diff src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb2_8.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb2_8.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,387 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:07:54 EDT 2018 */
+
+#include "rdft/codelet-rdft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */
+
+/*
+ * This function contains 74 FP additions, 50 FP multiplications,
+ * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
+ * 47 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "rdft/scalar/hc2cb.h"
+
+static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E Tf, Tg, Tl, Tp, Ti, Tj, Tk, T1b, T1u, T1e, T1o, To, Tq, TK;
+	       {
+		    E Th, T1n, T1t, Tn, Tm, TJ;
+		    Tf = W[0];
+		    Tg = W[2];
+		    Th = Tf * Tg;
+		    Tl = W[4];
+		    T1n = Tf * Tl;
+		    Tp = W[5];
+		    T1t = Tf * Tp;
+		    Ti = W[1];
+		    Tj = W[3];
+		    Tn = Tf * Tj;
+		    Tk = FMA(Ti, Tj, Th);
+		    T1b = FNMS(Ti, Tj, Th);
+		    T1u = FNMS(Ti, Tl, T1t);
+		    T1e = FMA(Ti, Tg, Tn);
+		    T1o = FMA(Ti, Tp, T1n);
+		    Tm = Tk * Tl;
+		    TJ = Tk * Tp;
+		    To = FNMS(Ti, Tg, Tn);
+		    Tq = FMA(To, Tp, Tm);
+		    TK = FNMS(To, Tl, TJ);
+	       }
+	       {
+		    E T7, T1p, T1v, Tv, TP, T13, T1h, TZ, Te, T1k, T1w, T1q, TQ, TR, T10;
+		    E TG, T14;
+		    {
+			 E T3, Tr, TO, T1f, T6, TL, Tu, T1g;
+			 {
+			      E T1, T2, TM, TN;
+			      T1 = Rp[0];
+			      T2 = Rm[WS(rs, 3)];
+			      T3 = T1 + T2;
+			      Tr = T1 - T2;
+			      TM = Ip[0];
+			      TN = Im[WS(rs, 3)];
+			      TO = TM + TN;
+			      T1f = TM - TN;
+			 }
+			 {
+			      E T4, T5, Ts, Tt;
+			      T4 = Rp[WS(rs, 2)];
+			      T5 = Rm[WS(rs, 1)];
+			      T6 = T4 + T5;
+			      TL = T4 - T5;
+			      Ts = Ip[WS(rs, 2)];
+			      Tt = Im[WS(rs, 1)];
+			      Tu = Ts + Tt;
+			      T1g = Ts - Tt;
+			 }
+			 T7 = T3 + T6;
+			 T1p = T3 - T6;
+			 T1v = T1f - T1g;
+			 Tv = Tr - Tu;
+			 TP = TL + TO;
+			 T13 = TO - TL;
+			 T1h = T1f + T1g;
+			 TZ = Tr + Tu;
+		    }
+		    {
+			 E Ta, Tw, Tz, T1i, Td, TB, TE, T1j, TA, TF;
+			 {
+			      E T8, T9, Tx, Ty;
+			      T8 = Rp[WS(rs, 1)];
+			      T9 = Rm[WS(rs, 2)];
+			      Ta = T8 + T9;
+			      Tw = T8 - T9;
+			      Tx = Ip[WS(rs, 1)];
+			      Ty = Im[WS(rs, 2)];
+			      Tz = Tx + Ty;
+			      T1i = Tx - Ty;
+			 }
+			 {
+			      E Tb, Tc, TC, TD;
+			      Tb = Rm[0];
+			      Tc = Rp[WS(rs, 3)];
+			      Td = Tb + Tc;
+			      TB = Tb - Tc;
+			      TC = Ip[WS(rs, 3)];
+			      TD = Im[0];
+			      TE = TC + TD;
+			      T1j = TC - TD;
+			 }
+			 Te = Ta + Td;
+			 T1k = T1i + T1j;
+			 T1w = Ta - Td;
+			 T1q = T1j - T1i;
+			 TQ = Tw + Tz;
+			 TR = TB + TE;
+			 T10 = TQ + TR;
+			 TA = Tw - Tz;
+			 TF = TB - TE;
+			 TG = TA + TF;
+			 T14 = TA - TF;
+		    }
+		    Rp[0] = T7 + Te;
+		    Rm[0] = T1h + T1k;
+		    {
+			 E T11, T12, T15, T16;
+			 T11 = FNMS(KP707106781, T10, TZ);
+			 T12 = Tg * T11;
+			 T15 = FMA(KP707106781, T14, T13);
+			 T16 = Tg * T15;
+			 Ip[WS(rs, 1)] = FNMS(Tj, T15, T12);
+			 Im[WS(rs, 1)] = FMA(Tj, T11, T16);
+		    }
+		    {
+			 E T1z, T1A, T1B, T1C;
+			 T1z = T1p + T1q;
+			 T1A = Tk * T1z;
+			 T1B = T1w + T1v;
+			 T1C = Tk * T1B;
+			 Rp[WS(rs, 1)] = FNMS(To, T1B, T1A);
+			 Rm[WS(rs, 1)] = FMA(To, T1z, T1C);
+		    }
+		    {
+			 E T17, T18, T19, T1a;
+			 T17 = FMA(KP707106781, T10, TZ);
+			 T18 = Tl * T17;
+			 T19 = FNMS(KP707106781, T14, T13);
+			 T1a = Tl * T19;
+			 Ip[WS(rs, 3)] = FNMS(Tp, T19, T18);
+			 Im[WS(rs, 3)] = FMA(Tp, T17, T1a);
+		    }
+		    {
+			 E T1l, T1d, T1m, T1c;
+			 T1l = T1h - T1k;
+			 T1c = T7 - Te;
+			 T1d = T1b * T1c;
+			 T1m = T1e * T1c;
+			 Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d);
+			 Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m);
+		    }
+		    {
+			 E T1r, T1s, T1x, T1y;
+			 T1r = T1p - T1q;
+			 T1s = T1o * T1r;
+			 T1x = T1v - T1w;
+			 T1y = T1o * T1x;
+			 Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s);
+			 Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y);
+		    }
+		    {
+			 E TT, TX, TW, TY, TI, TU, TS, TV, TH;
+			 TS = TQ - TR;
+			 TT = FNMS(KP707106781, TS, TP);
+			 TX = FMA(KP707106781, TS, TP);
+			 TV = FMA(KP707106781, TG, Tv);
+			 TW = Tf * TV;
+			 TY = Ti * TV;
+			 TH = FNMS(KP707106781, TG, Tv);
+			 TI = Tq * TH;
+			 TU = TK * TH;
+			 Ip[WS(rs, 2)] = FNMS(TK, TT, TI);
+			 Im[WS(rs, 2)] = FMA(Tq, TT, TU);
+			 Ip[0] = FNMS(Ti, TX, TW);
+			 Im[0] = FMA(Tf, TX, TY);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_CEXP, 1, 1},
+     {TW_CEXP, 1, 3},
+     {TW_CEXP, 1, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
+
+void X(codelet_hc2cb2_8) (planner *p) {
+     X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
+}
+#else
+
+/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */
+
+/*
+ * This function contains 74 FP additions, 44 FP multiplications,
+ * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
+ * 46 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "rdft/scalar/hc2cb.h"
+
+static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
+	       {
+		    E Th, To, Tk, Tn;
+		    Tf = W[0];
+		    Ti = W[1];
+		    Tg = W[2];
+		    Tj = W[3];
+		    Th = Tf * Tg;
+		    To = Ti * Tg;
+		    Tk = Ti * Tj;
+		    Tn = Tf * Tj;
+		    Tl = Th - Tk;
+		    Tp = Tn + To;
+		    TP = Th + Tk;
+		    TR = Tn - To;
+		    TF = W[4];
+		    TG = W[5];
+		    TH = FMA(Tf, TF, Ti * TG);
+		    T15 = FNMS(TR, TF, TP * TG);
+		    TL = FNMS(Ti, TF, Tf * TG);
+		    TT = FMA(TP, TF, TR * TG);
+	       }
+	       {
+		    E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
+		    E TN, Tm, TE;
+		    {
+			 E T3, TU, Ts, T17, T6, T16, Tv, TV;
+			 {
+			      E T1, T2, Tq, Tr;
+			      T1 = Rp[0];
+			      T2 = Rm[WS(rs, 3)];
+			      T3 = T1 + T2;
+			      TU = T1 - T2;
+			      Tq = Ip[0];
+			      Tr = Im[WS(rs, 3)];
+			      Ts = Tq - Tr;
+			      T17 = Tq + Tr;
+			 }
+			 {
+			      E T4, T5, Tt, Tu;
+			      T4 = Rp[WS(rs, 2)];
+			      T5 = Rm[WS(rs, 1)];
+			      T6 = T4 + T5;
+			      T16 = T4 - T5;
+			      Tt = Ip[WS(rs, 2)];
+			      Tu = Im[WS(rs, 1)];
+			      Tv = Tt - Tu;
+			      TV = Tt + Tu;
+			 }
+			 T7 = T3 + T6;
+			 T1f = TU + TV;
+			 T1i = T17 - T16;
+			 Tw = Ts + Tv;
+			 TI = T3 - T6;
+			 TW = TU - TV;
+			 T18 = T16 + T17;
+			 TM = Ts - Tv;
+		    }
+		    {
+			 E Ta, TX, Tz, TY, Td, T10, TC, T11;
+			 {
+			      E T8, T9, Tx, Ty;
+			      T8 = Rp[WS(rs, 1)];
+			      T9 = Rm[WS(rs, 2)];
+			      Ta = T8 + T9;
+			      TX = T8 - T9;
+			      Tx = Ip[WS(rs, 1)];
+			      Ty = Im[WS(rs, 2)];
+			      Tz = Tx - Ty;
+			      TY = Tx + Ty;
+			 }
+			 {
+			      E Tb, Tc, TA, TB;
+			      Tb = Rm[0];
+			      Tc = Rp[WS(rs, 3)];
+			      Td = Tb + Tc;
+			      T10 = Tb - Tc;
+			      TA = Ip[WS(rs, 3)];
+			      TB = Im[0];
+			      TC = TA - TB;
+			      T11 = TA + TB;
+			 }
+			 Te = Ta + Td;
+			 T19 = TX + TY;
+			 T1a = T10 + T11;
+			 TD = Tz + TC;
+			 TJ = TC - Tz;
+			 TZ = TX - TY;
+			 T12 = T10 - T11;
+			 TN = Ta - Td;
+		    }
+		    Rp[0] = T7 + Te;
+		    Rm[0] = Tw + TD;
+		    Tm = T7 - Te;
+		    TE = Tw - TD;
+		    Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm);
+		    Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE);
+		    {
+			 E TQ, TS, TK, TO;
+			 TQ = TI + TJ;
+			 TS = TN + TM;
+			 Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
+			 Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
+			 TK = TI - TJ;
+			 TO = TM - TN;
+			 Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK);
+			 Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK);
+		    }
+		    {
+			 E T1h, T1l, T1k, T1m, T1g, T1j;
+			 T1g = KP707106781 * (T19 + T1a);
+			 T1h = T1f - T1g;
+			 T1l = T1f + T1g;
+			 T1j = KP707106781 * (TZ - T12);
+			 T1k = T1i + T1j;
+			 T1m = T1i - T1j;
+			 Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h);
+			 Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h);
+			 Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l);
+			 Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l);
+		    }
+		    {
+			 E T14, T1d, T1c, T1e, T13, T1b;
+			 T13 = KP707106781 * (TZ + T12);
+			 T14 = TW - T13;
+			 T1d = TW + T13;
+			 T1b = KP707106781 * (T19 - T1a);
+			 T1c = T18 - T1b;
+			 T1e = T18 + T1b;
+			 Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14);
+			 Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c);
+			 Ip[0] = FNMS(Ti, T1e, Tf * T1d);
+			 Im[0] = FMA(Ti, T1d, Tf * T1e);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_CEXP, 1, 1},
+     {TW_CEXP, 1, 3},
+     {TW_CEXP, 1, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
+
+void X(codelet_hc2cb2_8) (planner *p) {
+     X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
+}
+#endif