Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_9.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_9.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,225 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:06:43 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include rdft/scalar/r2cfII.h */ + +/* + * This function contains 42 FP additions, 34 FP multiplications, + * (or, 12 additions, 4 multiplications, 30 fused multiply/add), + * 48 stack variables, 17 constants, and 18 memory accesses + */ +#include "rdft/scalar/r2cfII.h" + +static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP852868531, +0.852868531952443209628250963940074071936020296); + DK(KP879385241, +0.879385241571816768108218554649462939872416269); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP898197570, +0.898197570222573798468955502359086394667167570); + DK(KP673648177, +0.673648177666930348851716626769314796000375677); + DK(KP939692620, +0.939692620785908384054109277324731469936208134); + DK(KP907603734, +0.907603734547952313649323976213898122064543220); + DK(KP666666666, +0.666666666666666666666666666666666666666666667); + DK(KP826351822, +0.826351822333069651148283373230685203999624323); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP315207469, +0.315207469095904627298647952427796244129086440); + DK(KP420276625, +0.420276625461206169731530603237061658838781920); + DK(KP203604859, +0.203604859554852403062088995281827210665664861); + DK(KP152703644, +0.152703644666139302296566746461370407999248646); + DK(KP726681596, +0.726681596905677465811651808188092531873167623); + DK(KP968908795, +0.968908795874236621082202410917456709164223497); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { + E T1, T4, To, Ta, Tm, TB, Tq, Tt, Tf, Tj, TA, Tr, Ts, T2, T3; + E T5, Tg; + T1 = R0[0]; + T2 = R0[WS(rs, 3)]; + T3 = R1[WS(rs, 1)]; + T4 = T2 - T3; + To = T2 + T3; + { + E T6, T9, Tk, T7, T8, Tl; + T6 = R0[WS(rs, 1)]; + T7 = R0[WS(rs, 4)]; + T8 = R1[WS(rs, 2)]; + T9 = T7 - T8; + Tk = T7 + T8; + Ta = T6 + T9; + Tl = FNMS(KP500000000, T9, T6); + Tm = FMA(KP968908795, Tl, Tk); + TB = FNMS(KP726681596, Tk, Tl); + Tq = FNMS(KP152703644, Tk, Tl); + Tt = FMA(KP203604859, Tl, Tk); + } + { + E Tb, Te, Ti, Tc, Td, Th; + Tb = R0[WS(rs, 2)]; + Tc = R1[0]; + Td = R1[WS(rs, 3)]; + Te = Tc + Td; + Ti = Tc - Td; + Tf = Tb - Te; + Th = FMA(KP500000000, Te, Tb); + Tj = FNMS(KP152703644, Ti, Th); + TA = FMA(KP203604859, Th, Ti); + Tr = FNMS(KP420276625, Th, Ti); + Ts = FMA(KP315207469, Ti, Th); + } + Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta); + T5 = T1 + T4; + Tg = Ta + Tf; + Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5); + Cr[WS(csr, 4)] = T5 + Tg; + { + E Ty, Tx, Tz, Tn, TD, TC; + Tx = FNMS(KP826351822, Tr, Tq); + Ty = FNMS(KP666666666, Tx, Tt); + Tz = FMA(KP907603734, Ty, Ts); + Ci[WS(csi, 2)] = KP866025403 * (FNMS(KP939692620, Tz, To)); + Tn = FMA(KP673648177, Tm, Tj); + TC = FNMS(KP898197570, TB, TA); + TD = FNMS(KP666666666, Tn, TC); + Ci[0] = -(KP984807753 * (FMA(KP879385241, To, Tn))); + Ci[WS(csi, 3)] = -(KP866025403 * (FMA(KP852868531, TD, To))); + { + E Tp, Tv, TF, TG, Tu, TE, Tw; + Tp = FNMS(KP500000000, T4, T1); + Tu = FNMS(KP907603734, Tt, Ts); + Tv = FNMS(KP666666666, Tu, Tr); + TE = FNMS(KP673648177, Tm, Tj); + TF = FMA(KP898197570, TB, TA); + TG = FMA(KP500000000, TF, TE); + Cr[WS(csr, 3)] = FNMS(KP852868531, TG, Tp); + Cr[0] = FMA(KP852868531, TF, Tp); + Tw = FMA(KP826351822, Tv, Tq); + Cr[WS(csr, 2)] = FNMS(KP852868531, Tw, Tp); + } + } + } + } +} + +static const kr2c_desc desc = { 9, "r2cfII_9", {12, 4, 30, 0}, &GENUS }; + +void X(codelet_r2cfII_9) (planner *p) { + X(kr2c_register) (p, r2cfII_9, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include rdft/scalar/r2cfII.h */ + +/* + * This function contains 42 FP additions, 30 FP multiplications, + * (or, 25 additions, 13 multiplications, 17 fused multiply/add), + * 39 stack variables, 14 constants, and 18 memory accesses + */ +#include "rdft/scalar/r2cfII.h" + +static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP663413948, +0.663413948168938396205421319635891297216863310); + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP556670399, +0.556670399226419366452912952047023132968291906); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP852868531, +0.852868531952443209628250963940074071936020296); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP150383733, +0.150383733180435296639271897612501926072238258); + DK(KP813797681, +0.813797681349373692844693217248393223289101568); + DK(KP342020143, +0.342020143325668733044099614682259580763083368); + DK(KP939692620, +0.939692620785908384054109277324731469936208134); + DK(KP296198132, +0.296198132726023843175338011893050938967728390); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { + E T1, T4, To, Ta, Tl, Tk, Tf, Ti, Th, T2, T3, T5, Tg; + T1 = R0[0]; + T2 = R1[WS(rs, 1)]; + T3 = R0[WS(rs, 3)]; + T4 = T2 - T3; + To = T2 + T3; + { + E T6, T7, T8, T9; + T6 = R0[WS(rs, 1)]; + T7 = R1[WS(rs, 2)]; + T8 = R0[WS(rs, 4)]; + T9 = T7 - T8; + Ta = T6 - T9; + Tl = T7 + T8; + Tk = FMA(KP500000000, T9, T6); + } + { + E Tb, Tc, Td, Te; + Tb = R0[WS(rs, 2)]; + Tc = R1[0]; + Td = R1[WS(rs, 3)]; + Te = Tc + Td; + Tf = Tb - Te; + Ti = FMA(KP500000000, Te, Tb); + Th = Tc - Td; + } + Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta); + T5 = T1 - T4; + Tg = Ta + Tf; + Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5); + Cr[WS(csr, 4)] = T5 + Tg; + { + E Tr, Tt, Tw, Tv, Tu, Tp, Tq, Ts, Tj, Tm, Tn; + Tr = FMA(KP500000000, T4, T1); + Tt = FMA(KP296198132, Th, KP939692620 * Ti); + Tw = FNMS(KP813797681, Th, KP342020143 * Ti); + Tv = FNMS(KP984807753, Tk, KP150383733 * Tl); + Tu = FMA(KP173648177, Tk, KP852868531 * Tl); + Tp = FNMS(KP556670399, Tl, KP766044443 * Tk); + Tq = FMA(KP852868531, Th, KP173648177 * Ti); + Ts = Tp + Tq; + Tj = FNMS(KP984807753, Ti, KP150383733 * Th); + Tm = FMA(KP642787609, Tk, KP663413948 * Tl); + Tn = Tj - Tm; + Ci[0] = FNMS(KP866025403, To, Tn); + Cr[0] = Tr + Ts; + Ci[WS(csi, 3)] = FNMS(KP500000000, Tn, KP866025403 * ((Tp - Tq) - To)); + Cr[WS(csr, 3)] = FMA(KP866025403, Tm + Tj, Tr) - (KP500000000 * Ts); + Ci[WS(csi, 2)] = FMA(KP866025403, To - (Tu + Tt), KP500000000 * (Tw - Tv)); + Cr[WS(csr, 2)] = FMA(KP500000000, Tt - Tu, Tr) + (KP866025403 * (Tv + Tw)); + } + } + } +} + +static const kr2c_desc desc = { 9, "r2cfII_9", {25, 13, 17, 0}, &GENUS }; + +void X(codelet_r2cfII_9) (planner *p) { + X(kr2c_register) (p, r2cfII_9, &desc); +} + +#endif