comparison src/fftw-3.3.3/libbench2/verify-dft.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 #include "verify.h"
23
24 /* copy A into B, using output stride of A and input stride of B */
25 typedef struct {
26 dotens2_closure k;
27 R *ra; R *ia;
28 R *rb; R *ib;
29 int scalea, scaleb;
30 } cpy_closure;
31
32 static void cpy0(dotens2_closure *k_,
33 int indxa, int ondxa, int indxb, int ondxb)
34 {
35 cpy_closure *k = (cpy_closure *)k_;
36 k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
37 k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
38 UNUSED(indxa); UNUSED(ondxb);
39 }
40
41 static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
42 R *rb, R *ib, const bench_tensor *szb, int scaleb)
43 {
44 cpy_closure k;
45 k.k.apply = cpy0;
46 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
47 k.scalea = scalea; k.scaleb = scaleb;
48 bench_dotens2(sza, szb, &k.k);
49 }
50
51 typedef struct {
52 dofft_closure k;
53 bench_problem *p;
54 } dofft_dft_closure;
55
56 static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
57 {
58 dofft_dft_closure *k = (dofft_dft_closure *)k_;
59 bench_problem *p = k->p;
60 bench_tensor *totalsz, *pckdsz;
61 bench_tensor *totalsz_swap, *pckdsz_swap;
62 bench_real *ri, *ii, *ro, *io;
63 int totalscale;
64
65 totalsz = tensor_append(p->vecsz, p->sz);
66 pckdsz = verify_pack(totalsz, 2);
67 ri = (bench_real *) p->in;
68 ro = (bench_real *) p->out;
69
70 totalsz_swap = tensor_copy_swapio(totalsz);
71 pckdsz_swap = tensor_copy_swapio(pckdsz);
72
73 /* confusion: the stride is the distance between complex elements
74 when using interleaved format, but it is the distance between
75 real elements when using split format */
76 if (p->split) {
77 ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
78 io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
79 totalscale = 1;
80 } else {
81 ii = p->ini ? (bench_real *) p->ini : ri + 1;
82 io = p->outi ? (bench_real *) p->outi : ro + 1;
83 totalscale = 2;
84 }
85
86 cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
87 ri, ii, totalsz, totalscale);
88 after_problem_ccopy_from(p, ri, ii);
89 doit(1, p);
90 after_problem_ccopy_to(p, ro, io);
91 if (k->k.recopy_input)
92 cpy(ri, ii, totalsz_swap, totalscale,
93 &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
94 cpy(ro, io, totalsz, totalscale,
95 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);
96
97 tensor_destroy(totalsz);
98 tensor_destroy(pckdsz);
99 tensor_destroy(totalsz_swap);
100 tensor_destroy(pckdsz_swap);
101 }
102
103 void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
104 {
105 C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
106 int n, vecn, N;
107 dofft_dft_closure k;
108
109 BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
110
111 k.k.apply = dft_apply;
112 k.k.recopy_input = 0;
113 k.p = p;
114
115 if (rounds == 0)
116 rounds = 20; /* default value */
117
118 n = tensor_sz(p->sz);
119 vecn = tensor_sz(p->vecsz);
120 N = n * vecn;
121
122 inA = (C *) bench_malloc(N * sizeof(C));
123 inB = (C *) bench_malloc(N * sizeof(C));
124 inC = (C *) bench_malloc(N * sizeof(C));
125 outA = (C *) bench_malloc(N * sizeof(C));
126 outB = (C *) bench_malloc(N * sizeof(C));
127 outC = (C *) bench_malloc(N * sizeof(C));
128 tmp = (C *) bench_malloc(N * sizeof(C));
129
130 e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
131 tmp, rounds, tol);
132 e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
133 tmp, rounds, tol);
134
135 e->s = 0.0;
136 e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
137 inA, inB, outA, outB,
138 tmp, rounds, tol, TIME_SHIFT));
139 e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
140 inA, inB, outA, outB,
141 tmp, rounds, tol, FREQ_SHIFT));
142
143 if (!p->in_place && !p->destroy_input)
144 preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
145
146 bench_free(tmp);
147 bench_free(outC);
148 bench_free(outB);
149 bench_free(outA);
150 bench_free(inC);
151 bench_free(inB);
152 bench_free(inA);
153 }
154
155
156 void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
157 double t[6])
158 {
159 dofft_dft_closure k;
160 int n;
161 C *a, *b;
162
163 BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
164 BENCH_ASSERT(p->sz->rnk == 1);
165 BENCH_ASSERT(p->vecsz->rnk == 0);
166
167 k.k.apply = dft_apply;
168 k.k.recopy_input = 0;
169 k.p = p;
170 n = tensor_sz(p->sz);
171
172 a = (C *) bench_malloc(n * sizeof(C));
173 b = (C *) bench_malloc(n * sizeof(C));
174 accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
175 bench_free(b);
176 bench_free(a);
177 }