Mercurial > hg > sv-dependency-builds
diff any/include/boost/math/distributions/inverse_gaussian.hpp @ 160:cff480c41f97
Add some cross-platform Boost headers
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Sat, 16 Feb 2019 16:31:25 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/any/include/boost/math/distributions/inverse_gaussian.hpp Sat Feb 16 16:31:25 2019 +0000 @@ -0,0 +1,527 @@ +// Copyright John Maddock 2010. +// Copyright Paul A. Bristow 2010. + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP +#define BOOST_STATS_INVERSE_GAUSSIAN_HPP + +#ifdef _MSC_VER +#pragma warning(disable: 4512) // assignment operator could not be generated +#endif + +// http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution +// http://mathworld.wolfram.com/InverseGaussianDistribution.html + +// The normal-inverse Gaussian distribution +// also called the Wald distribution (some sources limit this to when mean = 1). + +// It is the continuous probability distribution +// that is defined as the normal variance-mean mixture where the mixing density is the +// inverse Gaussian distribution. The tails of the distribution decrease more slowly +// than the normal distribution. It is therefore suitable to model phenomena +// where numerically large values are more probable than is the case for the normal distribution. + +// The Inverse Gaussian distribution was first studied in relationship to Brownian motion. +// In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse +// relationship between the time to cover a unit distance and distance covered in unit time. + +// Examples are returns from financial assets and turbulent wind speeds. +// The normal-inverse Gaussian distributions form +// a subclass of the generalised hyperbolic distributions. + +// See also + +// http://en.wikipedia.org/wiki/Normal_distribution +// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm +// Also: +// Weisstein, Eric W. "Normal Distribution." +// From MathWorld--A Wolfram Web Resource. +// http://mathworld.wolfram.com/NormalDistribution.html + +// http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions. +// ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/ + +// http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html +// R package for dinverse_gaussian, ... + +// http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html + +//#include <boost/math/distributions/fwd.hpp> +#include <boost/math/special_functions/erf.hpp> // for erf/erfc. +#include <boost/math/distributions/complement.hpp> +#include <boost/math/distributions/detail/common_error_handling.hpp> +#include <boost/math/distributions/normal.hpp> +#include <boost/math/distributions/gamma.hpp> // for gamma function +// using boost::math::gamma_p; + +#include <boost/math/tools/tuple.hpp> +//using std::tr1::tuple; +//using std::tr1::make_tuple; +#include <boost/math/tools/roots.hpp> +//using boost::math::tools::newton_raphson_iterate; + +#include <utility> + +namespace boost{ namespace math{ + +template <class RealType = double, class Policy = policies::policy<> > +class inverse_gaussian_distribution +{ +public: + typedef RealType value_type; + typedef Policy policy_type; + + inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1) + : m_mean(l_mean), m_scale(l_scale) + { // Default is a 1,1 inverse_gaussian distribution. + static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution"; + + RealType result; + detail::check_scale(function, l_scale, &result, Policy()); + detail::check_location(function, l_mean, &result, Policy()); + detail::check_x_gt0(function, l_mean, &result, Policy()); + } + + RealType mean()const + { // alias for location. + return m_mean; // aka mu + } + + // Synonyms, provided to allow generic use of find_location and find_scale. + RealType location()const + { // location, aka mu. + return m_mean; + } + RealType scale()const + { // scale, aka lambda. + return m_scale; + } + + RealType shape()const + { // shape, aka phi = lambda/mu. + return m_scale / m_mean; + } + +private: + // + // Data members: + // + RealType m_mean; // distribution mean or location, aka mu. + RealType m_scale; // distribution standard deviation or scale, aka lambda. +}; // class normal_distribution + +typedef inverse_gaussian_distribution<double> inverse_gaussian; + +template <class RealType, class Policy> +inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/) +{ // Range of permissible values for random variable x, zero to max. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value. +} + +template <class RealType, class Policy> +inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/) +{ // Range of supported values for random variable x, zero to max. + // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value. +} + +template <class RealType, class Policy> +inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x) +{ // Probability Density Function + BOOST_MATH_STD_USING // for ADL of std functions + + RealType scale = dist.scale(); + RealType mean = dist.mean(); + RealType result = 0; + static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)"; + if(false == detail::check_scale(function, scale, &result, Policy())) + { + return result; + } + if(false == detail::check_location(function, mean, &result, Policy())) + { + return result; + } + if(false == detail::check_x_gt0(function, mean, &result, Policy())) + { + return result; + } + if(false == detail::check_positive_x(function, x, &result, Policy())) + { + return result; + } + + if (x == 0) + { + return 0; // Convenient, even if not defined mathematically. + } + + result = + sqrt(scale / (constants::two_pi<RealType>() * x * x * x)) + * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean)); + return result; +} // pdf + +template <class RealType, class Policy> +inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x) +{ // Cumulative Density Function. + BOOST_MATH_STD_USING // for ADL of std functions. + + RealType scale = dist.scale(); + RealType mean = dist.mean(); + static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)"; + RealType result = 0; + if(false == detail::check_scale(function, scale, &result, Policy())) + { + return result; + } + if(false == detail::check_location(function, mean, &result, Policy())) + { + return result; + } + if (false == detail::check_x_gt0(function, mean, &result, Policy())) + { + return result; + } + if(false == detail::check_positive_x(function, x, &result, Policy())) + { + return result; + } + if (x == 0) + { + return 0; // Convenient, even if not defined mathematically. + } + // Problem with this formula for large scale > 1000 or small x, + //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1) + // + exp(2 * scale / mean) / 2 + // * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy())); + // so use normal distribution version: + // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution. + + normal_distribution<RealType> n01; + + RealType n0 = sqrt(scale / x); + n0 *= ((x / mean) -1); + RealType n1 = cdf(n01, n0); + RealType expfactor = exp(2 * scale / mean); + RealType n3 = - sqrt(scale / x); + n3 *= (x / mean) + 1; + RealType n4 = cdf(n01, n3); + result = n1 + expfactor * n4; + return result; +} // cdf + +template <class RealType, class Policy> +struct inverse_gaussian_quantile_functor +{ + + inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p) + : distribution(dist), prob(p) + { + } + boost::math::tuple<RealType, RealType> operator()(RealType const& x) + { + RealType c = cdf(distribution, x); + RealType fx = c - prob; // Difference cdf - value - to minimize. + RealType dx = pdf(distribution, x); // pdf is 1st derivative. + // return both function evaluation difference f(x) and 1st derivative f'(x). + return boost::math::make_tuple(fx, dx); + } + private: + const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution; + RealType prob; +}; + +template <class RealType, class Policy> +struct inverse_gaussian_quantile_complement_functor +{ + inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p) + : distribution(dist), prob(p) + { + } + boost::math::tuple<RealType, RealType> operator()(RealType const& x) + { + RealType c = cdf(complement(distribution, x)); + RealType fx = c - prob; // Difference cdf - value - to minimize. + RealType dx = -pdf(distribution, x); // pdf is 1st derivative. + // return both function evaluation difference f(x) and 1st derivative f'(x). + //return std::tr1::make_tuple(fx, dx); if available. + return boost::math::make_tuple(fx, dx); + } + private: + const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution; + RealType prob; +}; + +namespace detail +{ + template <class RealType> + inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1) + { // guess at random variate value x for inverse gaussian quantile. + BOOST_MATH_STD_USING + using boost::math::policies::policy; + // Error type. + using boost::math::policies::overflow_error; + // Action. + using boost::math::policies::ignore_error; + + typedef policy< + overflow_error<ignore_error> // Ignore overflow (return infinity) + > no_overthrow_policy; + + RealType x; // result is guess at random variate value x. + RealType phi = lambda / mu; + if (phi > 2.) + { // Big phi, so starting to look like normal Gaussian distribution. + // x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu); + // Whitmore, G.A. and Yalovsky, M. + // A normalising logarithmic transformation for inverse Gaussian random variables, + // Technometrics 20-2, 207-208 (1978), but using expression from + // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6. + + normal_distribution<RealType, no_overthrow_policy> n01; + x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi)); + } + else + { // phi < 2 so much less symmetrical with long tail, + // so use gamma distribution as an approximation. + using boost::math::gamma_distribution; + + // Define the distribution, using gamma_nooverflow: + typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow; + + gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.)); + + // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.)); + // R qgamma(0.2, 0.5, 1) 0.0320923 + RealType qg = quantile(complement(g, p)); + //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false); + x = lambda / (qg * 2); + // + if (x > mu/2) // x > mu /2? + { // x too large for the gamma approximation to work well. + //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807 + RealType q = quantile(g, p); + // x = mu * exp(q * static_cast<RealType>(0.1)); // Said to improve at high p + // x = mu * x; // Improves at high p? + x = mu * exp(q / sqrt(phi) - 1/(2 * phi)); + } + } + return x; + } // guess_ig +} // namespace detail + +template <class RealType, class Policy> +inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p) +{ + BOOST_MATH_STD_USING // for ADL of std functions. + // No closed form exists so guess and use Newton Raphson iteration. + + RealType mean = dist.mean(); + RealType scale = dist.scale(); + static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)"; + + RealType result = 0; + if(false == detail::check_scale(function, scale, &result, Policy())) + return result; + if(false == detail::check_location(function, mean, &result, Policy())) + return result; + if (false == detail::check_x_gt0(function, mean, &result, Policy())) + return result; + if(false == detail::check_probability(function, p, &result, Policy())) + return result; + if (p == 0) + { + return 0; // Convenient, even if not defined mathematically? + } + if (p == 1) + { // overflow + result = policies::raise_overflow_error<RealType>(function, + "probability parameter is 1, but must be < 1!", Policy()); + return result; // std::numeric_limits<RealType>::infinity(); + } + + RealType guess = detail::guess_ig(p, dist.mean(), dist.scale()); + using boost::math::tools::max_value; + + RealType min = 0.; // Minimum possible value is bottom of range of distribution. + RealType max = max_value<RealType>();// Maximum possible value is top of range. + // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T. + // digits used to control how accurate to try to make the result. + // To allow user to control accuracy versus speed, + int get_digits = policies::digits<RealType, Policy>();// get digits from policy, + boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations. + using boost::math::tools::newton_raphson_iterate; + result = + newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m); + return result; +} // quantile + +template <class RealType, class Policy> +inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c) +{ + BOOST_MATH_STD_USING // for ADL of std functions. + + RealType scale = c.dist.scale(); + RealType mean = c.dist.mean(); + RealType x = c.param; + static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; + // infinite arguments not supported. + //if((boost::math::isinf)(x)) + //{ + // if(x < 0) return 1; // cdf complement -infinity is unity. + // return 0; // cdf complement +infinity is zero + //} + // These produce MSVC 4127 warnings, so the above used instead. + //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity()) + //{ // cdf complement +infinity is zero. + // return 0; + //} + //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity()) + //{ // cdf complement -infinity is unity. + // return 1; + //} + RealType result = 0; + if(false == detail::check_scale(function, scale, &result, Policy())) + return result; + if(false == detail::check_location(function, mean, &result, Policy())) + return result; + if (false == detail::check_x_gt0(function, mean, &result, Policy())) + return result; + if(false == detail::check_positive_x(function, x, &result, Policy())) + return result; + + normal_distribution<RealType> n01; + RealType n0 = sqrt(scale / x); + n0 *= ((x / mean) -1); + RealType cdf_1 = cdf(complement(n01, n0)); + + RealType expfactor = exp(2 * scale / mean); + RealType n3 = - sqrt(scale / x); + n3 *= (x / mean) + 1; + + //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign. + RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1))); + // RealType n4 = cdf(n01, n3); // = + result = cdf_1 - expfactor * n6; + return result; +} // cdf complement + +template <class RealType, class Policy> +inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c) +{ + BOOST_MATH_STD_USING // for ADL of std functions + + RealType scale = c.dist.scale(); + RealType mean = c.dist.mean(); + static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; + RealType result = 0; + if(false == detail::check_scale(function, scale, &result, Policy())) + return result; + if(false == detail::check_location(function, mean, &result, Policy())) + return result; + if (false == detail::check_x_gt0(function, mean, &result, Policy())) + return result; + RealType q = c.param; + if(false == detail::check_probability(function, q, &result, Policy())) + return result; + + RealType guess = detail::guess_ig(q, mean, scale); + // Complement. + using boost::math::tools::max_value; + + RealType min = 0.; // Minimum possible value is bottom of range of distribution. + RealType max = max_value<RealType>();// Maximum possible value is top of range. + // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T. + // digits used to control how accurate to try to make the result. + int get_digits = policies::digits<RealType, Policy>(); + boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); + using boost::math::tools::newton_raphson_iterate; + result = + newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m); + return result; +} // quantile + +template <class RealType, class Policy> +inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ // aka mu + return dist.mean(); +} + +template <class RealType, class Policy> +inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ // aka lambda + return dist.scale(); +} + +template <class RealType, class Policy> +inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ // aka phi + return dist.shape(); +} + +template <class RealType, class Policy> +inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ + BOOST_MATH_STD_USING + RealType scale = dist.scale(); + RealType mean = dist.mean(); + RealType result = sqrt(mean * mean * mean / scale); + return result; +} + +template <class RealType, class Policy> +inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ + BOOST_MATH_STD_USING + RealType scale = dist.scale(); + RealType mean = dist.mean(); + RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) + - 3 * mean / (2 * scale)); + return result; +} + +template <class RealType, class Policy> +inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ + BOOST_MATH_STD_USING + RealType scale = dist.scale(); + RealType mean = dist.mean(); + RealType result = 3 * sqrt(mean/scale); + return result; +} + +template <class RealType, class Policy> +inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ + RealType scale = dist.scale(); + RealType mean = dist.mean(); + RealType result = 15 * mean / scale -3; + return result; +} + +template <class RealType, class Policy> +inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist) +{ + RealType scale = dist.scale(); + RealType mean = dist.mean(); + RealType result = 15 * mean / scale; + return result; +} + +} // namespace math +} // namespace boost + +// This include must be at the end, *after* the accessors +// for this distribution have been defined, in order to +// keep compilers that support two-phase lookup happy. +#include <boost/math/distributions/detail/derived_accessors.hpp> + +#endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP + +