Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t2_5.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t2_5.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,271 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:36:09 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include t.h */ + +/* + * This function contains 44 FP additions, 40 FP multiplications, + * (or, 14 additions, 10 multiplications, 30 fused multiply/add), + * 47 stack variables, 4 constants, and 20 memory accesses + */ +#include "t.h" + +static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { + E Ta, T1, TO, Tp, TS, Ti, TL, TC, To, TE, Ts, TF, T2, T8, T5; + E TT, Tt, TG; + T2 = W[0]; + Ta = W[3]; + T8 = W[2]; + T5 = W[1]; + { + E Tq, Tr, Te, T9; + T1 = ri[0]; + Te = T2 * Ta; + T9 = T2 * T8; + TO = ii[0]; + { + E T3, Tf, Tm, Tj, Tb, T4, T6, Tc, Tg; + T3 = ri[WS(rs, 1)]; + Tf = FMA(T5, T8, Te); + Tm = FNMS(T5, T8, Te); + Tj = FMA(T5, Ta, T9); + Tb = FNMS(T5, Ta, T9); + T4 = T2 * T3; + T6 = ii[WS(rs, 1)]; + Tc = ri[WS(rs, 4)]; + Tg = ii[WS(rs, 4)]; + { + E Tk, Tl, Tn, TD; + { + E T7, Tz, Th, TB, Ty, Td, TA; + Tk = ri[WS(rs, 2)]; + T7 = FMA(T5, T6, T4); + Ty = T2 * T6; + Td = Tb * Tc; + TA = Tb * Tg; + Tl = Tj * Tk; + Tz = FNMS(T5, T3, Ty); + Th = FMA(Tf, Tg, Td); + TB = FNMS(Tf, Tc, TA); + Tn = ii[WS(rs, 2)]; + Tp = ri[WS(rs, 3)]; + TS = T7 - Th; + Ti = T7 + Th; + TL = Tz + TB; + TC = Tz - TB; + TD = Tj * Tn; + Tq = T8 * Tp; + Tr = ii[WS(rs, 3)]; + } + To = FMA(Tm, Tn, Tl); + TE = FNMS(Tm, Tk, TD); + } + } + Ts = FMA(Ta, Tr, Tq); + TF = T8 * Tr; + } + TT = To - Ts; + Tt = To + Ts; + TG = FNMS(Ta, Tp, TF); + { + E TU, TW, TV, TR, Tw, Tu; + TU = FMA(KP618033988, TT, TS); + TW = FNMS(KP618033988, TS, TT); + Tw = Ti - Tt; + Tu = Ti + Tt; + { + E TM, TH, Tv, TI, TK; + TM = TE + TG; + TH = TE - TG; + ri[0] = T1 + Tu; + Tv = FNMS(KP250000000, Tu, T1); + TI = FMA(KP618033988, TH, TC); + TK = FNMS(KP618033988, TC, TH); + { + E TQ, TN, TJ, Tx, TP; + TQ = TL - TM; + TN = TL + TM; + TJ = FNMS(KP559016994, Tw, Tv); + Tx = FMA(KP559016994, Tw, Tv); + ii[0] = TN + TO; + TP = FNMS(KP250000000, TN, TO); + ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx); + ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx); + ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ); + ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ); + TV = FNMS(KP559016994, TQ, TP); + TR = FMA(KP559016994, TQ, TP); + } + } + ii[WS(rs, 4)] = FMA(KP951056516, TU, TR); + ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR); + ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV); + ii[WS(rs, 2)] = FMA(KP951056516, TW, TV); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 0, 1}, + {TW_CEXP, 0, 3}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {14, 10, 30, 0}, 0, 0, 0 }; + +void X(codelet_t2_5) (planner *p) { + X(kdft_dit_register) (p, t2_5, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include t.h */ + +/* + * This function contains 44 FP additions, 32 FP multiplications, + * (or, 30 additions, 18 multiplications, 14 fused multiply/add), + * 37 stack variables, 4 constants, and 20 memory accesses + */ +#include "t.h" + +static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { + E T2, T4, T7, T9, Tb, Tl, Tf, Tj; + { + E T8, Te, Ta, Td; + T2 = W[0]; + T4 = W[1]; + T7 = W[2]; + T9 = W[3]; + T8 = T2 * T7; + Te = T4 * T7; + Ta = T4 * T9; + Td = T2 * T9; + Tb = T8 - Ta; + Tl = Td - Te; + Tf = Td + Te; + Tj = T8 + Ta; + } + { + E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts; + T1 = ri[0]; + TI = ii[0]; + { + E T6, Tw, Tq, TA, Th, Tx, Tn, Tz; + { + E T3, T5, To, Tp; + T3 = ri[WS(rs, 1)]; + T5 = ii[WS(rs, 1)]; + T6 = FMA(T2, T3, T4 * T5); + Tw = FNMS(T4, T3, T2 * T5); + To = ri[WS(rs, 3)]; + Tp = ii[WS(rs, 3)]; + Tq = FMA(T7, To, T9 * Tp); + TA = FNMS(T9, To, T7 * Tp); + } + { + E Tc, Tg, Tk, Tm; + Tc = ri[WS(rs, 4)]; + Tg = ii[WS(rs, 4)]; + Th = FMA(Tb, Tc, Tf * Tg); + Tx = FNMS(Tf, Tc, Tb * Tg); + Tk = ri[WS(rs, 2)]; + Tm = ii[WS(rs, 2)]; + Tn = FMA(Tj, Tk, Tl * Tm); + Tz = FNMS(Tl, Tk, Tj * Tm); + } + Ty = Tw - Tx; + TB = Tz - TA; + TN = Tn - Tq; + TM = T6 - Th; + TF = Tw + Tx; + TG = Tz + TA; + TH = TF + TG; + Ti = T6 + Th; + Tr = Tn + Tq; + Ts = Ti + Tr; + } + ri[0] = T1 + Ts; + ii[0] = TH + TI; + { + E TC, TE, Tv, TD, Tt, Tu; + TC = FMA(KP951056516, Ty, KP587785252 * TB); + TE = FNMS(KP587785252, Ty, KP951056516 * TB); + Tt = KP559016994 * (Ti - Tr); + Tu = FNMS(KP250000000, Ts, T1); + Tv = Tt + Tu; + TD = Tu - Tt; + ri[WS(rs, 4)] = Tv - TC; + ri[WS(rs, 3)] = TD + TE; + ri[WS(rs, 1)] = Tv + TC; + ri[WS(rs, 2)] = TD - TE; + } + { + E TO, TP, TL, TQ, TJ, TK; + TO = FMA(KP951056516, TM, KP587785252 * TN); + TP = FNMS(KP587785252, TM, KP951056516 * TN); + TJ = KP559016994 * (TF - TG); + TK = FNMS(KP250000000, TH, TI); + TL = TJ + TK; + TQ = TK - TJ; + ii[WS(rs, 1)] = TL - TO; + ii[WS(rs, 3)] = TQ - TP; + ii[WS(rs, 4)] = TO + TL; + ii[WS(rs, 2)] = TP + TQ; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 0, 1}, + {TW_CEXP, 0, 3}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {30, 18, 14, 0}, 0, 0, 0 }; + +void X(codelet_t2_5) (planner *p) { + X(kdft_dit_register) (p, t2_5, &desc); +} +#endif /* HAVE_FMA */