Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/simd/common/t2fv_8.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/simd/common/t2fv_8.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,220 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:05:42 EDT 2018 */ + +#include "dft/codelet-dft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2fv_8 -include dft/simd/t2f.h */ + +/* + * This function contains 33 FP additions, 24 FP multiplications, + * (or, 23 additions, 14 multiplications, 10 fused multiply/add), + * 24 stack variables, 1 constants, and 16 memory accesses + */ +#include "dft/simd/t2f.h" + +static void t2fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) { + V T4, Tq, Tl, Tr, T9, Tt, Te, Tu, T1, T3, T2; + T1 = LD(&(x[0]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T3 = BYTWJ(&(W[TWVL * 6]), T2); + T4 = VSUB(T1, T3); + Tq = VADD(T1, T3); + { + V Ti, Tk, Th, Tj; + Th = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Ti = BYTWJ(&(W[TWVL * 2]), Th); + Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tk = BYTWJ(&(W[TWVL * 10]), Tj); + Tl = VSUB(Ti, Tk); + Tr = VADD(Ti, Tk); + } + { + V T6, T8, T5, T7; + T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T6 = BYTWJ(&(W[0]), T5); + T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + T8 = BYTWJ(&(W[TWVL * 8]), T7); + T9 = VSUB(T6, T8); + Tt = VADD(T6, T8); + } + { + V Tb, Td, Ta, Tc; + Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Tb = BYTWJ(&(W[TWVL * 12]), Ta); + Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Td = BYTWJ(&(W[TWVL * 4]), Tc); + Te = VSUB(Tb, Td); + Tu = VADD(Tb, Td); + } + { + V Ts, Tv, Tw, Tx; + Ts = VADD(Tq, Tr); + Tv = VADD(Tt, Tu); + ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0])); + ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0])); + Tw = VSUB(Tq, Tr); + Tx = VSUB(Tu, Tt); + ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0])); + { + V Tg, To, Tn, Tp, Tf, Tm; + Tf = VADD(T9, Te); + Tg = VFMA(LDK(KP707106781), Tf, T4); + To = VFNMS(LDK(KP707106781), Tf, T4); + Tm = VSUB(Te, T9); + Tn = VFNMS(LDK(KP707106781), Tm, Tl); + Tp = VFMA(LDK(KP707106781), Tm, Tl); + ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t2fv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t2fv_8) (planner *p) { + X(kdft_dit_register) (p, t2fv_8, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2fv_8 -include dft/simd/t2f.h */ + +/* + * This function contains 33 FP additions, 16 FP multiplications, + * (or, 33 additions, 16 multiplications, 0 fused multiply/add), + * 24 stack variables, 1 constants, and 16 memory accesses + */ +#include "dft/simd/t2f.h" + +static void t2fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) { + V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2; + T1 = LD(&(x[0]), ms, &(x[0])); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T3 = BYTWJ(&(W[TWVL * 6]), T2); + T4 = VSUB(T1, T3); + Tq = VADD(T1, T3); + { + V Tj, Tl, Ti, Tk; + Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + Tj = BYTWJ(&(W[TWVL * 2]), Ti); + Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tl = BYTWJ(&(W[TWVL * 10]), Tk); + Tm = VSUB(Tj, Tl); + Tr = VADD(Tj, Tl); + } + { + V T6, T8, T5, T7; + T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T6 = BYTWJ(&(W[0]), T5); + T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + T8 = BYTWJ(&(W[TWVL * 8]), T7); + T9 = VSUB(T6, T8); + Tt = VADD(T6, T8); + } + { + V Tb, Td, Ta, Tc; + Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + Tb = BYTWJ(&(W[TWVL * 12]), Ta); + Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + Td = BYTWJ(&(W[TWVL * 4]), Tc); + Te = VSUB(Tb, Td); + Tu = VADD(Tb, Td); + } + { + V Ts, Tv, Tw, Tx; + Ts = VADD(Tq, Tr); + Tv = VADD(Tt, Tu); + ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0])); + ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0])); + Tw = VSUB(Tq, Tr); + Tx = VBYI(VSUB(Tu, Tt)); + ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0])); + { + V Tg, To, Tn, Tp, Tf, Th; + Tf = VMUL(LDK(KP707106781), VADD(T9, Te)); + Tg = VADD(T4, Tf); + To = VSUB(T4, Tf); + Th = VMUL(LDK(KP707106781), VSUB(Te, T9)); + Tn = VBYI(VSUB(Th, Tm)); + Tp = VBYI(VADD(Tm, Th)); + ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t2fv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t2fv_8) (planner *p) { + X(kdft_dit_register) (p, t2fv_8, &desc); +} +#endif