Mercurial > hg > sv-dependency-builds
comparison any/include/boost/math/distributions/inverse_gaussian.hpp @ 160:cff480c41f97
Add some cross-platform Boost headers
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Sat, 16 Feb 2019 16:31:25 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
159:f4b37539fcc7 | 160:cff480c41f97 |
---|---|
1 // Copyright John Maddock 2010. | |
2 // Copyright Paul A. Bristow 2010. | |
3 | |
4 // Use, modification and distribution are subject to the | |
5 // Boost Software License, Version 1.0. (See accompanying file | |
6 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | |
7 | |
8 #ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP | |
9 #define BOOST_STATS_INVERSE_GAUSSIAN_HPP | |
10 | |
11 #ifdef _MSC_VER | |
12 #pragma warning(disable: 4512) // assignment operator could not be generated | |
13 #endif | |
14 | |
15 // http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution | |
16 // http://mathworld.wolfram.com/InverseGaussianDistribution.html | |
17 | |
18 // The normal-inverse Gaussian distribution | |
19 // also called the Wald distribution (some sources limit this to when mean = 1). | |
20 | |
21 // It is the continuous probability distribution | |
22 // that is defined as the normal variance-mean mixture where the mixing density is the | |
23 // inverse Gaussian distribution. The tails of the distribution decrease more slowly | |
24 // than the normal distribution. It is therefore suitable to model phenomena | |
25 // where numerically large values are more probable than is the case for the normal distribution. | |
26 | |
27 // The Inverse Gaussian distribution was first studied in relationship to Brownian motion. | |
28 // In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse | |
29 // relationship between the time to cover a unit distance and distance covered in unit time. | |
30 | |
31 // Examples are returns from financial assets and turbulent wind speeds. | |
32 // The normal-inverse Gaussian distributions form | |
33 // a subclass of the generalised hyperbolic distributions. | |
34 | |
35 // See also | |
36 | |
37 // http://en.wikipedia.org/wiki/Normal_distribution | |
38 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm | |
39 // Also: | |
40 // Weisstein, Eric W. "Normal Distribution." | |
41 // From MathWorld--A Wolfram Web Resource. | |
42 // http://mathworld.wolfram.com/NormalDistribution.html | |
43 | |
44 // http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions. | |
45 // ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/ | |
46 | |
47 // http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html | |
48 // R package for dinverse_gaussian, ... | |
49 | |
50 // http://www.statsci.org/s/inverse_gaussian.s and http://www.statsci.org/s/inverse_gaussian.html | |
51 | |
52 //#include <boost/math/distributions/fwd.hpp> | |
53 #include <boost/math/special_functions/erf.hpp> // for erf/erfc. | |
54 #include <boost/math/distributions/complement.hpp> | |
55 #include <boost/math/distributions/detail/common_error_handling.hpp> | |
56 #include <boost/math/distributions/normal.hpp> | |
57 #include <boost/math/distributions/gamma.hpp> // for gamma function | |
58 // using boost::math::gamma_p; | |
59 | |
60 #include <boost/math/tools/tuple.hpp> | |
61 //using std::tr1::tuple; | |
62 //using std::tr1::make_tuple; | |
63 #include <boost/math/tools/roots.hpp> | |
64 //using boost::math::tools::newton_raphson_iterate; | |
65 | |
66 #include <utility> | |
67 | |
68 namespace boost{ namespace math{ | |
69 | |
70 template <class RealType = double, class Policy = policies::policy<> > | |
71 class inverse_gaussian_distribution | |
72 { | |
73 public: | |
74 typedef RealType value_type; | |
75 typedef Policy policy_type; | |
76 | |
77 inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1) | |
78 : m_mean(l_mean), m_scale(l_scale) | |
79 { // Default is a 1,1 inverse_gaussian distribution. | |
80 static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution"; | |
81 | |
82 RealType result; | |
83 detail::check_scale(function, l_scale, &result, Policy()); | |
84 detail::check_location(function, l_mean, &result, Policy()); | |
85 detail::check_x_gt0(function, l_mean, &result, Policy()); | |
86 } | |
87 | |
88 RealType mean()const | |
89 { // alias for location. | |
90 return m_mean; // aka mu | |
91 } | |
92 | |
93 // Synonyms, provided to allow generic use of find_location and find_scale. | |
94 RealType location()const | |
95 { // location, aka mu. | |
96 return m_mean; | |
97 } | |
98 RealType scale()const | |
99 { // scale, aka lambda. | |
100 return m_scale; | |
101 } | |
102 | |
103 RealType shape()const | |
104 { // shape, aka phi = lambda/mu. | |
105 return m_scale / m_mean; | |
106 } | |
107 | |
108 private: | |
109 // | |
110 // Data members: | |
111 // | |
112 RealType m_mean; // distribution mean or location, aka mu. | |
113 RealType m_scale; // distribution standard deviation or scale, aka lambda. | |
114 }; // class normal_distribution | |
115 | |
116 typedef inverse_gaussian_distribution<double> inverse_gaussian; | |
117 | |
118 template <class RealType, class Policy> | |
119 inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/) | |
120 { // Range of permissible values for random variable x, zero to max. | |
121 using boost::math::tools::max_value; | |
122 return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value. | |
123 } | |
124 | |
125 template <class RealType, class Policy> | |
126 inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/) | |
127 { // Range of supported values for random variable x, zero to max. | |
128 // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. | |
129 using boost::math::tools::max_value; | |
130 return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value. | |
131 } | |
132 | |
133 template <class RealType, class Policy> | |
134 inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x) | |
135 { // Probability Density Function | |
136 BOOST_MATH_STD_USING // for ADL of std functions | |
137 | |
138 RealType scale = dist.scale(); | |
139 RealType mean = dist.mean(); | |
140 RealType result = 0; | |
141 static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)"; | |
142 if(false == detail::check_scale(function, scale, &result, Policy())) | |
143 { | |
144 return result; | |
145 } | |
146 if(false == detail::check_location(function, mean, &result, Policy())) | |
147 { | |
148 return result; | |
149 } | |
150 if(false == detail::check_x_gt0(function, mean, &result, Policy())) | |
151 { | |
152 return result; | |
153 } | |
154 if(false == detail::check_positive_x(function, x, &result, Policy())) | |
155 { | |
156 return result; | |
157 } | |
158 | |
159 if (x == 0) | |
160 { | |
161 return 0; // Convenient, even if not defined mathematically. | |
162 } | |
163 | |
164 result = | |
165 sqrt(scale / (constants::two_pi<RealType>() * x * x * x)) | |
166 * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean)); | |
167 return result; | |
168 } // pdf | |
169 | |
170 template <class RealType, class Policy> | |
171 inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x) | |
172 { // Cumulative Density Function. | |
173 BOOST_MATH_STD_USING // for ADL of std functions. | |
174 | |
175 RealType scale = dist.scale(); | |
176 RealType mean = dist.mean(); | |
177 static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)"; | |
178 RealType result = 0; | |
179 if(false == detail::check_scale(function, scale, &result, Policy())) | |
180 { | |
181 return result; | |
182 } | |
183 if(false == detail::check_location(function, mean, &result, Policy())) | |
184 { | |
185 return result; | |
186 } | |
187 if (false == detail::check_x_gt0(function, mean, &result, Policy())) | |
188 { | |
189 return result; | |
190 } | |
191 if(false == detail::check_positive_x(function, x, &result, Policy())) | |
192 { | |
193 return result; | |
194 } | |
195 if (x == 0) | |
196 { | |
197 return 0; // Convenient, even if not defined mathematically. | |
198 } | |
199 // Problem with this formula for large scale > 1000 or small x, | |
200 //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1) | |
201 // + exp(2 * scale / mean) / 2 | |
202 // * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy())); | |
203 // so use normal distribution version: | |
204 // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution. | |
205 | |
206 normal_distribution<RealType> n01; | |
207 | |
208 RealType n0 = sqrt(scale / x); | |
209 n0 *= ((x / mean) -1); | |
210 RealType n1 = cdf(n01, n0); | |
211 RealType expfactor = exp(2 * scale / mean); | |
212 RealType n3 = - sqrt(scale / x); | |
213 n3 *= (x / mean) + 1; | |
214 RealType n4 = cdf(n01, n3); | |
215 result = n1 + expfactor * n4; | |
216 return result; | |
217 } // cdf | |
218 | |
219 template <class RealType, class Policy> | |
220 struct inverse_gaussian_quantile_functor | |
221 { | |
222 | |
223 inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p) | |
224 : distribution(dist), prob(p) | |
225 { | |
226 } | |
227 boost::math::tuple<RealType, RealType> operator()(RealType const& x) | |
228 { | |
229 RealType c = cdf(distribution, x); | |
230 RealType fx = c - prob; // Difference cdf - value - to minimize. | |
231 RealType dx = pdf(distribution, x); // pdf is 1st derivative. | |
232 // return both function evaluation difference f(x) and 1st derivative f'(x). | |
233 return boost::math::make_tuple(fx, dx); | |
234 } | |
235 private: | |
236 const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution; | |
237 RealType prob; | |
238 }; | |
239 | |
240 template <class RealType, class Policy> | |
241 struct inverse_gaussian_quantile_complement_functor | |
242 { | |
243 inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p) | |
244 : distribution(dist), prob(p) | |
245 { | |
246 } | |
247 boost::math::tuple<RealType, RealType> operator()(RealType const& x) | |
248 { | |
249 RealType c = cdf(complement(distribution, x)); | |
250 RealType fx = c - prob; // Difference cdf - value - to minimize. | |
251 RealType dx = -pdf(distribution, x); // pdf is 1st derivative. | |
252 // return both function evaluation difference f(x) and 1st derivative f'(x). | |
253 //return std::tr1::make_tuple(fx, dx); if available. | |
254 return boost::math::make_tuple(fx, dx); | |
255 } | |
256 private: | |
257 const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution; | |
258 RealType prob; | |
259 }; | |
260 | |
261 namespace detail | |
262 { | |
263 template <class RealType> | |
264 inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1) | |
265 { // guess at random variate value x for inverse gaussian quantile. | |
266 BOOST_MATH_STD_USING | |
267 using boost::math::policies::policy; | |
268 // Error type. | |
269 using boost::math::policies::overflow_error; | |
270 // Action. | |
271 using boost::math::policies::ignore_error; | |
272 | |
273 typedef policy< | |
274 overflow_error<ignore_error> // Ignore overflow (return infinity) | |
275 > no_overthrow_policy; | |
276 | |
277 RealType x; // result is guess at random variate value x. | |
278 RealType phi = lambda / mu; | |
279 if (phi > 2.) | |
280 { // Big phi, so starting to look like normal Gaussian distribution. | |
281 // x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu); | |
282 // Whitmore, G.A. and Yalovsky, M. | |
283 // A normalising logarithmic transformation for inverse Gaussian random variables, | |
284 // Technometrics 20-2, 207-208 (1978), but using expression from | |
285 // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6. | |
286 | |
287 normal_distribution<RealType, no_overthrow_policy> n01; | |
288 x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi)); | |
289 } | |
290 else | |
291 { // phi < 2 so much less symmetrical with long tail, | |
292 // so use gamma distribution as an approximation. | |
293 using boost::math::gamma_distribution; | |
294 | |
295 // Define the distribution, using gamma_nooverflow: | |
296 typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow; | |
297 | |
298 gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.)); | |
299 | |
300 // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.)); | |
301 // R qgamma(0.2, 0.5, 1) 0.0320923 | |
302 RealType qg = quantile(complement(g, p)); | |
303 //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false); | |
304 x = lambda / (qg * 2); | |
305 // | |
306 if (x > mu/2) // x > mu /2? | |
307 { // x too large for the gamma approximation to work well. | |
308 //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807 | |
309 RealType q = quantile(g, p); | |
310 // x = mu * exp(q * static_cast<RealType>(0.1)); // Said to improve at high p | |
311 // x = mu * x; // Improves at high p? | |
312 x = mu * exp(q / sqrt(phi) - 1/(2 * phi)); | |
313 } | |
314 } | |
315 return x; | |
316 } // guess_ig | |
317 } // namespace detail | |
318 | |
319 template <class RealType, class Policy> | |
320 inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p) | |
321 { | |
322 BOOST_MATH_STD_USING // for ADL of std functions. | |
323 // No closed form exists so guess and use Newton Raphson iteration. | |
324 | |
325 RealType mean = dist.mean(); | |
326 RealType scale = dist.scale(); | |
327 static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)"; | |
328 | |
329 RealType result = 0; | |
330 if(false == detail::check_scale(function, scale, &result, Policy())) | |
331 return result; | |
332 if(false == detail::check_location(function, mean, &result, Policy())) | |
333 return result; | |
334 if (false == detail::check_x_gt0(function, mean, &result, Policy())) | |
335 return result; | |
336 if(false == detail::check_probability(function, p, &result, Policy())) | |
337 return result; | |
338 if (p == 0) | |
339 { | |
340 return 0; // Convenient, even if not defined mathematically? | |
341 } | |
342 if (p == 1) | |
343 { // overflow | |
344 result = policies::raise_overflow_error<RealType>(function, | |
345 "probability parameter is 1, but must be < 1!", Policy()); | |
346 return result; // std::numeric_limits<RealType>::infinity(); | |
347 } | |
348 | |
349 RealType guess = detail::guess_ig(p, dist.mean(), dist.scale()); | |
350 using boost::math::tools::max_value; | |
351 | |
352 RealType min = 0.; // Minimum possible value is bottom of range of distribution. | |
353 RealType max = max_value<RealType>();// Maximum possible value is top of range. | |
354 // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T. | |
355 // digits used to control how accurate to try to make the result. | |
356 // To allow user to control accuracy versus speed, | |
357 int get_digits = policies::digits<RealType, Policy>();// get digits from policy, | |
358 boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations. | |
359 using boost::math::tools::newton_raphson_iterate; | |
360 result = | |
361 newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m); | |
362 return result; | |
363 } // quantile | |
364 | |
365 template <class RealType, class Policy> | |
366 inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c) | |
367 { | |
368 BOOST_MATH_STD_USING // for ADL of std functions. | |
369 | |
370 RealType scale = c.dist.scale(); | |
371 RealType mean = c.dist.mean(); | |
372 RealType x = c.param; | |
373 static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; | |
374 // infinite arguments not supported. | |
375 //if((boost::math::isinf)(x)) | |
376 //{ | |
377 // if(x < 0) return 1; // cdf complement -infinity is unity. | |
378 // return 0; // cdf complement +infinity is zero | |
379 //} | |
380 // These produce MSVC 4127 warnings, so the above used instead. | |
381 //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity()) | |
382 //{ // cdf complement +infinity is zero. | |
383 // return 0; | |
384 //} | |
385 //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity()) | |
386 //{ // cdf complement -infinity is unity. | |
387 // return 1; | |
388 //} | |
389 RealType result = 0; | |
390 if(false == detail::check_scale(function, scale, &result, Policy())) | |
391 return result; | |
392 if(false == detail::check_location(function, mean, &result, Policy())) | |
393 return result; | |
394 if (false == detail::check_x_gt0(function, mean, &result, Policy())) | |
395 return result; | |
396 if(false == detail::check_positive_x(function, x, &result, Policy())) | |
397 return result; | |
398 | |
399 normal_distribution<RealType> n01; | |
400 RealType n0 = sqrt(scale / x); | |
401 n0 *= ((x / mean) -1); | |
402 RealType cdf_1 = cdf(complement(n01, n0)); | |
403 | |
404 RealType expfactor = exp(2 * scale / mean); | |
405 RealType n3 = - sqrt(scale / x); | |
406 n3 *= (x / mean) + 1; | |
407 | |
408 //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign. | |
409 RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1))); | |
410 // RealType n4 = cdf(n01, n3); // = | |
411 result = cdf_1 - expfactor * n6; | |
412 return result; | |
413 } // cdf complement | |
414 | |
415 template <class RealType, class Policy> | |
416 inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c) | |
417 { | |
418 BOOST_MATH_STD_USING // for ADL of std functions | |
419 | |
420 RealType scale = c.dist.scale(); | |
421 RealType mean = c.dist.mean(); | |
422 static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)"; | |
423 RealType result = 0; | |
424 if(false == detail::check_scale(function, scale, &result, Policy())) | |
425 return result; | |
426 if(false == detail::check_location(function, mean, &result, Policy())) | |
427 return result; | |
428 if (false == detail::check_x_gt0(function, mean, &result, Policy())) | |
429 return result; | |
430 RealType q = c.param; | |
431 if(false == detail::check_probability(function, q, &result, Policy())) | |
432 return result; | |
433 | |
434 RealType guess = detail::guess_ig(q, mean, scale); | |
435 // Complement. | |
436 using boost::math::tools::max_value; | |
437 | |
438 RealType min = 0.; // Minimum possible value is bottom of range of distribution. | |
439 RealType max = max_value<RealType>();// Maximum possible value is top of range. | |
440 // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T. | |
441 // digits used to control how accurate to try to make the result. | |
442 int get_digits = policies::digits<RealType, Policy>(); | |
443 boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); | |
444 using boost::math::tools::newton_raphson_iterate; | |
445 result = | |
446 newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m); | |
447 return result; | |
448 } // quantile | |
449 | |
450 template <class RealType, class Policy> | |
451 inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
452 { // aka mu | |
453 return dist.mean(); | |
454 } | |
455 | |
456 template <class RealType, class Policy> | |
457 inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
458 { // aka lambda | |
459 return dist.scale(); | |
460 } | |
461 | |
462 template <class RealType, class Policy> | |
463 inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
464 { // aka phi | |
465 return dist.shape(); | |
466 } | |
467 | |
468 template <class RealType, class Policy> | |
469 inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
470 { | |
471 BOOST_MATH_STD_USING | |
472 RealType scale = dist.scale(); | |
473 RealType mean = dist.mean(); | |
474 RealType result = sqrt(mean * mean * mean / scale); | |
475 return result; | |
476 } | |
477 | |
478 template <class RealType, class Policy> | |
479 inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
480 { | |
481 BOOST_MATH_STD_USING | |
482 RealType scale = dist.scale(); | |
483 RealType mean = dist.mean(); | |
484 RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) | |
485 - 3 * mean / (2 * scale)); | |
486 return result; | |
487 } | |
488 | |
489 template <class RealType, class Policy> | |
490 inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
491 { | |
492 BOOST_MATH_STD_USING | |
493 RealType scale = dist.scale(); | |
494 RealType mean = dist.mean(); | |
495 RealType result = 3 * sqrt(mean/scale); | |
496 return result; | |
497 } | |
498 | |
499 template <class RealType, class Policy> | |
500 inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
501 { | |
502 RealType scale = dist.scale(); | |
503 RealType mean = dist.mean(); | |
504 RealType result = 15 * mean / scale -3; | |
505 return result; | |
506 } | |
507 | |
508 template <class RealType, class Policy> | |
509 inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist) | |
510 { | |
511 RealType scale = dist.scale(); | |
512 RealType mean = dist.mean(); | |
513 RealType result = 15 * mean / scale; | |
514 return result; | |
515 } | |
516 | |
517 } // namespace math | |
518 } // namespace boost | |
519 | |
520 // This include must be at the end, *after* the accessors | |
521 // for this distribution have been defined, in order to | |
522 // keep compilers that support two-phase lookup happy. | |
523 #include <boost/math/distributions/detail/derived_accessors.hpp> | |
524 | |
525 #endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP | |
526 | |
527 |