comparison src/fftw-3.3.8/dft/simd/common/t2fv_8.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:05:42 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2fv_8 -include dft/simd/t2f.h */
29
30 /*
31 * This function contains 33 FP additions, 24 FP multiplications,
32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
33 * 24 stack variables, 1 constants, and 16 memory accesses
34 */
35 #include "dft/simd/t2f.h"
36
37 static void t2fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
40 {
41 INT m;
42 R *x;
43 x = ri;
44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
45 V T4, Tq, Tl, Tr, T9, Tt, Te, Tu, T1, T3, T2;
46 T1 = LD(&(x[0]), ms, &(x[0]));
47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
48 T3 = BYTWJ(&(W[TWVL * 6]), T2);
49 T4 = VSUB(T1, T3);
50 Tq = VADD(T1, T3);
51 {
52 V Ti, Tk, Th, Tj;
53 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
54 Ti = BYTWJ(&(W[TWVL * 2]), Th);
55 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
56 Tk = BYTWJ(&(W[TWVL * 10]), Tj);
57 Tl = VSUB(Ti, Tk);
58 Tr = VADD(Ti, Tk);
59 }
60 {
61 V T6, T8, T5, T7;
62 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
63 T6 = BYTWJ(&(W[0]), T5);
64 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
65 T8 = BYTWJ(&(W[TWVL * 8]), T7);
66 T9 = VSUB(T6, T8);
67 Tt = VADD(T6, T8);
68 }
69 {
70 V Tb, Td, Ta, Tc;
71 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
72 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
73 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
74 Td = BYTWJ(&(W[TWVL * 4]), Tc);
75 Te = VSUB(Tb, Td);
76 Tu = VADD(Tb, Td);
77 }
78 {
79 V Ts, Tv, Tw, Tx;
80 Ts = VADD(Tq, Tr);
81 Tv = VADD(Tt, Tu);
82 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
83 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
84 Tw = VSUB(Tq, Tr);
85 Tx = VSUB(Tu, Tt);
86 ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
87 ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
88 {
89 V Tg, To, Tn, Tp, Tf, Tm;
90 Tf = VADD(T9, Te);
91 Tg = VFMA(LDK(KP707106781), Tf, T4);
92 To = VFNMS(LDK(KP707106781), Tf, T4);
93 Tm = VSUB(Te, T9);
94 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
95 Tp = VFMA(LDK(KP707106781), Tm, Tl);
96 ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
97 ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
98 ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
99 ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
100 }
101 }
102 }
103 }
104 VLEAVE();
105 }
106
107 static const tw_instr twinstr[] = {
108 VTW(0, 1),
109 VTW(0, 2),
110 VTW(0, 3),
111 VTW(0, 4),
112 VTW(0, 5),
113 VTW(0, 6),
114 VTW(0, 7),
115 {TW_NEXT, VL, 0}
116 };
117
118 static const ct_desc desc = { 8, XSIMD_STRING("t2fv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
119
120 void XSIMD(codelet_t2fv_8) (planner *p) {
121 X(kdft_dit_register) (p, t2fv_8, &desc);
122 }
123 #else
124
125 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t2fv_8 -include dft/simd/t2f.h */
126
127 /*
128 * This function contains 33 FP additions, 16 FP multiplications,
129 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
130 * 24 stack variables, 1 constants, and 16 memory accesses
131 */
132 #include "dft/simd/t2f.h"
133
134 static void t2fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
135 {
136 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
137 {
138 INT m;
139 R *x;
140 x = ri;
141 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
142 V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
143 T1 = LD(&(x[0]), ms, &(x[0]));
144 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
145 T3 = BYTWJ(&(W[TWVL * 6]), T2);
146 T4 = VSUB(T1, T3);
147 Tq = VADD(T1, T3);
148 {
149 V Tj, Tl, Ti, Tk;
150 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
151 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
152 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
153 Tl = BYTWJ(&(W[TWVL * 10]), Tk);
154 Tm = VSUB(Tj, Tl);
155 Tr = VADD(Tj, Tl);
156 }
157 {
158 V T6, T8, T5, T7;
159 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
160 T6 = BYTWJ(&(W[0]), T5);
161 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
162 T8 = BYTWJ(&(W[TWVL * 8]), T7);
163 T9 = VSUB(T6, T8);
164 Tt = VADD(T6, T8);
165 }
166 {
167 V Tb, Td, Ta, Tc;
168 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
169 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
170 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
171 Td = BYTWJ(&(W[TWVL * 4]), Tc);
172 Te = VSUB(Tb, Td);
173 Tu = VADD(Tb, Td);
174 }
175 {
176 V Ts, Tv, Tw, Tx;
177 Ts = VADD(Tq, Tr);
178 Tv = VADD(Tt, Tu);
179 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
180 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
181 Tw = VSUB(Tq, Tr);
182 Tx = VBYI(VSUB(Tu, Tt));
183 ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
184 ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
185 {
186 V Tg, To, Tn, Tp, Tf, Th;
187 Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
188 Tg = VADD(T4, Tf);
189 To = VSUB(T4, Tf);
190 Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
191 Tn = VBYI(VSUB(Th, Tm));
192 Tp = VBYI(VADD(Tm, Th));
193 ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
194 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
195 ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
196 ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
197 }
198 }
199 }
200 }
201 VLEAVE();
202 }
203
204 static const tw_instr twinstr[] = {
205 VTW(0, 1),
206 VTW(0, 2),
207 VTW(0, 3),
208 VTW(0, 4),
209 VTW(0, 5),
210 VTW(0, 6),
211 VTW(0, 7),
212 {TW_NEXT, VL, 0}
213 };
214
215 static const ct_desc desc = { 8, XSIMD_STRING("t2fv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
216
217 void XSIMD(codelet_t2fv_8) (planner *p) {
218 X(kdft_dit_register) (p, t2fv_8, &desc);
219 }
220 #endif