Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/libbench2/verify-dft.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/libbench2/verify-dft.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,177 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#include "verify.h" + +/* copy A into B, using output stride of A and input stride of B */ +typedef struct { + dotens2_closure k; + R *ra; R *ia; + R *rb; R *ib; + int scalea, scaleb; +} cpy_closure; + +static void cpy0(dotens2_closure *k_, + int indxa, int ondxa, int indxb, int ondxb) +{ + cpy_closure *k = (cpy_closure *)k_; + k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea]; + k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea]; + UNUSED(indxa); UNUSED(ondxb); +} + +static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea, + R *rb, R *ib, const bench_tensor *szb, int scaleb) +{ + cpy_closure k; + k.k.apply = cpy0; + k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib; + k.scalea = scalea; k.scaleb = scaleb; + bench_dotens2(sza, szb, &k.k); +} + +typedef struct { + dofft_closure k; + bench_problem *p; +} dofft_dft_closure; + +static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out) +{ + dofft_dft_closure *k = (dofft_dft_closure *)k_; + bench_problem *p = k->p; + bench_tensor *totalsz, *pckdsz; + bench_tensor *totalsz_swap, *pckdsz_swap; + bench_real *ri, *ii, *ro, *io; + int totalscale; + + totalsz = tensor_append(p->vecsz, p->sz); + pckdsz = verify_pack(totalsz, 2); + ri = (bench_real *) p->in; + ro = (bench_real *) p->out; + + totalsz_swap = tensor_copy_swapio(totalsz); + pckdsz_swap = tensor_copy_swapio(pckdsz); + + /* confusion: the stride is the distance between complex elements + when using interleaved format, but it is the distance between + real elements when using split format */ + if (p->split) { + ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz; + io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz; + totalscale = 1; + } else { + ii = p->ini ? (bench_real *) p->ini : ri + 1; + io = p->outi ? (bench_real *) p->outi : ro + 1; + totalscale = 2; + } + + cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1, + ri, ii, totalsz, totalscale); + after_problem_ccopy_from(p, ri, ii); + doit(1, p); + after_problem_ccopy_to(p, ro, io); + if (k->k.recopy_input) + cpy(ri, ii, totalsz_swap, totalscale, + &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1); + cpy(ro, io, totalsz, totalscale, + &c_re(out[0]), &c_im(out[0]), pckdsz, 1); + + tensor_destroy(totalsz); + tensor_destroy(pckdsz); + tensor_destroy(totalsz_swap); + tensor_destroy(pckdsz_swap); +} + +void verify_dft(bench_problem *p, int rounds, double tol, errors *e) +{ + C *inA, *inB, *inC, *outA, *outB, *outC, *tmp; + int n, vecn, N; + dofft_dft_closure k; + + BENCH_ASSERT(p->kind == PROBLEM_COMPLEX); + + k.k.apply = dft_apply; + k.k.recopy_input = 0; + k.p = p; + + if (rounds == 0) + rounds = 20; /* default value */ + + n = tensor_sz(p->sz); + vecn = tensor_sz(p->vecsz); + N = n * vecn; + + inA = (C *) bench_malloc(N * sizeof(C)); + inB = (C *) bench_malloc(N * sizeof(C)); + inC = (C *) bench_malloc(N * sizeof(C)); + outA = (C *) bench_malloc(N * sizeof(C)); + outB = (C *) bench_malloc(N * sizeof(C)); + outC = (C *) bench_malloc(N * sizeof(C)); + tmp = (C *) bench_malloc(N * sizeof(C)); + + e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, + tmp, rounds, tol); + e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC, + tmp, rounds, tol); + + e->s = 0.0; + e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign, + inA, inB, outA, outB, + tmp, rounds, tol, TIME_SHIFT)); + e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign, + inA, inB, outA, outB, + tmp, rounds, tol, FREQ_SHIFT)); + + if (!p->in_place && !p->destroy_input) + preserves_input(&k.k, 0, N, inA, inB, outB, rounds); + + bench_free(tmp); + bench_free(outC); + bench_free(outB); + bench_free(outA); + bench_free(inC); + bench_free(inB); + bench_free(inA); +} + + +void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds, + double t[6]) +{ + dofft_dft_closure k; + int n; + C *a, *b; + + BENCH_ASSERT(p->kind == PROBLEM_COMPLEX); + BENCH_ASSERT(p->sz->rnk == 1); + BENCH_ASSERT(p->vecsz->rnk == 0); + + k.k.apply = dft_apply; + k.k.recopy_input = 0; + k.p = p; + n = tensor_sz(p->sz); + + a = (C *) bench_malloc(n * sizeof(C)); + b = (C *) bench_malloc(n * sizeof(C)); + accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t); + bench_free(b); + bench_free(a); +}