2L - T2F;
314 Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O);
315 Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O);
316 }
317 {
318 E T2x, T2y, T2z, T2M;
319 T2x = T2v + T2w;
320 T2y = T2t + T2s;
321 Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y);
322 Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
323 T2z = T2q + T2p;
324 T2M = T2F + T2L;
325 Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M);
326 Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M));
327 }
328 }
329 }
330 }
331 }
332
333 static const tw_instr twinstr[] = {
334 {TW_FULL, 1, 12},
335 {TW_NEXT, 1, 0}
336 };
337
338 static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, {96, 46, 46, 0} };
339
340 void X(codelet_hc2cfdft_12) (planner *p) {
341 X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
342 }
343 #else
344
345 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
346
347 /*
348 * This function contains 142 FP additions, 76 FP multiplications,
349 * (or, 112 additions, 46 multiplications, 30 fused multiply/add),
350 * 52 stack variables, 3 constants, and 48 memory accesses
351 */
352 #include "rdft/scalar/hc2cf.h"
353
354 static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
355 {
356 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
357 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
358 DK(KP433012701, +0.433012701892219323381861585376468091735701313);
359 {
360 INT m;
361 for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
362 E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17;
363 E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h;
364 {
365 E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19;
366 E T1b;
367 {
368 E T2, T3, T6, T7;
369 Tk = Ip[0];
370 Tl = Im[0];
371 T1k = Tk + Tl;
372 T1m = Rp[0];
373 T1n = Rm[0];
374 T1o = T1m - T1n;
375 T2 = Ip[WS(rs, 2)];
376 T3 = Im[WS(rs, 2)];
377 T4 = T2 - T3;
378 T1f = T2 + T3;
379 T6 = Rp[WS(rs, 2)];
380 T7 = Rm[WS(rs, 2)];
381 T8 = T6 + T7;
382 T1h = T6 - T7;
383 {
384 E Tf, Tg, Tb, Tc;
385 Tf = Rp[WS(rs, 4)];
386 Tg = Rm[WS(rs, 4)];
387 Th = Tf + Tg;
388 T1c = Tf - Tg;
389 Tb = Ip[WS(rs, 4)];
390 Tc = Im[WS(rs, 4)];
391 Td = Tb - Tc;
392 T1a = Tb + Tc;
393 }
394 }
395 Tm = Tk - Tl;
396 T1t = T1m + T1n;
397 T19 = W[16];
398 T1b = W[17];
399 T1d = FNMS(T1b, T1c, T19 * T1a);
400 T2j = FMA(T19, T1c, T1b * T1a);
401 {
402 E T9, T1u, Ti, T1v;
403 {
404 E T1, T5, Ta, Te;
405 T1 = W[6];
406 T5 = W[7];
407 T9 = FNMS(T5, T8, T1 * T4);
408 T1u = FMA(T1, T8, T5 * T4);
409 Ta = W[14];
410 Te = W[15];
411 Ti = FNMS(Te, Th, Ta * Td);
412 T1v = FMA(Ta, Th, Te * Td);
413 }
414 Tj = T9 + Ti;
415 T1Y = KP433012701 * (T1v - T1u);
416 T1w = T1u + T1v;
417 T1G = KP433012701 * (T9 - Ti);
418 }
419 {
420 E T1i, T1S, T1p, T1T;
421 {
422 E T1e, T1g, T1j, T1l;
423 T1e = W[8];
424 T1g = W[9];
425 T1i = FNMS(T1g, T1h, T1e * T1f);
426 T1S = FMA(T1e, T1h, T1g * T1f);
427 T1j = W[0];
428 T1l = W[1];
429 T1p = FNMS(T1l, T1o, T1j * T1k);
430 T1T = FMA(T1j, T1o, T1l * T1k);
431 }
432 T1q = T1i + T1p;
433 T2q = KP433012701 * (T1i - T1p);
434 T1U = KP433012701 * (T1S - T1T);
435 T2k = T1S + T1T;
436 }
437 }
438 {
439 E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16;
440 {
441 E Tp, Tq, TC, TD;
442 Tp = Ip[WS(rs, 3)];
443 Tq = Im[WS(rs, 3)];
444 Tr = Tp - Tq;
445 TT = Tp + Tq;
446 {
447 E Tt, Tu, Ty, Tz;
448 Tt = Rp[WS(rs, 3)];
449 Tu = Rm[WS(rs, 3)];
450 Tv = Tt + Tu;
451 TV = Tt - Tu;
452 Ty = Ip[WS(rs, 5)];
453 Tz = Im[WS(rs, 5)];
454 TA = Ty - Tz;
455 TY = Ty + Tz;
456 }
457 TC = Rp[WS(rs, 5)];
458 TD = Rm[WS(rs, 5)];
459 TE = TC + TD;
460 T10 = TC - TD;
461 {
462 E TL, TM, TH, TI;
463 TL = Rp[WS(rs, 1)];
464 TM = Rm[WS(rs, 1)];
465 TN = TL + TM;
466 T14 = TM - TL;
467 TH = Ip[WS(rs, 1)];
468 TI = Im[WS(rs, 1)];
469 TJ = TH - TI;
470 T16 = TH + TI;
471 }
472 }
473 {
474 E To, Ts, T13, T15;
475 To = W[10];
476 Ts = W[11];
477 Tw = FNMS(Ts, Tv, To * Tr);
478 T1y = FMA(To, Tv, Ts * Tr);
479 T13 = W[5];
480 T15 = W[4];
481 T17 = FMA(T13, T14, T15 * T16);
482 T2g = FNMS(T13, T16, T15 * T14);
483 }
484 {
485 E TF, T1z, TO, T1A;
486 {
487 E Tx, TB, TG, TK;
488 Tx = W[18];
489 TB = W[19];
490 TF = FNMS(TB, TE, Tx * TA);
491 T1z = FMA(Tx, TE, TB * TA);
492 TG = W[2];
493 TK = W[3];
494 TO = FNMS(TK, TN, TG * TJ);
495 T1A = FMA(TG, TN, TK * TJ);
496 }
497 TP = TF + TO;
498 T21 = KP433012701 * (T1A - T1z);
499 T1B = T1z + T1A;
500 T1J = KP433012701 * (TF - TO);
501 }
502 {
503 E TW, T1O, T11, T1N;
504 {
505 E TS, TU, TX, TZ;
506 TS = W[12];
507 TU = W[13];
508 TW = FNMS(TU, TV, TS * TT);
509 T1O = FMA(TS, TV, TU * TT);
510 TX = W[20];
511 TZ = W[21];
512 T11 = FNMS(TZ, T10, TX * TY);
513 T1N = FMA(TX, T10, TZ * TY);
514 }
515 T12 = TW + T11;
516 T2u = KP433012701 * (T11 - TW);
517 T1P = KP433012701 * (T1N - T1O);
518 T2h = T1O + T1N;
519 }
520 }
521 {
522 E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n;
523 {
524 E Tn, TQ, T2i, T2l;
525 Tn = Tj + Tm;
526 TQ = Tw + TP;
527 TR = Tn - TQ;
528 T2f = TQ + Tn;
529 T2i = T2g - T2h;
530 T2l = T2j + T2k;
531 T2m = T2i - T2l;
532 T2o = T2i + T2l;
533 }
534 {
535 E T18, T1r, T1x, T1C;
536 T18 = T12 + T17;
537 T1r = T1d + T1q;
538 T1s = T18 - T1r;
539 T1E = T18 + T1r;
540 T1x = T1t + T1w;
541 T1C = T1y + T1B;
542 T1D = T1x + T1C;
543 T2n = T1x - T1C;
544 }
545 Ip[WS(rs, 3)] = KP500000000 * (TR + T1s);
546 Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o);
547 Im[WS(rs, 2)] = KP500000000 * (T1s - TR);
548 Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o);
549 Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E);
550 Im[WS(rs, 5)] = KP500000000 * (T2m - T2f);
551 Rp[0] = KP500000000 * (T1D + T1E);
552 Ip[0] = KP500000000 * (T2f + T2m);
553 }
554 {
555 E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V;
556 E T28;
557 {
558 E T1F, T2r, T2t, T1I;
559 T1F = FNMS(KP250000000, T1w, KP500000000 * T1t);
560 T1H = T1F - T1G;
561 T2b = T1F + T1G;
562 T2r = FNMS(KP500000000, T2j, KP250000000 * T2k);
563 T2s = T2q - T2r;
564 T2B = T2q + T2r;
565 T2t = FMA(KP250000000, T2h, KP500000000 * T2g);
566 T2v = T2t - T2u;
567 T2A = T2u + T2t;
568 T1I = FNMS(KP250000000, T1B, KP500000000 * T1y);
569 T1K = T1I - T1J;
570 T2c = T1I + T1J;
571 }
572 {
573 E T1M, T1X, T20, T1R;
574 T1M = FNMS(KP250000000, T12, KP500000000 * T17);
575 T1Q = T1M - T1P;
576 T29 = T1P + T1M;
577 T1X = FNMS(KP250000000, Tj, KP500000000 * Tm);
578 T1Z = T1X - T1Y;
579 T25 = T1Y + T1X;
580 T20 = FNMS(KP250000000, TP, KP500000000 * Tw);
581 T22 = T20 - T21;
582 T26 = T21 + T20;
583 T1R = FNMS(KP250000000, T1q, KP500000000 * T1d);
584 T1V = T1R - T1U;
585 T28 = T1R + T1U;
586 }
587 {
588 E T1L, T1W, T2p, T2w;
589 T1L = T1H + T1K;
590 T1W = T1Q + T1V;
591 Rp[WS(rs, 2)] = T1L - T1W;
592 Rm[WS(rs, 3)] = T1L + T1W;
593 T2p = T22 + T1Z;
594 T2w = T2s - T2v;
595 Ip[WS(rs, 2)] = T2p + T2w;
596 Im[WS(rs, 3)] = T2w - T2p;
597 }
598 {
599 E T23, T24, T2x, T2y;
600 T23 = T1Z - T22;
601 T24 = T1V - T1Q;
602 Ip[WS(rs, 5)] = T23 + T24;
603 Im[0] = T24 - T23;
604 T2x = T1H - T1K;
605 T2y = T2v + T2s;
606 Rm[0] = T2x - T2y;
607 Rp[WS(rs, 5)] = T2x + T2y;
608 }
609 {
610 E T27, T2a, T2z, T2C;
611 T27 = T25 - T26;
612 T2a = T28 - T29;
613 Ip[WS(rs, 1)] = T27 + T2a;
614 Im[WS(rs, 4)] = T2a - T27;
615 T2z = T2b - T2c;
616 T2C = T2A - T2B;
617 Rm[WS(rs, 4)] = T2z - T2C;
618 Rp[WS(rs, 1)] = T2z + T2C;
619 }
620 {
621 E T2d, T2e, T2D, T2E;
622 T2d = T2b + T2c;
623 T2e = T29 + T28;
624 Rm[WS(rs, 1)] = T2d - T2e;
625 Rp[WS(rs, 4)] = T2d + T2e;
626 T2D = T26 + T25;
627 T2E = T2A + T2B;
628 Ip[WS(rs, 4)] = T2D + T2E;
629 Im[WS(rs, 1)] = T2E - T2D;
630 }
631 }
632 }
633 }
634 }
635
636 static const tw_instr twinstr[] = {
637 {TW_FULL, 1, 12},
638 {TW_NEXT, 1, 0}
639 };
640
641 static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, {112, 46, 30, 0} };
642
643 void X(codelet_hc2cfdft_12) (planner *p) {
644 X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
645 }
646 #endif