Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb2_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:54 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ | |
29 | |
30 /* | |
31 * This function contains 74 FP additions, 50 FP multiplications, | |
32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add), | |
33 * 47 stack variables, 1 constants, and 32 memory accesses | |
34 */ | |
35 #include "rdft/scalar/hc2cb.h" | |
36 | |
37 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { | |
43 E Tf, Tg, Tl, Tp, Ti, Tj, Tk, T1b, T1u, T1e, T1o, To, Tq, TK; | |
44 { | |
45 E Th, T1n, T1t, Tn, Tm, TJ; | |
46 Tf = W[0]; | |
47 Tg = W[2]; | |
48 Th = Tf * Tg; | |
49 Tl = W[4]; | |
50 T1n = Tf * Tl; | |
51 Tp = W[5]; | |
52 T1t = Tf * Tp; | |
53 Ti = W[1]; | |
54 Tj = W[3]; | |
55 Tn = Tf * Tj; | |
56 Tk = FMA(Ti, Tj, Th); | |
57 T1b = FNMS(Ti, Tj, Th); | |
58 T1u = FNMS(Ti, Tl, T1t); | |
59 T1e = FMA(Ti, Tg, Tn); | |
60 T1o = FMA(Ti, Tp, T1n); | |
61 Tm = Tk * Tl; | |
62 TJ = Tk * Tp; | |
63 To = FNMS(Ti, Tg, Tn); | |
64 Tq = FMA(To, Tp, Tm); | |
65 TK = FNMS(To, Tl, TJ); | |
66 } | |
67 { | |
68 E T7, T1p, T1v, Tv, TP, T13, T1h, TZ, Te, T1k, T1w, T1q, TQ, TR, T10; | |
69 E TG, T14; | |
70 { | |
71 E T3, Tr, TO, T1f, T6, TL, Tu, T1g; | |
72 { | |
73 E T1, T2, TM, TN; | |
74 T1 = Rp[0]; | |
75 T2 = Rm[WS(rs, 3)]; | |
76 T3 = T1 + T2; | |
77 Tr = T1 - T2; | |
78 TM = Ip[0]; | |
79 TN = Im[WS(rs, 3)]; | |
80 TO = TM + TN; | |
81 T1f = TM - TN; | |
82 } | |
83 { | |
84 E T4, T5, Ts, Tt; | |
85 T4 = Rp[WS(rs, 2)]; | |
86 T5 = Rm[WS(rs, 1)]; | |
87 T6 = T4 + T5; | |
88 TL = T4 - T5; | |
89 Ts = Ip[WS(rs, 2)]; | |
90 Tt = Im[WS(rs, 1)]; | |
91 Tu = Ts + Tt; | |
92 T1g = Ts - Tt; | |
93 } | |
94 T7 = T3 + T6; | |
95 T1p = T3 - T6; | |
96 T1v = T1f - T1g; | |
97 Tv = Tr - Tu; | |
98 TP = TL + TO; | |
99 T13 = TO - TL; | |
100 T1h = T1f + T1g; | |
101 TZ = Tr + Tu; | |
102 } | |
103 { | |
104 E Ta, Tw, Tz, T1i, Td, TB, TE, T1j, TA, TF; | |
105 { | |
106 E T8, T9, Tx, Ty; | |
107 T8 = Rp[WS(rs, 1)]; | |
108 T9 = Rm[WS(rs, 2)]; | |
109 Ta = T8 + T9; | |
110 Tw = T8 - T9; | |
111 Tx = Ip[WS(rs, 1)]; | |
112 Ty = Im[WS(rs, 2)]; | |
113 Tz = Tx + Ty; | |
114 T1i = Tx - Ty; | |
115 } | |
116 { | |
117 E Tb, Tc, TC, TD; | |
118 Tb = Rm[0]; | |
119 Tc = Rp[WS(rs, 3)]; | |
120 Td = Tb + Tc; | |
121 TB = Tb - Tc; | |
122 TC = Ip[WS(rs, 3)]; | |
123 TD = Im[0]; | |
124 TE = TC + TD; | |
125 T1j = TC - TD; | |
126 } | |
127 Te = Ta + Td; | |
128 T1k = T1i + T1j; | |
129 T1w = Ta - Td; | |
130 T1q = T1j - T1i; | |
131 TQ = Tw + Tz; | |
132 TR = TB + TE; | |
133 T10 = TQ + TR; | |
134 TA = Tw - Tz; | |
135 TF = TB - TE; | |
136 TG = TA + TF; | |
137 T14 = TA - TF; | |
138 } | |
139 Rp[0] = T7 + Te; | |
140 Rm[0] = T1h + T1k; | |
141 { | |
142 E T11, T12, T15, T16; | |
143 T11 = FNMS(KP707106781, T10, TZ); | |
144 T12 = Tg * T11; | |
145 T15 = FMA(KP707106781, T14, T13); | |
146 T16 = Tg * T15; | |
147 Ip[WS(rs, 1)] = FNMS(Tj, T15, T12); | |
148 Im[WS(rs, 1)] = FMA(Tj, T11, T16); | |
149 } | |
150 { | |
151 E T1z, T1A, T1B, T1C; | |
152 T1z = T1p + T1q; | |
153 T1A = Tk * T1z; | |
154 T1B = T1w + T1v; | |
155 T1C = Tk * T1B; | |
156 Rp[WS(rs, 1)] = FNMS(To, T1B, T1A); | |
157 Rm[WS(rs, 1)] = FMA(To, T1z, T1C); | |
158 } | |
159 { | |
160 E T17, T18, T19, T1a; | |
161 T17 = FMA(KP707106781, T10, TZ); | |
162 T18 = Tl * T17; | |
163 T19 = FNMS(KP707106781, T14, T13); | |
164 T1a = Tl * T19; | |
165 Ip[WS(rs, 3)] = FNMS(Tp, T19, T18); | |
166 Im[WS(rs, 3)] = FMA(Tp, T17, T1a); | |
167 } | |
168 { | |
169 E T1l, T1d, T1m, T1c; | |
170 T1l = T1h - T1k; | |
171 T1c = T7 - Te; | |
172 T1d = T1b * T1c; | |
173 T1m = T1e * T1c; | |
174 Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d); | |
175 Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m); | |
176 } | |
177 { | |
178 E T1r, T1s, T1x, T1y; | |
179 T1r = T1p - T1q; | |
180 T1s = T1o * T1r; | |
181 T1x = T1v - T1w; | |
182 T1y = T1o * T1x; | |
183 Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s); | |
184 Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y); | |
185 } | |
186 { | |
187 E TT, TX, TW, TY, TI, TU, TS, TV, TH; | |
188 TS = TQ - TR; | |
189 TT = FNMS(KP707106781, TS, TP); | |
190 TX = FMA(KP707106781, TS, TP); | |
191 TV = FMA(KP707106781, TG, Tv); | |
192 TW = Tf * TV; | |
193 TY = Ti * TV; | |
194 TH = FNMS(KP707106781, TG, Tv); | |
195 TI = Tq * TH; | |
196 TU = TK * TH; | |
197 Ip[WS(rs, 2)] = FNMS(TK, TT, TI); | |
198 Im[WS(rs, 2)] = FMA(Tq, TT, TU); | |
199 Ip[0] = FNMS(Ti, TX, TW); | |
200 Im[0] = FMA(Tf, TX, TY); | |
201 } | |
202 } | |
203 } | |
204 } | |
205 } | |
206 | |
207 static const tw_instr twinstr[] = { | |
208 {TW_CEXP, 1, 1}, | |
209 {TW_CEXP, 1, 3}, | |
210 {TW_CEXP, 1, 7}, | |
211 {TW_NEXT, 1, 0} | |
212 }; | |
213 | |
214 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} }; | |
215 | |
216 void X(codelet_hc2cb2_8) (planner *p) { | |
217 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); | |
218 } | |
219 #else | |
220 | |
221 /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ | |
222 | |
223 /* | |
224 * This function contains 74 FP additions, 44 FP multiplications, | |
225 * (or, 56 additions, 26 multiplications, 18 fused multiply/add), | |
226 * 46 stack variables, 1 constants, and 32 memory accesses | |
227 */ | |
228 #include "rdft/scalar/hc2cb.h" | |
229 | |
230 static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) | |
231 { | |
232 DK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
233 { | |
234 INT m; | |
235 for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { | |
236 E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT; | |
237 { | |
238 E Th, To, Tk, Tn; | |
239 Tf = W[0]; | |
240 Ti = W[1]; | |
241 Tg = W[2]; | |
242 Tj = W[3]; | |
243 Th = Tf * Tg; | |
244 To = Ti * Tg; | |
245 Tk = Ti * Tj; | |
246 Tn = Tf * Tj; | |
247 Tl = Th - Tk; | |
248 Tp = Tn + To; | |
249 TP = Th + Tk; | |
250 TR = Tn - To; | |
251 TF = W[4]; | |
252 TG = W[5]; | |
253 TH = FMA(Tf, TF, Ti * TG); | |
254 T15 = FNMS(TR, TF, TP * TG); | |
255 TL = FNMS(Ti, TF, Tf * TG); | |
256 TT = FMA(TP, TF, TR * TG); | |
257 } | |
258 { | |
259 E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12; | |
260 E TN, Tm, TE; | |
261 { | |
262 E T3, TU, Ts, T17, T6, T16, Tv, TV; | |
263 { | |
264 E T1, T2, Tq, Tr; | |
265 T1 = Rp[0]; | |
266 T2 = Rm[WS(rs, 3)]; | |
267 T3 = T1 + T2; | |
268 TU = T1 - T2; | |
269 Tq = Ip[0]; | |
270 Tr = Im[WS(rs, 3)]; | |
271 Ts = Tq - Tr; | |
272 T17 = Tq + Tr; | |
273 } | |
274 { | |
275 E T4, T5, Tt, Tu; | |
276 T4 = Rp[WS(rs, 2)]; | |
277 T5 = Rm[WS(rs, 1)]; | |
278 T6 = T4 + T5; | |
279 T16 = T4 - T5; | |
280 Tt = Ip[WS(rs, 2)]; | |
281 Tu = Im[WS(rs, 1)]; | |
282 Tv = Tt - Tu; | |
283 TV = Tt + Tu; | |
284 } | |
285 T7 = T3 + T6; | |
286 T1f = TU + TV; | |
287 T1i = T17 - T16; | |
288 Tw = Ts + Tv; | |
289 TI = T3 - T6; | |
290 TW = TU - TV; | |
291 T18 = T16 + T17; | |
292 TM = Ts - Tv; | |
293 } | |
294 { | |
295 E Ta, TX, Tz, TY, Td, T10, TC, T11; | |
296 { | |
297 E T8, T9, Tx, Ty; | |
298 T8 = Rp[WS(rs, 1)]; | |
299 T9 = Rm[WS(rs, 2)]; | |
300 Ta = T8 + T9; | |
301 TX = T8 - T9; | |
302 Tx = Ip[WS(rs, 1)]; | |
303 Ty = Im[WS(rs, 2)]; | |
304 Tz = Tx - Ty; | |
305 TY = Tx + Ty; | |
306 } | |
307 { | |
308 E Tb, Tc, TA, TB; | |
309 Tb = Rm[0]; | |
310 Tc = Rp[WS(rs, 3)]; | |
311 Td = Tb + Tc; | |
312 T10 = Tb - Tc; | |
313 TA = Ip[WS(rs, 3)]; | |
314 TB = Im[0]; | |
315 TC = TA - TB; | |
316 T11 = TA + TB; | |
317 } | |
318 Te = Ta + Td; | |
319 T19 = TX + TY; | |
320 T1a = T10 + T11; | |
321 TD = Tz + TC; | |
322 TJ = TC - Tz; | |
323 TZ = TX - TY; | |
324 T12 = T10 - T11; | |
325 TN = Ta - Td; | |
326 } | |
327 Rp[0] = T7 + Te; | |
328 Rm[0] = Tw + TD; | |
329 Tm = T7 - Te; | |
330 TE = Tw - TD; | |
331 Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm); | |
332 Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE); | |
333 { | |
334 E TQ, TS, TK, TO; | |
335 TQ = TI + TJ; | |
336 TS = TN + TM; | |
337 Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ); | |
338 Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ); | |
339 TK = TI - TJ; | |
340 TO = TM - TN; | |
341 Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK); | |
342 Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK); | |
343 } | |
344 { | |
345 E T1h, T1l, T1k, T1m, T1g, T1j; | |
346 T1g = KP707106781 * (T19 + T1a); | |
347 T1h = T1f - T1g; | |
348 T1l = T1f + T1g; | |
349 T1j = KP707106781 * (TZ - T12); | |
350 T1k = T1i + T1j; | |
351 T1m = T1i - T1j; | |
352 Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h); | |
353 Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h); | |
354 Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l); | |
355 Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l); | |
356 } | |
357 { | |
358 E T14, T1d, T1c, T1e, T13, T1b; | |
359 T13 = KP707106781 * (TZ + T12); | |
360 T14 = TW - T13; | |
361 T1d = TW + T13; | |
362 T1b = KP707106781 * (T19 - T1a); | |
363 T1c = T18 - T1b; | |
364 T1e = T18 + T1b; | |
365 Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14); | |
366 Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c); | |
367 Ip[0] = FNMS(Ti, T1e, Tf * T1d); | |
368 Im[0] = FMA(Ti, T1d, Tf * T1e); | |
369 } | |
370 } | |
371 } | |
372 } | |
373 } | |
374 | |
375 static const tw_instr twinstr[] = { | |
376 {TW_CEXP, 1, 1}, | |
377 {TW_CEXP, 1, 3}, | |
378 {TW_CEXP, 1, 7}, | |
379 {TW_NEXT, 1, 0} | |
380 }; | |
381 | |
382 static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} }; | |
383 | |
384 void X(codelet_hc2cb2_8) (planner *p) { | |
385 X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); | |
386 } | |
387 #endif |