comparison src/fftw-3.3.8/rdft/scalar/r2cf/hc2cfdft_10.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:07:11 EDT 2018 */
23
24 #include "rdft/codelet-rdft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */
29
30 /*
31 * This function contains 122 FP additions, 92 FP multiplications,
32 * (or, 68 additions, 38 multiplications, 54 fused multiply/add),
33 * 81 stack variables, 5 constants, and 40 memory accesses
34 */
35 #include "rdft/scalar/hc2cf.h"
36
37 static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
44 {
45 INT m;
46 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
47 E T3, T1u, Td, T1w, T1S, T2f, T14, T1p, T1j, T1q, T1N, T2e, TQ, T2i, T1n;
48 E T1H, Tz, T2h, T1m, T1C;
49 {
50 E T1, T2, T1h, Tc, TW, T1c, T1d, T1b, T1f, T1g, T1Q, T7, TV, T1J, TS;
51 E TU, Ts, Tx, T19, T18, T1O, T15, T17, Tt, T1A, Ti, Tn, TE, TD, T1F;
52 E TA, TC, Tj, T1y, TJ, TO, T12, T11, T1L, TY, T10, TK, T1D;
53 {
54 E Ta, Tb, T1e, T5, T6, TT;
55 T1 = Ip[0];
56 T2 = Im[0];
57 T1h = T1 + T2;
58 Ta = Rp[WS(rs, 2)];
59 Tb = Rm[WS(rs, 2)];
60 Tc = Ta - Tb;
61 TW = Ta + Tb;
62 T1c = Rm[0];
63 T1d = Rp[0];
64 T1e = T1c - T1d;
65 T1b = W[0];
66 T1f = T1b * T1e;
67 T1g = W[1];
68 T1Q = T1g * T1e;
69 T5 = Ip[WS(rs, 2)];
70 T6 = Im[WS(rs, 2)];
71 TT = T5 - T6;
72 T7 = T5 + T6;
73 TV = W[7];
74 T1J = TV * TT;
75 TS = W[6];
76 TU = TS * TT;
77 {
78 E Tq, Tr, T16, Tv, Tw, Tp;
79 Tq = Rm[WS(rs, 3)];
80 Tr = Rp[WS(rs, 3)];
81 Ts = Tq - Tr;
82 Tv = Ip[WS(rs, 3)];
83 Tw = Im[WS(rs, 3)];
84 Tx = Tv + Tw;
85 T16 = Tv - Tw;
86 T19 = Tr + Tq;
87 T18 = W[11];
88 T1O = T18 * T16;
89 T15 = W[10];
90 T17 = T15 * T16;
91 Tp = W[12];
92 Tt = Tp * Ts;
93 T1A = Tp * Tx;
94 }
95 {
96 E Tg, Th, TB, Tl, Tm, Tf;
97 Tg = Ip[WS(rs, 1)];
98 Th = Im[WS(rs, 1)];
99 Ti = Tg - Th;
100 Tl = Rp[WS(rs, 1)];
101 Tm = Rm[WS(rs, 1)];
102 Tn = Tl + Tm;
103 TB = Tm - Tl;
104 TE = Tg + Th;
105 TD = W[5];
106 T1F = TD * TB;
107 TA = W[4];
108 TC = TA * TB;
109 Tf = W[2];
110 Tj = Tf * Ti;
111 T1y = Tf * Tn;
112 }
113 {
114 E TH, TI, TZ, TM, TN, TG;
115 TH = Ip[WS(rs, 4)];
116 TI = Im[WS(rs, 4)];
117 TJ = TH - TI;
118 TM = Rp[WS(rs, 4)];
119 TN = Rm[WS(rs, 4)];
120 TO = TM + TN;
121 TZ = TN - TM;
122 T12 = TH + TI;
123 T11 = W[17];
124 T1L = T11 * TZ;
125 TY = W[16];
126 T10 = TY * TZ;
127 TG = W[14];
128 TK = TG * TJ;
129 T1D = TG * TO;
130 }
131 }
132 {
133 E T1P, T1R, T1K, T1M;
134 T3 = T1 - T2;
135 T1u = T1d + T1c;
136 {
137 E T4, T8, T9, T1v;
138 T4 = W[9];
139 T8 = T4 * T7;
140 T9 = W[8];
141 T1v = T9 * T7;
142 Td = FMA(T9, Tc, T8);
143 T1w = FNMS(T4, Tc, T1v);
144 }
145 T1P = FMA(T15, T19, T1O);
146 T1R = FMA(T1b, T1h, T1Q);
147 T1S = T1P - T1R;
148 T2f = T1P + T1R;
149 {
150 E TX, T13, T1a, T1i;
151 TX = FNMS(TV, TW, TU);
152 T13 = FNMS(T11, T12, T10);
153 T14 = TX + T13;
154 T1p = T13 - TX;
155 T1a = FNMS(T18, T19, T17);
156 T1i = FNMS(T1g, T1h, T1f);
157 T1j = T1a + T1i;
158 T1q = T1i - T1a;
159 }
160 T1K = FMA(TS, TW, T1J);
161 T1M = FMA(TY, T12, T1L);
162 T1N = T1K - T1M;
163 T2e = T1K + T1M;
164 {
165 E TF, T1G, TP, T1E, TL;
166 TF = FNMS(TD, TE, TC);
167 T1G = FMA(TA, TE, T1F);
168 TL = W[15];
169 TP = FNMS(TL, TO, TK);
170 T1E = FMA(TL, TJ, T1D);
171 TQ = TF + TP;
172 T2i = T1G + T1E;
173 T1n = TF - TP;
174 T1H = T1E - T1G;
175 }
176 {
177 E To, T1z, Ty, T1B, Tk, Tu;
178 Tk = W[3];
179 To = FNMS(Tk, Tn, Tj);
180 T1z = FMA(Tk, Ti, T1y);
181 Tu = W[13];
182 Ty = FNMS(Tu, Tx, Tt);
183 T1B = FMA(Tu, Ts, T1A);
184 Tz = To + Ty;
185 T2h = T1z + T1B;
186 T1m = Ty - To;
187 T1C = T1z - T1B;
188 }
189 }
190 }
191 {
192 E T2k, T2m, Te, T1l, T2b, T2c, T2l, T2d;
193 {
194 E T2g, T2j, TR, T1k;
195 T2g = T2e - T2f;
196 T2j = T2h - T2i;
197 T2k = FNMS(KP618033988, T2j, T2g);
198 T2m = FMA(KP618033988, T2g, T2j);
199 Te = T3 - Td;
200 TR = Tz + TQ;
201 T1k = T14 + T1j;
202 T1l = TR + T1k;
203 T2b = FNMS(KP250000000, T1l, Te);
204 T2c = TR - T1k;
205 }
206 Ip[0] = KP500000000 * (Te + T1l);
207 T2l = FMA(KP559016994, T2c, T2b);
208 Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T2m, T2l));
209 Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T2m, T2l)));
210 T2d = FNMS(KP559016994, T2c, T2b);
211 Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T2k, T2d));
212 Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T2k, T2d)));
213 }
214 {
215 E T2w, T2y, T2n, T2q, T2r, T2s, T2x, T2t;
216 {
217 E T2u, T2v, T2o, T2p;
218 T2u = T14 - T1j;
219 T2v = Tz - TQ;
220 T2w = FNMS(KP618033988, T2v, T2u);
221 T2y = FMA(KP618033988, T2u, T2v);
222 T2n = T1u + T1w;
223 T2o = T2h + T2i;
224 T2p = T2e + T2f;
225 T2q = T2o + T2p;
226 T2r = FNMS(KP250000000, T2q, T2n);
227 T2s = T2o - T2p;
228 }
229 Rp[0] = KP500000000 * (T2n + T2q);
230 T2x = FMA(KP559016994, T2s, T2r);
231 Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T2y, T2x));
232 Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2y, T2x));
233 T2t = FNMS(KP559016994, T2s, T2r);
234 Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T2w, T2t));
235 Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T2w, T2t));
236 }
237 {
238 E T28, T2a, T1t, T1s, T23, T24, T29, T25;
239 {
240 E T26, T27, T1o, T1r;
241 T26 = T1H - T1C;
242 T27 = T1S - T1N;
243 T28 = FMA(KP618033988, T27, T26);
244 T2a = FNMS(KP618033988, T26, T27);
245 T1t = Td + T3;
246 T1o = T1m + T1n;
247 T1r = T1p + T1q;
248 T1s = T1o + T1r;
249 T23 = FMA(KP250000000, T1s, T1t);
250 T24 = T1r - T1o;
251 }
252 Im[WS(rs, 4)] = KP500000000 * (T1s - T1t);
253 T29 = FNMS(KP559016994, T24, T23);
254 Ip[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2a, T29));
255 Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP951056516, T2a, T29)));
256 T25 = FMA(KP559016994, T24, T23);
257 Ip[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T28, T25));
258 Im[0] = -(KP500000000 * (FNMS(KP951056516, T28, T25)));
259 }
260 {
261 E T20, T22, T1x, T1U, T1V, T1W, T21, T1X;
262 {
263 E T1Y, T1Z, T1I, T1T;
264 T1Y = T1n - T1m;
265 T1Z = T1q - T1p;
266 T20 = FMA(KP618033988, T1Z, T1Y);
267 T22 = FNMS(KP618033988, T1Y, T1Z);
268 T1x = T1u - T1w;
269 T1I = T1C + T1H;
270 T1T = T1N + T1S;
271 T1U = T1I + T1T;
272 T1V = FNMS(KP250000000, T1U, T1x);
273 T1W = T1I - T1T;
274 }
275 Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U);
276 T21 = FNMS(KP559016994, T1W, T1V);
277 Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21));
278 Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21));
279 T1X = FMA(KP559016994, T1W, T1V);
280 Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X));
281 Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X));
282 }
283 }
284 }
285 }
286
287 static const tw_instr twinstr[] = {
288 {TW_FULL, 1, 10},
289 {TW_NEXT, 1, 0}
290 };
291
292 static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {68, 38, 54, 0} };
293
294 void X(codelet_hc2cfdft_10) (planner *p) {
295 X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
296 }
297 #else
298
299 /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */
300
301 /*
302 * This function contains 122 FP additions, 68 FP multiplications,
303 * (or, 92 additions, 38 multiplications, 30 fused multiply/add),
304 * 62 stack variables, 5 constants, and 40 memory accesses
305 */
306 #include "rdft/scalar/hc2cf.h"
307
308 static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
309 {
310 DK(KP293892626, +0.293892626146236564584352977319536384298826219);
311 DK(KP475528258, +0.475528258147576786058219666689691071702849317);
312 DK(KP125000000, +0.125000000000000000000000000000000000000000000);
313 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
314 DK(KP279508497, +0.279508497187473712051146708591409529430077295);
315 {
316 INT m;
317 for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
318 E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f;
319 E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F;
320 {
321 E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12;
322 E T1y, TF, T1r, TW, T1w;
323 {
324 E T1, T2, T18, T14, T15, T16, T13, T17;
325 T1 = Ip[0];
326 T2 = Im[0];
327 T18 = T1 + T2;
328 T14 = Rm[0];
329 T15 = Rp[0];
330 T16 = T14 - T15;
331 T3 = T1 - T2;
332 T1D = T15 + T14;
333 T13 = W[0];
334 T17 = W[1];
335 T19 = FNMS(T17, T18, T13 * T16);
336 T1z = FMA(T17, T16, T13 * T18);
337 }
338 {
339 E T5, T6, TO, T9, Ta, TQ, TN, TP;
340 T5 = Ip[WS(rs, 2)];
341 T6 = Im[WS(rs, 2)];
342 TO = T5 - T6;
343 T9 = Rp[WS(rs, 2)];
344 Ta = Rm[WS(rs, 2)];
345 TQ = T9 + Ta;
346 T7 = T5 + T6;
347 Tb = T9 - Ta;
348 TN = W[6];
349 TP = W[7];
350 TR = FNMS(TP, TQ, TN * TO);
351 T1v = FMA(TP, TO, TN * TQ);
352 }
353 {
354 E Th, TJ, Tl, TH;
355 {
356 E Tf, Tg, Tj, Tk;
357 Tf = Ip[WS(rs, 1)];
358 Tg = Im[WS(rs, 1)];
359 Th = Tf - Tg;
360 TJ = Tf + Tg;
361 Tj = Rp[WS(rs, 1)];
362 Tk = Rm[WS(rs, 1)];
363 Tl = Tj + Tk;
364 TH = Tj - Tk;
365 }
366 {
367 E Te, Ti, TG, TI;
368 Te = W[2];
369 Ti = W[3];
370 Tm = FNMS(Ti, Tl, Te * Th);
371 T1o = FMA(Te, Tl, Ti * Th);
372 TG = W[4];
373 TI = W[5];
374 TK = FMA(TG, TH, TI * TJ);
375 T1s = FNMS(TI, TH, TG * TJ);
376 }
377 }
378 {
379 E Tq, TZ, Tu, T11;
380 {
381 E To, Tp, Ts, Tt;
382 To = Ip[WS(rs, 3)];
383 Tp = Im[WS(rs, 3)];
384 Tq = To + Tp;
385 TZ = To - Tp;
386 Ts = Rp[WS(rs, 3)];
387 Tt = Rm[WS(rs, 3)];
388 Tu = Ts - Tt;
389 T11 = Ts + Tt;
390 }
391 {
392 E Tn, Tr, TY, T10;
393 Tn = W[13];
394 Tr = W[12];
395 Tv = FMA(Tn, Tq, Tr * Tu);
396 T1p = FNMS(Tn, Tu, Tr * Tq);
397 TY = W[10];
398 T10 = W[11];
399 T12 = FNMS(T10, T11, TY * TZ);
400 T1y = FMA(T10, TZ, TY * T11);
401 }
402 }
403 {
404 E TA, TV, TE, TT;
405 {
406 E Ty, Tz, TC, TD;
407 Ty = Ip[WS(rs, 4)];
408 Tz = Im[WS(rs, 4)];
409 TA = Ty - Tz;
410 TV = Ty + Tz;
411 TC = Rp[WS(rs, 4)];
412 TD = Rm[WS(rs, 4)];
413 TE = TC + TD;
414 TT = TC - TD;
415 }
416 {
417 E Tx, TB, TS, TU;
418 Tx = W[14];
419 TB = W[15];
420 TF = FNMS(TB, TE, Tx * TA);
421 T1r = FMA(Tx, TE, TB * TA);
422 TS = W[16];
423 TU = W[17];
424 TW = FMA(TS, TT, TU * TV);
425 T1w = FNMS(TU, TT, TS * TV);
426 }
427 }
428 Tw = Tm - Tv;
429 TL = TF - TK;
430 TM = Tw + TL;
431 T1W = T1v + T1w;
432 T1X = T1y + T1z;
433 T27 = T1W + T1X;
434 T1Z = T1o + T1p;
435 T20 = T1s + T1r;
436 T26 = T1Z + T20;
437 TX = TR - TW;
438 T1a = T12 + T19;
439 T1b = TX + T1a;
440 T1d = T19 - T12;
441 T1e = TR + TW;
442 T1f = T1d - T1e;
443 T1q = T1o - T1p;
444 T1t = T1r - T1s;
445 T1u = T1q + T1t;
446 T1x = T1v - T1w;
447 T1A = T1y - T1z;
448 T1B = T1x + T1A;
449 T1g = Tm + Tv;
450 T1h = TK + TF;
451 T1i = T1g + T1h;
452 {
453 E Tc, T1E, T4, T8;
454 T4 = W[9];
455 T8 = W[8];
456 Tc = FMA(T4, T7, T8 * Tb);
457 T1E = FNMS(T4, Tb, T8 * T7);
458 Td = T3 - Tc;
459 T25 = T1D + T1E;
460 T1k = Tc + T3;
461 T1F = T1D - T1E;
462 }
463 }
464 {
465 E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V;
466 T1U = KP279508497 * (TM - T1b);
467 T1c = TM + T1b;
468 T1T = FNMS(KP125000000, T1c, KP500000000 * Td);
469 T1Y = T1W - T1X;
470 T21 = T1Z - T20;
471 T22 = FNMS(KP293892626, T21, KP475528258 * T1Y);
472 T24 = FMA(KP475528258, T21, KP293892626 * T1Y);
473 Ip[0] = KP500000000 * (Td + T1c);
474 T23 = T1U + T1T;
475 Ip[WS(rs, 4)] = T23 + T24;
476 Im[WS(rs, 3)] = T24 - T23;
477 T1V = T1T - T1U;
478 Ip[WS(rs, 2)] = T1V + T22;
479 Im[WS(rs, 1)] = T22 - T1V;
480 }
481 {
482 E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b;
483 T2a = KP279508497 * (T26 - T27);
484 T28 = T26 + T27;
485 T29 = FNMS(KP125000000, T28, KP500000000 * T25);
486 T2c = TX - T1a;
487 T2d = Tw - TL;
488 T2e = FNMS(KP293892626, T2d, KP475528258 * T2c);
489 T2g = FMA(KP475528258, T2d, KP293892626 * T2c);
490 Rp[0] = KP500000000 * (T25 + T28);
491 T2f = T2a + T29;
492 Rp[WS(rs, 4)] = T2f - T2g;
493 Rm[WS(rs, 3)] = T2g + T2f;
494 T2b = T29 - T2a;
495 Rp[WS(rs, 2)] = T2b - T2e;
496 Rm[WS(rs, 1)] = T2e + T2b;
497 }
498 {
499 E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N;
500 T1M = KP279508497 * (T1i + T1f);
501 T1j = T1f - T1i;
502 T1L = FMA(KP500000000, T1k, KP125000000 * T1j);
503 T1O = T1A - T1x;
504 T1P = T1q - T1t;
505 T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O);
506 T1S = FMA(KP293892626, T1P, KP475528258 * T1O);
507 Im[WS(rs, 4)] = KP500000000 * (T1j - T1k);
508 T1R = T1L - T1M;
509 Ip[WS(rs, 3)] = T1R + T1S;
510 Im[WS(rs, 2)] = T1S - T1R;
511 T1N = T1L + T1M;
512 Ip[WS(rs, 1)] = T1N + T1Q;
513 Im[0] = T1Q - T1N;
514 }
515 {
516 E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I;
517 T1C = KP279508497 * (T1u - T1B);
518 T1G = T1u + T1B;
519 T1H = FNMS(KP125000000, T1G, KP500000000 * T1F);
520 T1l = T1g - T1h;
521 T1m = T1e + T1d;
522 T1n = FMA(KP475528258, T1l, KP293892626 * T1m);
523 T1J = FNMS(KP293892626, T1l, KP475528258 * T1m);
524 Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G);
525 T1K = T1H - T1C;
526 Rp[WS(rs, 3)] = T1J + T1K;
527 Rm[WS(rs, 2)] = T1K - T1J;
528 T1I = T1C + T1H;
529 Rp[WS(rs, 1)] = T1n + T1I;
530 Rm[0] = T1I - T1n;
531 }
532 }
533 }
534 }
535
536 static const tw_instr twinstr[] = {
537 {TW_FULL, 1, 10},
538 {TW_NEXT, 1, 0}
539 };
540
541 static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {92, 38, 30, 0} };
542
543 void X(codelet_hc2cfdft_10) (planner *p) {
544 X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
545 }
546 #endif