Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb2_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb2_8.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,387 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:54 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 74 FP additions, 50 FP multiplications, + * (or, 44 additions, 20 multiplications, 30 fused multiply/add), + * 47 stack variables, 1 constants, and 32 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { + E Tf, Tg, Tl, Tp, Ti, Tj, Tk, T1b, T1u, T1e, T1o, To, Tq, TK; + { + E Th, T1n, T1t, Tn, Tm, TJ; + Tf = W[0]; + Tg = W[2]; + Th = Tf * Tg; + Tl = W[4]; + T1n = Tf * Tl; + Tp = W[5]; + T1t = Tf * Tp; + Ti = W[1]; + Tj = W[3]; + Tn = Tf * Tj; + Tk = FMA(Ti, Tj, Th); + T1b = FNMS(Ti, Tj, Th); + T1u = FNMS(Ti, Tl, T1t); + T1e = FMA(Ti, Tg, Tn); + T1o = FMA(Ti, Tp, T1n); + Tm = Tk * Tl; + TJ = Tk * Tp; + To = FNMS(Ti, Tg, Tn); + Tq = FMA(To, Tp, Tm); + TK = FNMS(To, Tl, TJ); + } + { + E T7, T1p, T1v, Tv, TP, T13, T1h, TZ, Te, T1k, T1w, T1q, TQ, TR, T10; + E TG, T14; + { + E T3, Tr, TO, T1f, T6, TL, Tu, T1g; + { + E T1, T2, TM, TN; + T1 = Rp[0]; + T2 = Rm[WS(rs, 3)]; + T3 = T1 + T2; + Tr = T1 - T2; + TM = Ip[0]; + TN = Im[WS(rs, 3)]; + TO = TM + TN; + T1f = TM - TN; + } + { + E T4, T5, Ts, Tt; + T4 = Rp[WS(rs, 2)]; + T5 = Rm[WS(rs, 1)]; + T6 = T4 + T5; + TL = T4 - T5; + Ts = Ip[WS(rs, 2)]; + Tt = Im[WS(rs, 1)]; + Tu = Ts + Tt; + T1g = Ts - Tt; + } + T7 = T3 + T6; + T1p = T3 - T6; + T1v = T1f - T1g; + Tv = Tr - Tu; + TP = TL + TO; + T13 = TO - TL; + T1h = T1f + T1g; + TZ = Tr + Tu; + } + { + E Ta, Tw, Tz, T1i, Td, TB, TE, T1j, TA, TF; + { + E T8, T9, Tx, Ty; + T8 = Rp[WS(rs, 1)]; + T9 = Rm[WS(rs, 2)]; + Ta = T8 + T9; + Tw = T8 - T9; + Tx = Ip[WS(rs, 1)]; + Ty = Im[WS(rs, 2)]; + Tz = Tx + Ty; + T1i = Tx - Ty; + } + { + E Tb, Tc, TC, TD; + Tb = Rm[0]; + Tc = Rp[WS(rs, 3)]; + Td = Tb + Tc; + TB = Tb - Tc; + TC = Ip[WS(rs, 3)]; + TD = Im[0]; + TE = TC + TD; + T1j = TC - TD; + } + Te = Ta + Td; + T1k = T1i + T1j; + T1w = Ta - Td; + T1q = T1j - T1i; + TQ = Tw + Tz; + TR = TB + TE; + T10 = TQ + TR; + TA = Tw - Tz; + TF = TB - TE; + TG = TA + TF; + T14 = TA - TF; + } + Rp[0] = T7 + Te; + Rm[0] = T1h + T1k; + { + E T11, T12, T15, T16; + T11 = FNMS(KP707106781, T10, TZ); + T12 = Tg * T11; + T15 = FMA(KP707106781, T14, T13); + T16 = Tg * T15; + Ip[WS(rs, 1)] = FNMS(Tj, T15, T12); + Im[WS(rs, 1)] = FMA(Tj, T11, T16); + } + { + E T1z, T1A, T1B, T1C; + T1z = T1p + T1q; + T1A = Tk * T1z; + T1B = T1w + T1v; + T1C = Tk * T1B; + Rp[WS(rs, 1)] = FNMS(To, T1B, T1A); + Rm[WS(rs, 1)] = FMA(To, T1z, T1C); + } + { + E T17, T18, T19, T1a; + T17 = FMA(KP707106781, T10, TZ); + T18 = Tl * T17; + T19 = FNMS(KP707106781, T14, T13); + T1a = Tl * T19; + Ip[WS(rs, 3)] = FNMS(Tp, T19, T18); + Im[WS(rs, 3)] = FMA(Tp, T17, T1a); + } + { + E T1l, T1d, T1m, T1c; + T1l = T1h - T1k; + T1c = T7 - Te; + T1d = T1b * T1c; + T1m = T1e * T1c; + Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d); + Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m); + } + { + E T1r, T1s, T1x, T1y; + T1r = T1p - T1q; + T1s = T1o * T1r; + T1x = T1v - T1w; + T1y = T1o * T1x; + Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s); + Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y); + } + { + E TT, TX, TW, TY, TI, TU, TS, TV, TH; + TS = TQ - TR; + TT = FNMS(KP707106781, TS, TP); + TX = FMA(KP707106781, TS, TP); + TV = FMA(KP707106781, TG, Tv); + TW = Tf * TV; + TY = Ti * TV; + TH = FNMS(KP707106781, TG, Tv); + TI = Tq * TH; + TU = TK * TH; + Ip[WS(rs, 2)] = FNMS(TK, TT, TI); + Im[WS(rs, 2)] = FMA(Tq, TT, TU); + Ip[0] = FNMS(Ti, TX, TW); + Im[0] = FMA(Tf, TX, TY); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 7}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} }; + +void X(codelet_hc2cb2_8) (planner *p) { + X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 74 FP additions, 44 FP multiplications, + * (or, 56 additions, 26 multiplications, 18 fused multiply/add), + * 46 stack variables, 1 constants, and 32 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { + E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT; + { + E Th, To, Tk, Tn; + Tf = W[0]; + Ti = W[1]; + Tg = W[2]; + Tj = W[3]; + Th = Tf * Tg; + To = Ti * Tg; + Tk = Ti * Tj; + Tn = Tf * Tj; + Tl = Th - Tk; + Tp = Tn + To; + TP = Th + Tk; + TR = Tn - To; + TF = W[4]; + TG = W[5]; + TH = FMA(Tf, TF, Ti * TG); + T15 = FNMS(TR, TF, TP * TG); + TL = FNMS(Ti, TF, Tf * TG); + TT = FMA(TP, TF, TR * TG); + } + { + E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12; + E TN, Tm, TE; + { + E T3, TU, Ts, T17, T6, T16, Tv, TV; + { + E T1, T2, Tq, Tr; + T1 = Rp[0]; + T2 = Rm[WS(rs, 3)]; + T3 = T1 + T2; + TU = T1 - T2; + Tq = Ip[0]; + Tr = Im[WS(rs, 3)]; + Ts = Tq - Tr; + T17 = Tq + Tr; + } + { + E T4, T5, Tt, Tu; + T4 = Rp[WS(rs, 2)]; + T5 = Rm[WS(rs, 1)]; + T6 = T4 + T5; + T16 = T4 - T5; + Tt = Ip[WS(rs, 2)]; + Tu = Im[WS(rs, 1)]; + Tv = Tt - Tu; + TV = Tt + Tu; + } + T7 = T3 + T6; + T1f = TU + TV; + T1i = T17 - T16; + Tw = Ts + Tv; + TI = T3 - T6; + TW = TU - TV; + T18 = T16 + T17; + TM = Ts - Tv; + } + { + E Ta, TX, Tz, TY, Td, T10, TC, T11; + { + E T8, T9, Tx, Ty; + T8 = Rp[WS(rs, 1)]; + T9 = Rm[WS(rs, 2)]; + Ta = T8 + T9; + TX = T8 - T9; + Tx = Ip[WS(rs, 1)]; + Ty = Im[WS(rs, 2)]; + Tz = Tx - Ty; + TY = Tx + Ty; + } + { + E Tb, Tc, TA, TB; + Tb = Rm[0]; + Tc = Rp[WS(rs, 3)]; + Td = Tb + Tc; + T10 = Tb - Tc; + TA = Ip[WS(rs, 3)]; + TB = Im[0]; + TC = TA - TB; + T11 = TA + TB; + } + Te = Ta + Td; + T19 = TX + TY; + T1a = T10 + T11; + TD = Tz + TC; + TJ = TC - Tz; + TZ = TX - TY; + T12 = T10 - T11; + TN = Ta - Td; + } + Rp[0] = T7 + Te; + Rm[0] = Tw + TD; + Tm = T7 - Te; + TE = Tw - TD; + Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm); + Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE); + { + E TQ, TS, TK, TO; + TQ = TI + TJ; + TS = TN + TM; + Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ); + Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ); + TK = TI - TJ; + TO = TM - TN; + Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK); + Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK); + } + { + E T1h, T1l, T1k, T1m, T1g, T1j; + T1g = KP707106781 * (T19 + T1a); + T1h = T1f - T1g; + T1l = T1f + T1g; + T1j = KP707106781 * (TZ - T12); + T1k = T1i + T1j; + T1m = T1i - T1j; + Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h); + Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h); + Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l); + Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l); + } + { + E T14, T1d, T1c, T1e, T13, T1b; + T13 = KP707106781 * (TZ + T12); + T14 = TW - T13; + T1d = TW + T13; + T1b = KP707106781 * (T19 - T1a); + T1c = T18 - T1b; + T1e = T18 + T1b; + Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14); + Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c); + Ip[0] = FNMS(Ti, T1e, Tf * T1d); + Im[0] = FMA(Ti, T1d, Tf * T1e); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 7}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} }; + +void X(codelet_hc2cb2_8) (planner *p) { + X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); +} +#endif