Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/scalar/codelets/t2_5.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
94:d278df1123f9 | 95:89f5e221ed7b |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:36:09 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include t.h */ | |
29 | |
30 /* | |
31 * This function contains 44 FP additions, 40 FP multiplications, | |
32 * (or, 14 additions, 10 multiplications, 30 fused multiply/add), | |
33 * 47 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "t.h" | |
36 | |
37 static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 { | |
44 INT m; | |
45 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | |
46 E Ta, T1, TO, Tp, TS, Ti, TL, TC, To, TE, Ts, TF, T2, T8, T5; | |
47 E TT, Tt, TG; | |
48 T2 = W[0]; | |
49 Ta = W[3]; | |
50 T8 = W[2]; | |
51 T5 = W[1]; | |
52 { | |
53 E Tq, Tr, Te, T9; | |
54 T1 = ri[0]; | |
55 Te = T2 * Ta; | |
56 T9 = T2 * T8; | |
57 TO = ii[0]; | |
58 { | |
59 E T3, Tf, Tm, Tj, Tb, T4, T6, Tc, Tg; | |
60 T3 = ri[WS(rs, 1)]; | |
61 Tf = FMA(T5, T8, Te); | |
62 Tm = FNMS(T5, T8, Te); | |
63 Tj = FMA(T5, Ta, T9); | |
64 Tb = FNMS(T5, Ta, T9); | |
65 T4 = T2 * T3; | |
66 T6 = ii[WS(rs, 1)]; | |
67 Tc = ri[WS(rs, 4)]; | |
68 Tg = ii[WS(rs, 4)]; | |
69 { | |
70 E Tk, Tl, Tn, TD; | |
71 { | |
72 E T7, Tz, Th, TB, Ty, Td, TA; | |
73 Tk = ri[WS(rs, 2)]; | |
74 T7 = FMA(T5, T6, T4); | |
75 Ty = T2 * T6; | |
76 Td = Tb * Tc; | |
77 TA = Tb * Tg; | |
78 Tl = Tj * Tk; | |
79 Tz = FNMS(T5, T3, Ty); | |
80 Th = FMA(Tf, Tg, Td); | |
81 TB = FNMS(Tf, Tc, TA); | |
82 Tn = ii[WS(rs, 2)]; | |
83 Tp = ri[WS(rs, 3)]; | |
84 TS = T7 - Th; | |
85 Ti = T7 + Th; | |
86 TL = Tz + TB; | |
87 TC = Tz - TB; | |
88 TD = Tj * Tn; | |
89 Tq = T8 * Tp; | |
90 Tr = ii[WS(rs, 3)]; | |
91 } | |
92 To = FMA(Tm, Tn, Tl); | |
93 TE = FNMS(Tm, Tk, TD); | |
94 } | |
95 } | |
96 Ts = FMA(Ta, Tr, Tq); | |
97 TF = T8 * Tr; | |
98 } | |
99 TT = To - Ts; | |
100 Tt = To + Ts; | |
101 TG = FNMS(Ta, Tp, TF); | |
102 { | |
103 E TU, TW, TV, TR, Tw, Tu; | |
104 TU = FMA(KP618033988, TT, TS); | |
105 TW = FNMS(KP618033988, TS, TT); | |
106 Tw = Ti - Tt; | |
107 Tu = Ti + Tt; | |
108 { | |
109 E TM, TH, Tv, TI, TK; | |
110 TM = TE + TG; | |
111 TH = TE - TG; | |
112 ri[0] = T1 + Tu; | |
113 Tv = FNMS(KP250000000, Tu, T1); | |
114 TI = FMA(KP618033988, TH, TC); | |
115 TK = FNMS(KP618033988, TC, TH); | |
116 { | |
117 E TQ, TN, TJ, Tx, TP; | |
118 TQ = TL - TM; | |
119 TN = TL + TM; | |
120 TJ = FNMS(KP559016994, Tw, Tv); | |
121 Tx = FMA(KP559016994, Tw, Tv); | |
122 ii[0] = TN + TO; | |
123 TP = FNMS(KP250000000, TN, TO); | |
124 ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx); | |
125 ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx); | |
126 ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ); | |
127 ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ); | |
128 TV = FNMS(KP559016994, TQ, TP); | |
129 TR = FMA(KP559016994, TQ, TP); | |
130 } | |
131 } | |
132 ii[WS(rs, 4)] = FMA(KP951056516, TU, TR); | |
133 ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR); | |
134 ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV); | |
135 ii[WS(rs, 2)] = FMA(KP951056516, TW, TV); | |
136 } | |
137 } | |
138 } | |
139 } | |
140 | |
141 static const tw_instr twinstr[] = { | |
142 {TW_CEXP, 0, 1}, | |
143 {TW_CEXP, 0, 3}, | |
144 {TW_NEXT, 1, 0} | |
145 }; | |
146 | |
147 static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {14, 10, 30, 0}, 0, 0, 0 }; | |
148 | |
149 void X(codelet_t2_5) (planner *p) { | |
150 X(kdft_dit_register) (p, t2_5, &desc); | |
151 } | |
152 #else /* HAVE_FMA */ | |
153 | |
154 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include t.h */ | |
155 | |
156 /* | |
157 * This function contains 44 FP additions, 32 FP multiplications, | |
158 * (or, 30 additions, 18 multiplications, 14 fused multiply/add), | |
159 * 37 stack variables, 4 constants, and 20 memory accesses | |
160 */ | |
161 #include "t.h" | |
162 | |
163 static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
164 { | |
165 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
166 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
167 DK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
168 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
169 { | |
170 INT m; | |
171 for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { | |
172 E T2, T4, T7, T9, Tb, Tl, Tf, Tj; | |
173 { | |
174 E T8, Te, Ta, Td; | |
175 T2 = W[0]; | |
176 T4 = W[1]; | |
177 T7 = W[2]; | |
178 T9 = W[3]; | |
179 T8 = T2 * T7; | |
180 Te = T4 * T7; | |
181 Ta = T4 * T9; | |
182 Td = T2 * T9; | |
183 Tb = T8 - Ta; | |
184 Tl = Td - Te; | |
185 Tf = Td + Te; | |
186 Tj = T8 + Ta; | |
187 } | |
188 { | |
189 E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts; | |
190 T1 = ri[0]; | |
191 TI = ii[0]; | |
192 { | |
193 E T6, Tw, Tq, TA, Th, Tx, Tn, Tz; | |
194 { | |
195 E T3, T5, To, Tp; | |
196 T3 = ri[WS(rs, 1)]; | |
197 T5 = ii[WS(rs, 1)]; | |
198 T6 = FMA(T2, T3, T4 * T5); | |
199 Tw = FNMS(T4, T3, T2 * T5); | |
200 To = ri[WS(rs, 3)]; | |
201 Tp = ii[WS(rs, 3)]; | |
202 Tq = FMA(T7, To, T9 * Tp); | |
203 TA = FNMS(T9, To, T7 * Tp); | |
204 } | |
205 { | |
206 E Tc, Tg, Tk, Tm; | |
207 Tc = ri[WS(rs, 4)]; | |
208 Tg = ii[WS(rs, 4)]; | |
209 Th = FMA(Tb, Tc, Tf * Tg); | |
210 Tx = FNMS(Tf, Tc, Tb * Tg); | |
211 Tk = ri[WS(rs, 2)]; | |
212 Tm = ii[WS(rs, 2)]; | |
213 Tn = FMA(Tj, Tk, Tl * Tm); | |
214 Tz = FNMS(Tl, Tk, Tj * Tm); | |
215 } | |
216 Ty = Tw - Tx; | |
217 TB = Tz - TA; | |
218 TN = Tn - Tq; | |
219 TM = T6 - Th; | |
220 TF = Tw + Tx; | |
221 TG = Tz + TA; | |
222 TH = TF + TG; | |
223 Ti = T6 + Th; | |
224 Tr = Tn + Tq; | |
225 Ts = Ti + Tr; | |
226 } | |
227 ri[0] = T1 + Ts; | |
228 ii[0] = TH + TI; | |
229 { | |
230 E TC, TE, Tv, TD, Tt, Tu; | |
231 TC = FMA(KP951056516, Ty, KP587785252 * TB); | |
232 TE = FNMS(KP587785252, Ty, KP951056516 * TB); | |
233 Tt = KP559016994 * (Ti - Tr); | |
234 Tu = FNMS(KP250000000, Ts, T1); | |
235 Tv = Tt + Tu; | |
236 TD = Tu - Tt; | |
237 ri[WS(rs, 4)] = Tv - TC; | |
238 ri[WS(rs, 3)] = TD + TE; | |
239 ri[WS(rs, 1)] = Tv + TC; | |
240 ri[WS(rs, 2)] = TD - TE; | |
241 } | |
242 { | |
243 E TO, TP, TL, TQ, TJ, TK; | |
244 TO = FMA(KP951056516, TM, KP587785252 * TN); | |
245 TP = FNMS(KP587785252, TM, KP951056516 * TN); | |
246 TJ = KP559016994 * (TF - TG); | |
247 TK = FNMS(KP250000000, TH, TI); | |
248 TL = TJ + TK; | |
249 TQ = TK - TJ; | |
250 ii[WS(rs, 1)] = TL - TO; | |
251 ii[WS(rs, 3)] = TQ - TP; | |
252 ii[WS(rs, 4)] = TO + TL; | |
253 ii[WS(rs, 2)] = TP + TQ; | |
254 } | |
255 } | |
256 } | |
257 } | |
258 } | |
259 | |
260 static const tw_instr twinstr[] = { | |
261 {TW_CEXP, 0, 1}, | |
262 {TW_CEXP, 0, 3}, | |
263 {TW_NEXT, 1, 0} | |
264 }; | |
265 | |
266 static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, {30, 18, 14, 0}, 0, 0, 0 }; | |
267 | |
268 void X(codelet_t2_5) (planner *p) { | |
269 X(kdft_dit_register) (p, t2_5, &desc); | |
270 } | |
271 #endif /* HAVE_FMA */ |