comparison src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_9.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:06:43 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include rdft/scalar/r2cfII.h */
29
30 /*
31 * This function contains 42 FP additions, 34 FP multiplications,
32 * (or, 12 additions, 4 multiplications, 30 fused multiply/add),
33 * 48 stack variables, 17 constants, and 18 memory accesses
34 */
35 #include "rdft/scalar/r2cfII.h"
36
37 static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38 {
39 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
40 DK(KP879385241, +0.879385241571816768108218554649462939872416269);
41 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
42 DK(KP898197570, +0.898197570222573798468955502359086394667167570);
43 DK(KP673648177, +0.673648177666930348851716626769314796000375677);
44 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
45 DK(KP907603734, +0.907603734547952313649323976213898122064543220);
46 DK(KP666666666, +0.666666666666666666666666666666666666666666667);
47 DK(KP826351822, +0.826351822333069651148283373230685203999624323);
48 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
49 DK(KP315207469, +0.315207469095904627298647952427796244129086440);
50 DK(KP420276625, +0.420276625461206169731530603237061658838781920);
51 DK(KP203604859, +0.203604859554852403062088995281827210665664861);
52 DK(KP152703644, +0.152703644666139302296566746461370407999248646);
53 DK(KP726681596, +0.726681596905677465811651808188092531873167623);
54 DK(KP968908795, +0.968908795874236621082202410917456709164223497);
55 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
56 {
57 INT i;
58 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
59 E T1, T4, To, Ta, Tm, TB, Tq, Tt, Tf, Tj, TA, Tr, Ts, T2, T3;
60 E T5, Tg;
61 T1 = R0[0];
62 T2 = R0[WS(rs, 3)];
63 T3 = R1[WS(rs, 1)];
64 T4 = T2 - T3;
65 To = T2 + T3;
66 {
67 E T6, T9, Tk, T7, T8, Tl;
68 T6 = R0[WS(rs, 1)];
69 T7 = R0[WS(rs, 4)];
70 T8 = R1[WS(rs, 2)];
71 T9 = T7 - T8;
72 Tk = T7 + T8;
73 Ta = T6 + T9;
74 Tl = FNMS(KP500000000, T9, T6);
75 Tm = FMA(KP968908795, Tl, Tk);
76 TB = FNMS(KP726681596, Tk, Tl);
77 Tq = FNMS(KP152703644, Tk, Tl);
78 Tt = FMA(KP203604859, Tl, Tk);
79 }
80 {
81 E Tb, Te, Ti, Tc, Td, Th;
82 Tb = R0[WS(rs, 2)];
83 Tc = R1[0];
84 Td = R1[WS(rs, 3)];
85 Te = Tc + Td;
86 Ti = Tc - Td;
87 Tf = Tb - Te;
88 Th = FMA(KP500000000, Te, Tb);
89 Tj = FNMS(KP152703644, Ti, Th);
90 TA = FMA(KP203604859, Th, Ti);
91 Tr = FNMS(KP420276625, Th, Ti);
92 Ts = FMA(KP315207469, Ti, Th);
93 }
94 Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta);
95 T5 = T1 + T4;
96 Tg = Ta + Tf;
97 Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5);
98 Cr[WS(csr, 4)] = T5 + Tg;
99 {
100 E Ty, Tx, Tz, Tn, TD, TC;
101 Tx = FNMS(KP826351822, Tr, Tq);
102 Ty = FNMS(KP666666666, Tx, Tt);
103 Tz = FMA(KP907603734, Ty, Ts);
104 Ci[WS(csi, 2)] = KP866025403 * (FNMS(KP939692620, Tz, To));
105 Tn = FMA(KP673648177, Tm, Tj);
106 TC = FNMS(KP898197570, TB, TA);
107 TD = FNMS(KP666666666, Tn, TC);
108 Ci[0] = -(KP984807753 * (FMA(KP879385241, To, Tn)));
109 Ci[WS(csi, 3)] = -(KP866025403 * (FMA(KP852868531, TD, To)));
110 {
111 E Tp, Tv, TF, TG, Tu, TE, Tw;
112 Tp = FNMS(KP500000000, T4, T1);
113 Tu = FNMS(KP907603734, Tt, Ts);
114 Tv = FNMS(KP666666666, Tu, Tr);
115 TE = FNMS(KP673648177, Tm, Tj);
116 TF = FMA(KP898197570, TB, TA);
117 TG = FMA(KP500000000, TF, TE);
118 Cr[WS(csr, 3)] = FNMS(KP852868531, TG, Tp);
119 Cr[0] = FMA(KP852868531, TF, Tp);
120 Tw = FMA(KP826351822, Tv, Tq);
121 Cr[WS(csr, 2)] = FNMS(KP852868531, Tw, Tp);
122 }
123 }
124 }
125 }
126 }
127
128 static const kr2c_desc desc = { 9, "r2cfII_9", {12, 4, 30, 0}, &GENUS };
129
130 void X(codelet_r2cfII_9) (planner *p) {
131 X(kr2c_register) (p, r2cfII_9, &desc);
132 }
133
134 #else
135
136 /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include rdft/scalar/r2cfII.h */
137
138 /*
139 * This function contains 42 FP additions, 30 FP multiplications,
140 * (or, 25 additions, 13 multiplications, 17 fused multiply/add),
141 * 39 stack variables, 14 constants, and 18 memory accesses
142 */
143 #include "rdft/scalar/r2cfII.h"
144
145 static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
146 {
147 DK(KP663413948, +0.663413948168938396205421319635891297216863310);
148 DK(KP642787609, +0.642787609686539326322643409907263432907559884);
149 DK(KP556670399, +0.556670399226419366452912952047023132968291906);
150 DK(KP766044443, +0.766044443118978035202392650555416673935832457);
151 DK(KP852868531, +0.852868531952443209628250963940074071936020296);
152 DK(KP173648177, +0.173648177666930348851716626769314796000375677);
153 DK(KP984807753, +0.984807753012208059366743024589523013670643252);
154 DK(KP150383733, +0.150383733180435296639271897612501926072238258);
155 DK(KP813797681, +0.813797681349373692844693217248393223289101568);
156 DK(KP342020143, +0.342020143325668733044099614682259580763083368);
157 DK(KP939692620, +0.939692620785908384054109277324731469936208134);
158 DK(KP296198132, +0.296198132726023843175338011893050938967728390);
159 DK(KP866025403, +0.866025403784438646763723170752936183471402627);
160 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
161 {
162 INT i;
163 for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
164 E T1, T4, To, Ta, Tl, Tk, Tf, Ti, Th, T2, T3, T5, Tg;
165 T1 = R0[0];
166 T2 = R1[WS(rs, 1)];
167 T3 = R0[WS(rs, 3)];
168 T4 = T2 - T3;
169 To = T2 + T3;
170 {
171 E T6, T7, T8, T9;
172 T6 = R0[WS(rs, 1)];
173 T7 = R1[WS(rs, 2)];
174 T8 = R0[WS(rs, 4)];
175 T9 = T7 - T8;
176 Ta = T6 - T9;
177 Tl = T7 + T8;
178 Tk = FMA(KP500000000, T9, T6);
179 }
180 {
181 E Tb, Tc, Td, Te;
182 Tb = R0[WS(rs, 2)];
183 Tc = R1[0];
184 Td = R1[WS(rs, 3)];
185 Te = Tc + Td;
186 Tf = Tb - Te;
187 Ti = FMA(KP500000000, Te, Tb);
188 Th = Tc - Td;
189 }
190 Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta);
191 T5 = T1 - T4;
192 Tg = Ta + Tf;
193 Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5);
194 Cr[WS(csr, 4)] = T5 + Tg;
195 {
196 E Tr, Tt, Tw, Tv, Tu, Tp, Tq, Ts, Tj, Tm, Tn;
197 Tr = FMA(KP500000000, T4, T1);
198 Tt = FMA(KP296198132, Th, KP939692620 * Ti);
199 Tw = FNMS(KP813797681, Th, KP342020143 * Ti);
200 Tv = FNMS(KP984807753, Tk, KP150383733 * Tl);
201 Tu = FMA(KP173648177, Tk, KP852868531 * Tl);
202 Tp = FNMS(KP556670399, Tl, KP766044443 * Tk);
203 Tq = FMA(KP852868531, Th, KP173648177 * Ti);
204 Ts = Tp + Tq;
205 Tj = FNMS(KP984807753, Ti, KP150383733 * Th);
206 Tm = FMA(KP642787609, Tk, KP663413948 * Tl);
207 Tn = Tj - Tm;
208 Ci[0] = FNMS(KP866025403, To, Tn);
209 Cr[0] = Tr + Ts;
210 Ci[WS(csi, 3)] = FNMS(KP500000000, Tn, KP866025403 * ((Tp - Tq) - To));
211 Cr[WS(csr, 3)] = FMA(KP866025403, Tm + Tj, Tr) - (KP500000000 * Ts);
212 Ci[WS(csi, 2)] = FMA(KP866025403, To - (Tu + Tt), KP500000000 * (Tw - Tv));
213 Cr[WS(csr, 2)] = FMA(KP500000000, Tt - Tu, Tr) + (KP866025403 * (Tv + Tw));
214 }
215 }
216 }
217 }
218
219 static const kr2c_desc desc = { 9, "r2cfII_9", {25, 13, 17, 0}, &GENUS };
220
221 void X(codelet_r2cfII_9) (planner *p) {
222 X(kr2c_register) (p, r2cfII_9, &desc);
223 }
224
225 #endif