Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_10.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_10.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,546 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:11 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */ + +/* + * This function contains 122 FP additions, 92 FP multiplications, + * (or, 68 additions, 38 multiplications, 54 fused multiply/add), + * 81 stack variables, 5 constants, and 40 memory accesses + */ +#include "rdft/scalar/hc2cf.h" + +static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { + E T3, T1u, Td, T1w, T1S, T2f, T14, T1p, T1j, T1q, T1N, T2e, TQ, T2i, T1n; + E T1H, Tz, T2h, T1m, T1C; + { + E T1, T2, T1h, Tc, TW, T1c, T1d, T1b, T1f, T1g, T1Q, T7, TV, T1J, TS; + E TU, Ts, Tx, T19, T18, T1O, T15, T17, Tt, T1A, Ti, Tn, TE, TD, T1F; + E TA, TC, Tj, T1y, TJ, TO, T12, T11, T1L, TY, T10, TK, T1D; + { + E Ta, Tb, T1e, T5, T6, TT; + T1 = Ip[0]; + T2 = Im[0]; + T1h = T1 + T2; + Ta = Rp[WS(rs, 2)]; + Tb = Rm[WS(rs, 2)]; + Tc = Ta - Tb; + TW = Ta + Tb; + T1c = Rm[0]; + T1d = Rp[0]; + T1e = T1c - T1d; + T1b = W[0]; + T1f = T1b * T1e; + T1g = W[1]; + T1Q = T1g * T1e; + T5 = Ip[WS(rs, 2)]; + T6 = Im[WS(rs, 2)]; + TT = T5 - T6; + T7 = T5 + T6; + TV = W[7]; + T1J = TV * TT; + TS = W[6]; + TU = TS * TT; + { + E Tq, Tr, T16, Tv, Tw, Tp; + Tq = Rm[WS(rs, 3)]; + Tr = Rp[WS(rs, 3)]; + Ts = Tq - Tr; + Tv = Ip[WS(rs, 3)]; + Tw = Im[WS(rs, 3)]; + Tx = Tv + Tw; + T16 = Tv - Tw; + T19 = Tr + Tq; + T18 = W[11]; + T1O = T18 * T16; + T15 = W[10]; + T17 = T15 * T16; + Tp = W[12]; + Tt = Tp * Ts; + T1A = Tp * Tx; + } + { + E Tg, Th, TB, Tl, Tm, Tf; + Tg = Ip[WS(rs, 1)]; + Th = Im[WS(rs, 1)]; + Ti = Tg - Th; + Tl = Rp[WS(rs, 1)]; + Tm = Rm[WS(rs, 1)]; + Tn = Tl + Tm; + TB = Tm - Tl; + TE = Tg + Th; + TD = W[5]; + T1F = TD * TB; + TA = W[4]; + TC = TA * TB; + Tf = W[2]; + Tj = Tf * Ti; + T1y = Tf * Tn; + } + { + E TH, TI, TZ, TM, TN, TG; + TH = Ip[WS(rs, 4)]; + TI = Im[WS(rs, 4)]; + TJ = TH - TI; + TM = Rp[WS(rs, 4)]; + TN = Rm[WS(rs, 4)]; + TO = TM + TN; + TZ = TN - TM; + T12 = TH + TI; + T11 = W[17]; + T1L = T11 * TZ; + TY = W[16]; + T10 = TY * TZ; + TG = W[14]; + TK = TG * TJ; + T1D = TG * TO; + } + } + { + E T1P, T1R, T1K, T1M; + T3 = T1 - T2; + T1u = T1d + T1c; + { + E T4, T8, T9, T1v; + T4 = W[9]; + T8 = T4 * T7; + T9 = W[8]; + T1v = T9 * T7; + Td = FMA(T9, Tc, T8); + T1w = FNMS(T4, Tc, T1v); + } + T1P = FMA(T15, T19, T1O); + T1R = FMA(T1b, T1h, T1Q); + T1S = T1P - T1R; + T2f = T1P + T1R; + { + E TX, T13, T1a, T1i; + TX = FNMS(TV, TW, TU); + T13 = FNMS(T11, T12, T10); + T14 = TX + T13; + T1p = T13 - TX; + T1a = FNMS(T18, T19, T17); + T1i = FNMS(T1g, T1h, T1f); + T1j = T1a + T1i; + T1q = T1i - T1a; + } + T1K = FMA(TS, TW, T1J); + T1M = FMA(TY, T12, T1L); + T1N = T1K - T1M; + T2e = T1K + T1M; + { + E TF, T1G, TP, T1E, TL; + TF = FNMS(TD, TE, TC); + T1G = FMA(TA, TE, T1F); + TL = W[15]; + TP = FNMS(TL, TO, TK); + T1E = FMA(TL, TJ, T1D); + TQ = TF + TP; + T2i = T1G + T1E; + T1n = TF - TP; + T1H = T1E - T1G; + } + { + E To, T1z, Ty, T1B, Tk, Tu; + Tk = W[3]; + To = FNMS(Tk, Tn, Tj); + T1z = FMA(Tk, Ti, T1y); + Tu = W[13]; + Ty = FNMS(Tu, Tx, Tt); + T1B = FMA(Tu, Ts, T1A); + Tz = To + Ty; + T2h = T1z + T1B; + T1m = Ty - To; + T1C = T1z - T1B; + } + } + } + { + E T2k, T2m, Te, T1l, T2b, T2c, T2l, T2d; + { + E T2g, T2j, TR, T1k; + T2g = T2e - T2f; + T2j = T2h - T2i; + T2k = FNMS(KP618033988, T2j, T2g); + T2m = FMA(KP618033988, T2g, T2j); + Te = T3 - Td; + TR = Tz + TQ; + T1k = T14 + T1j; + T1l = TR + T1k; + T2b = FNMS(KP250000000, T1l, Te); + T2c = TR - T1k; + } + Ip[0] = KP500000000 * (Te + T1l); + T2l = FMA(KP559016994, T2c, T2b); + Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T2m, T2l)); + Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T2m, T2l))); + T2d = FNMS(KP559016994, T2c, T2b); + Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T2k, T2d)); + Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T2k, T2d))); + } + { + E T2w, T2y, T2n, T2q, T2r, T2s, T2x, T2t; + { + E T2u, T2v, T2o, T2p; + T2u = T14 - T1j; + T2v = Tz - TQ; + T2w = FNMS(KP618033988, T2v, T2u); + T2y = FMA(KP618033988, T2u, T2v); + T2n = T1u + T1w; + T2o = T2h + T2i; + T2p = T2e + T2f; + T2q = T2o + T2p; + T2r = FNMS(KP250000000, T2q, T2n); + T2s = T2o - T2p; + } + Rp[0] = KP500000000 * (T2n + T2q); + T2x = FMA(KP559016994, T2s, T2r); + Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T2y, T2x)); + Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2y, T2x)); + T2t = FNMS(KP559016994, T2s, T2r); + Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T2w, T2t)); + Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T2w, T2t)); + } + { + E T28, T2a, T1t, T1s, T23, T24, T29, T25; + { + E T26, T27, T1o, T1r; + T26 = T1H - T1C; + T27 = T1S - T1N; + T28 = FMA(KP618033988, T27, T26); + T2a = FNMS(KP618033988, T26, T27); + T1t = Td + T3; + T1o = T1m + T1n; + T1r = T1p + T1q; + T1s = T1o + T1r; + T23 = FMA(KP250000000, T1s, T1t); + T24 = T1r - T1o; + } + Im[WS(rs, 4)] = KP500000000 * (T1s - T1t); + T29 = FNMS(KP559016994, T24, T23); + Ip[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2a, T29)); + Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP951056516, T2a, T29))); + T25 = FMA(KP559016994, T24, T23); + Ip[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T28, T25)); + Im[0] = -(KP500000000 * (FNMS(KP951056516, T28, T25))); + } + { + E T20, T22, T1x, T1U, T1V, T1W, T21, T1X; + { + E T1Y, T1Z, T1I, T1T; + T1Y = T1n - T1m; + T1Z = T1q - T1p; + T20 = FMA(KP618033988, T1Z, T1Y); + T22 = FNMS(KP618033988, T1Y, T1Z); + T1x = T1u - T1w; + T1I = T1C + T1H; + T1T = T1N + T1S; + T1U = T1I + T1T; + T1V = FNMS(KP250000000, T1U, T1x); + T1W = T1I - T1T; + } + Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U); + T21 = FNMS(KP559016994, T1W, T1V); + Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21)); + Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21)); + T1X = FMA(KP559016994, T1W, T1V); + Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X)); + Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X)); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 10}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {68, 38, 54, 0} }; + +void X(codelet_hc2cfdft_10) (planner *p) { + X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */ + +/* + * This function contains 122 FP additions, 68 FP multiplications, + * (or, 92 additions, 38 multiplications, 30 fused multiply/add), + * 62 stack variables, 5 constants, and 40 memory accesses + */ +#include "rdft/scalar/hc2cf.h" + +static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP293892626, +0.293892626146236564584352977319536384298826219); + DK(KP475528258, +0.475528258147576786058219666689691071702849317); + DK(KP125000000, +0.125000000000000000000000000000000000000000000); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP279508497, +0.279508497187473712051146708591409529430077295); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) { + E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f; + E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F; + { + E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12; + E T1y, TF, T1r, TW, T1w; + { + E T1, T2, T18, T14, T15, T16, T13, T17; + T1 = Ip[0]; + T2 = Im[0]; + T18 = T1 + T2; + T14 = Rm[0]; + T15 = Rp[0]; + T16 = T14 - T15; + T3 = T1 - T2; + T1D = T15 + T14; + T13 = W[0]; + T17 = W[1]; + T19 = FNMS(T17, T18, T13 * T16); + T1z = FMA(T17, T16, T13 * T18); + } + { + E T5, T6, TO, T9, Ta, TQ, TN, TP; + T5 = Ip[WS(rs, 2)]; + T6 = Im[WS(rs, 2)]; + TO = T5 - T6; + T9 = Rp[WS(rs, 2)]; + Ta = Rm[WS(rs, 2)]; + TQ = T9 + Ta; + T7 = T5 + T6; + Tb = T9 - Ta; + TN = W[6]; + TP = W[7]; + TR = FNMS(TP, TQ, TN * TO); + T1v = FMA(TP, TO, TN * TQ); + } + { + E Th, TJ, Tl, TH; + { + E Tf, Tg, Tj, Tk; + Tf = Ip[WS(rs, 1)]; + Tg = Im[WS(rs, 1)]; + Th = Tf - Tg; + TJ = Tf + Tg; + Tj = Rp[WS(rs, 1)]; + Tk = Rm[WS(rs, 1)]; + Tl = Tj + Tk; + TH = Tj - Tk; + } + { + E Te, Ti, TG, TI; + Te = W[2]; + Ti = W[3]; + Tm = FNMS(Ti, Tl, Te * Th); + T1o = FMA(Te, Tl, Ti * Th); + TG = W[4]; + TI = W[5]; + TK = FMA(TG, TH, TI * TJ); + T1s = FNMS(TI, TH, TG * TJ); + } + } + { + E Tq, TZ, Tu, T11; + { + E To, Tp, Ts, Tt; + To = Ip[WS(rs, 3)]; + Tp = Im[WS(rs, 3)]; + Tq = To + Tp; + TZ = To - Tp; + Ts = Rp[WS(rs, 3)]; + Tt = Rm[WS(rs, 3)]; + Tu = Ts - Tt; + T11 = Ts + Tt; + } + { + E Tn, Tr, TY, T10; + Tn = W[13]; + Tr = W[12]; + Tv = FMA(Tn, Tq, Tr * Tu); + T1p = FNMS(Tn, Tu, Tr * Tq); + TY = W[10]; + T10 = W[11]; + T12 = FNMS(T10, T11, TY * TZ); + T1y = FMA(T10, TZ, TY * T11); + } + } + { + E TA, TV, TE, TT; + { + E Ty, Tz, TC, TD; + Ty = Ip[WS(rs, 4)]; + Tz = Im[WS(rs, 4)]; + TA = Ty - Tz; + TV = Ty + Tz; + TC = Rp[WS(rs, 4)]; + TD = Rm[WS(rs, 4)]; + TE = TC + TD; + TT = TC - TD; + } + { + E Tx, TB, TS, TU; + Tx = W[14]; + TB = W[15]; + TF = FNMS(TB, TE, Tx * TA); + T1r = FMA(Tx, TE, TB * TA); + TS = W[16]; + TU = W[17]; + TW = FMA(TS, TT, TU * TV); + T1w = FNMS(TU, TT, TS * TV); + } + } + Tw = Tm - Tv; + TL = TF - TK; + TM = Tw + TL; + T1W = T1v + T1w; + T1X = T1y + T1z; + T27 = T1W + T1X; + T1Z = T1o + T1p; + T20 = T1s + T1r; + T26 = T1Z + T20; + TX = TR - TW; + T1a = T12 + T19; + T1b = TX + T1a; + T1d = T19 - T12; + T1e = TR + TW; + T1f = T1d - T1e; + T1q = T1o - T1p; + T1t = T1r - T1s; + T1u = T1q + T1t; + T1x = T1v - T1w; + T1A = T1y - T1z; + T1B = T1x + T1A; + T1g = Tm + Tv; + T1h = TK + TF; + T1i = T1g + T1h; + { + E Tc, T1E, T4, T8; + T4 = W[9]; + T8 = W[8]; + Tc = FMA(T4, T7, T8 * Tb); + T1E = FNMS(T4, Tb, T8 * T7); + Td = T3 - Tc; + T25 = T1D + T1E; + T1k = Tc + T3; + T1F = T1D - T1E; + } + } + { + E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V; + T1U = KP279508497 * (TM - T1b); + T1c = TM + T1b; + T1T = FNMS(KP125000000, T1c, KP500000000 * Td); + T1Y = T1W - T1X; + T21 = T1Z - T20; + T22 = FNMS(KP293892626, T21, KP475528258 * T1Y); + T24 = FMA(KP475528258, T21, KP293892626 * T1Y); + Ip[0] = KP500000000 * (Td + T1c); + T23 = T1U + T1T; + Ip[WS(rs, 4)] = T23 + T24; + Im[WS(rs, 3)] = T24 - T23; + T1V = T1T - T1U; + Ip[WS(rs, 2)] = T1V + T22; + Im[WS(rs, 1)] = T22 - T1V; + } + { + E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b; + T2a = KP279508497 * (T26 - T27); + T28 = T26 + T27; + T29 = FNMS(KP125000000, T28, KP500000000 * T25); + T2c = TX - T1a; + T2d = Tw - TL; + T2e = FNMS(KP293892626, T2d, KP475528258 * T2c); + T2g = FMA(KP475528258, T2d, KP293892626 * T2c); + Rp[0] = KP500000000 * (T25 + T28); + T2f = T2a + T29; + Rp[WS(rs, 4)] = T2f - T2g; + Rm[WS(rs, 3)] = T2g + T2f; + T2b = T29 - T2a; + Rp[WS(rs, 2)] = T2b - T2e; + Rm[WS(rs, 1)] = T2e + T2b; + } + { + E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N; + T1M = KP279508497 * (T1i + T1f); + T1j = T1f - T1i; + T1L = FMA(KP500000000, T1k, KP125000000 * T1j); + T1O = T1A - T1x; + T1P = T1q - T1t; + T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O); + T1S = FMA(KP293892626, T1P, KP475528258 * T1O); + Im[WS(rs, 4)] = KP500000000 * (T1j - T1k); + T1R = T1L - T1M; + Ip[WS(rs, 3)] = T1R + T1S; + Im[WS(rs, 2)] = T1S - T1R; + T1N = T1L + T1M; + Ip[WS(rs, 1)] = T1N + T1Q; + Im[0] = T1Q - T1N; + } + { + E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I; + T1C = KP279508497 * (T1u - T1B); + T1G = T1u + T1B; + T1H = FNMS(KP125000000, T1G, KP500000000 * T1F); + T1l = T1g - T1h; + T1m = T1e + T1d; + T1n = FMA(KP475528258, T1l, KP293892626 * T1m); + T1J = FNMS(KP293892626, T1l, KP475528258 * T1m); + Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G); + T1K = T1H - T1C; + Rp[WS(rs, 3)] = T1J + T1K; + Rm[WS(rs, 2)] = T1K - T1J; + T1I = T1C + T1H; + Rp[WS(rs, 1)] = T1n + T1I; + Rm[0] = T1I - T1n; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 10}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {92, 38, 30, 0} }; + +void X(codelet_hc2cfdft_10) (planner *p) { + X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT); +} +#endif