Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t1_32.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_32.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,1771 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:35:51 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include t.h */ + +/* + * This function contains 434 FP additions, 260 FP multiplications, + * (or, 236 additions, 62 multiplications, 198 fused multiply/add), + * 135 stack variables, 7 constants, and 128 memory accesses + */ +#include "t.h" + +static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { + E T90, T8Z; + { + E T8x, T87, T8, T3w, T83, T3B, T8y, Tl, T6F, Tz, T3J, T5T, T6G, TM, T3Q; + E T5U, T46, T5Y, T7D, T6L, T5X, T3Z, T6M, T1f, T7E, T6R, T60, T4e, T6O, T1G; + E T61, T4l, T78, T7N, T54, T6f, T32, T7b, T6c, T5r, T6X, T7I, T4v, T68, T29; + E T70, T65, T4S, T5s, T5b, T7O, T7e, T79, T3t, T5t, T5i, T4H, T2y, T4A, T71; + E T2m, T4B, T4F, T2s; + { + E T44, T1d, T3X, T6J, T11, T40, T42, T17, T5h, T5c; + { + E Ta, Td, Tg, T3x, Tb, Tj, Tf, Tc, Ti; + { + E T1, T86, T3, T6, T2, T5; + T1 = ri[0]; + T86 = ii[0]; + T3 = ri[WS(rs, 16)]; + T6 = ii[WS(rs, 16)]; + T2 = W[30]; + T5 = W[31]; + { + E T84, T4, T9, T85, T7; + Ta = ri[WS(rs, 8)]; + Td = ii[WS(rs, 8)]; + T84 = T2 * T6; + T4 = T2 * T3; + T9 = W[14]; + Tg = ri[WS(rs, 24)]; + T85 = FNMS(T5, T3, T84); + T7 = FMA(T5, T6, T4); + T3x = T9 * Td; + Tb = T9 * Ta; + T8x = T86 - T85; + T87 = T85 + T86; + T8 = T1 + T7; + T3w = T1 - T7; + Tj = ii[WS(rs, 24)]; + Tf = W[46]; + } + Tc = W[15]; + Ti = W[47]; + } + { + E Tu, Tx, T3F, Ts, Tw, T3G, Tv; + { + E To, Tr, Tp, T3E, Tq, Tt; + { + E T3y, Te, T3A, Tk, T3z, Th, Tn; + To = ri[WS(rs, 4)]; + T3z = Tf * Tj; + Th = Tf * Tg; + T3y = FNMS(Tc, Ta, T3x); + Te = FMA(Tc, Td, Tb); + T3A = FNMS(Ti, Tg, T3z); + Tk = FMA(Ti, Tj, Th); + Tr = ii[WS(rs, 4)]; + Tn = W[6]; + T83 = T3y + T3A; + T3B = T3y - T3A; + T8y = Te - Tk; + Tl = Te + Tk; + Tp = Tn * To; + T3E = Tn * Tr; + } + Tq = W[7]; + Tu = ri[WS(rs, 20)]; + Tx = ii[WS(rs, 20)]; + Tt = W[38]; + T3F = FNMS(Tq, To, T3E); + Ts = FMA(Tq, Tr, Tp); + Tw = W[39]; + T3G = Tt * Tx; + Tv = Tt * Tu; + } + { + E T3M, TF, TH, TK, TG, TJ, TE, TD, TC; + { + E TB, T3H, Ty, TA, T3I, T3D, T3L; + TB = ri[WS(rs, 28)]; + TE = ii[WS(rs, 28)]; + T3H = FNMS(Tw, Tu, T3G); + Ty = FMA(Tw, Tx, Tv); + TA = W[54]; + TD = W[55]; + T6F = T3F + T3H; + T3I = T3F - T3H; + Tz = Ts + Ty; + T3D = Ts - Ty; + T3L = TA * TE; + TC = TA * TB; + T3J = T3D + T3I; + T5T = T3I - T3D; + T3M = FNMS(TD, TB, T3L); + } + TF = FMA(TD, TE, TC); + TH = ri[WS(rs, 12)]; + TK = ii[WS(rs, 12)]; + TG = W[22]; + TJ = W[23]; + { + E TU, T3U, T13, T16, T3W, T10, T12, T15, T41, T14; + { + E T19, T1c, T18, T1b, T3P, T3K; + { + E TQ, TT, T3N, TI, TP, TS; + TQ = ri[WS(rs, 2)]; + TT = ii[WS(rs, 2)]; + T3N = TG * TK; + TI = TG * TH; + TP = W[2]; + TS = W[3]; + { + E T3O, TL, T3T, TR; + T3O = FNMS(TJ, TH, T3N); + TL = FMA(TJ, TK, TI); + T3T = TP * TT; + TR = TP * TQ; + T6G = T3M + T3O; + T3P = T3M - T3O; + TM = TF + TL; + T3K = TF - TL; + TU = FMA(TS, TT, TR); + T3U = FNMS(TS, TQ, T3T); + } + } + T3Q = T3K - T3P; + T5U = T3K + T3P; + T19 = ri[WS(rs, 26)]; + T1c = ii[WS(rs, 26)]; + T18 = W[50]; + T1b = W[51]; + { + E TW, TZ, TY, T3V, TX, T43, T1a, TV; + TW = ri[WS(rs, 18)]; + TZ = ii[WS(rs, 18)]; + T43 = T18 * T1c; + T1a = T18 * T19; + TV = W[34]; + TY = W[35]; + T44 = FNMS(T1b, T19, T43); + T1d = FMA(T1b, T1c, T1a); + T3V = TV * TZ; + TX = TV * TW; + T13 = ri[WS(rs, 10)]; + T16 = ii[WS(rs, 10)]; + T3W = FNMS(TY, TW, T3V); + T10 = FMA(TY, TZ, TX); + T12 = W[18]; + T15 = W[19]; + } + } + T3X = T3U - T3W; + T6J = T3U + T3W; + T11 = TU + T10; + T40 = TU - T10; + T41 = T12 * T16; + T14 = T12 * T13; + T42 = FNMS(T15, T13, T41); + T17 = FMA(T15, T16, T14); + } + } + } + } + { + E T49, T1l, T4j, T1E, T1u, T1x, T1w, T4b, T1r, T4g, T1v; + { + E T1A, T1D, T1C, T4i, T1B; + { + E T1h, T1k, T1g, T1j, T48, T1i, T1z; + T1h = ri[WS(rs, 30)]; + T1k = ii[WS(rs, 30)]; + { + E T6K, T45, T1e, T3Y; + T6K = T42 + T44; + T45 = T42 - T44; + T1e = T17 + T1d; + T3Y = T17 - T1d; + T46 = T40 + T45; + T5Y = T40 - T45; + T7D = T6J + T6K; + T6L = T6J - T6K; + T5X = T3X + T3Y; + T3Z = T3X - T3Y; + T6M = T11 - T1e; + T1f = T11 + T1e; + T1g = W[58]; + } + T1j = W[59]; + T1A = ri[WS(rs, 22)]; + T1D = ii[WS(rs, 22)]; + T48 = T1g * T1k; + T1i = T1g * T1h; + T1z = W[42]; + T1C = W[43]; + T49 = FNMS(T1j, T1h, T48); + T1l = FMA(T1j, T1k, T1i); + T4i = T1z * T1D; + T1B = T1z * T1A; + } + { + E T1n, T1q, T1m, T1p, T4a, T1o, T1t; + T1n = ri[WS(rs, 14)]; + T1q = ii[WS(rs, 14)]; + T4j = FNMS(T1C, T1A, T4i); + T1E = FMA(T1C, T1D, T1B); + T1m = W[26]; + T1p = W[27]; + T1u = ri[WS(rs, 6)]; + T1x = ii[WS(rs, 6)]; + T4a = T1m * T1q; + T1o = T1m * T1n; + T1t = W[10]; + T1w = W[11]; + T4b = FNMS(T1p, T1n, T4a); + T1r = FMA(T1p, T1q, T1o); + T4g = T1t * T1x; + T1v = T1t * T1u; + } + } + { + E T4c, T6P, T1s, T4f, T4h, T1y; + T4c = T49 - T4b; + T6P = T49 + T4b; + T1s = T1l + T1r; + T4f = T1l - T1r; + T4h = FNMS(T1w, T1u, T4g); + T1y = FMA(T1w, T1x, T1v); + { + E T4k, T6Q, T4d, T1F; + T4k = T4h - T4j; + T6Q = T4h + T4j; + T4d = T1y - T1E; + T1F = T1y + T1E; + T7E = T6P + T6Q; + T6R = T6P - T6Q; + T60 = T4c + T4d; + T4e = T4c - T4d; + T6O = T1s - T1F; + T1G = T1s + T1F; + T61 = T4f - T4k; + T4l = T4f + T4k; + } + } + } + { + E T4Z, T2H, T5p, T30, T2Q, T2T, T2S, T51, T2N, T5m, T2R; + { + E T2W, T2Z, T2Y, T5o, T2X; + { + E T2D, T2G, T2C, T2F, T4Y, T2E, T2V; + T2D = ri[WS(rs, 31)]; + T2G = ii[WS(rs, 31)]; + T2C = W[60]; + T2F = W[61]; + T2W = ri[WS(rs, 23)]; + T2Z = ii[WS(rs, 23)]; + T4Y = T2C * T2G; + T2E = T2C * T2D; + T2V = W[44]; + T2Y = W[45]; + T4Z = FNMS(T2F, T2D, T4Y); + T2H = FMA(T2F, T2G, T2E); + T5o = T2V * T2Z; + T2X = T2V * T2W; + } + { + E T2J, T2M, T2I, T2L, T50, T2K, T2P; + T2J = ri[WS(rs, 15)]; + T2M = ii[WS(rs, 15)]; + T5p = FNMS(T2Y, T2W, T5o); + T30 = FMA(T2Y, T2Z, T2X); + T2I = W[28]; + T2L = W[29]; + T2Q = ri[WS(rs, 7)]; + T2T = ii[WS(rs, 7)]; + T50 = T2I * T2M; + T2K = T2I * T2J; + T2P = W[12]; + T2S = W[13]; + T51 = FNMS(T2L, T2J, T50); + T2N = FMA(T2L, T2M, T2K); + T5m = T2P * T2T; + T2R = T2P * T2Q; + } + } + { + E T52, T76, T2O, T5l, T5n, T2U; + T52 = T4Z - T51; + T76 = T4Z + T51; + T2O = T2H + T2N; + T5l = T2H - T2N; + T5n = FNMS(T2S, T2Q, T5m); + T2U = FMA(T2S, T2T, T2R); + { + E T5q, T77, T53, T31; + T5q = T5n - T5p; + T77 = T5n + T5p; + T53 = T2U - T30; + T31 = T2U + T30; + T78 = T76 - T77; + T7N = T76 + T77; + T54 = T52 - T53; + T6f = T52 + T53; + T32 = T2O + T31; + T7b = T2O - T31; + T6c = T5l - T5q; + T5r = T5l + T5q; + } + } + } + { + E T4q, T1O, T4Q, T27, T1X, T20, T1Z, T4s, T1U, T4N, T1Y; + { + E T23, T26, T25, T4P, T24; + { + E T1K, T1N, T1J, T1M, T4p, T1L, T22; + T1K = ri[WS(rs, 1)]; + T1N = ii[WS(rs, 1)]; + T1J = W[0]; + T1M = W[1]; + T23 = ri[WS(rs, 25)]; + T26 = ii[WS(rs, 25)]; + T4p = T1J * T1N; + T1L = T1J * T1K; + T22 = W[48]; + T25 = W[49]; + T4q = FNMS(T1M, T1K, T4p); + T1O = FMA(T1M, T1N, T1L); + T4P = T22 * T26; + T24 = T22 * T23; + } + { + E T1Q, T1T, T1P, T1S, T4r, T1R, T1W; + T1Q = ri[WS(rs, 17)]; + T1T = ii[WS(rs, 17)]; + T4Q = FNMS(T25, T23, T4P); + T27 = FMA(T25, T26, T24); + T1P = W[32]; + T1S = W[33]; + T1X = ri[WS(rs, 9)]; + T20 = ii[WS(rs, 9)]; + T4r = T1P * T1T; + T1R = T1P * T1Q; + T1W = W[16]; + T1Z = W[17]; + T4s = FNMS(T1S, T1Q, T4r); + T1U = FMA(T1S, T1T, T1R); + T4N = T1W * T20; + T1Y = T1W * T1X; + } + } + { + E T4t, T6V, T1V, T4M, T4O, T21; + T4t = T4q - T4s; + T6V = T4q + T4s; + T1V = T1O + T1U; + T4M = T1O - T1U; + T4O = FNMS(T1Z, T1X, T4N); + T21 = FMA(T1Z, T20, T1Y); + { + E T4R, T6W, T4u, T28; + T4R = T4O - T4Q; + T6W = T4O + T4Q; + T4u = T21 - T27; + T28 = T21 + T27; + T6X = T6V - T6W; + T7I = T6V + T6W; + T4v = T4t - T4u; + T68 = T4t + T4u; + T29 = T1V + T28; + T70 = T1V - T28; + T65 = T4M - T4R; + T4S = T4M + T4R; + } + } + } + { + E T56, T38, T5g, T3r, T3h, T3k, T3j, T58, T3e, T5d, T3i; + { + E T3n, T3q, T3p, T5f, T3o; + { + E T34, T37, T33, T36, T55, T35, T3m; + T34 = ri[WS(rs, 3)]; + T37 = ii[WS(rs, 3)]; + T33 = W[4]; + T36 = W[5]; + T3n = ri[WS(rs, 11)]; + T3q = ii[WS(rs, 11)]; + T55 = T33 * T37; + T35 = T33 * T34; + T3m = W[20]; + T3p = W[21]; + T56 = FNMS(T36, T34, T55); + T38 = FMA(T36, T37, T35); + T5f = T3m * T3q; + T3o = T3m * T3n; + } + { + E T3a, T3d, T39, T3c, T57, T3b, T3g; + T3a = ri[WS(rs, 19)]; + T3d = ii[WS(rs, 19)]; + T5g = FNMS(T3p, T3n, T5f); + T3r = FMA(T3p, T3q, T3o); + T39 = W[36]; + T3c = W[37]; + T3h = ri[WS(rs, 27)]; + T3k = ii[WS(rs, 27)]; + T57 = T39 * T3d; + T3b = T39 * T3a; + T3g = W[52]; + T3j = W[53]; + T58 = FNMS(T3c, T3a, T57); + T3e = FMA(T3c, T3d, T3b); + T5d = T3g * T3k; + T3i = T3g * T3h; + } + } + { + E T59, T7c, T3f, T5a, T5e, T3l, T7d, T3s; + T59 = T56 - T58; + T7c = T56 + T58; + T3f = T38 + T3e; + T5a = T38 - T3e; + T5e = FNMS(T3j, T3h, T5d); + T3l = FMA(T3j, T3k, T3i); + T5h = T5e - T5g; + T7d = T5e + T5g; + T3s = T3l + T3r; + T5c = T3l - T3r; + T5s = T5a + T59; + T5b = T59 - T5a; + T7O = T7c + T7d; + T7e = T7c - T7d; + T79 = T3s - T3f; + T3t = T3f + T3s; + } + } + { + E T4x, T2f, T2o, T2r, T4z, T2l, T2n, T2q, T4E, T2p; + { + E T2u, T2x, T2t, T2w; + { + E T2b, T2e, T2d, T4w, T2c, T2a; + T2b = ri[WS(rs, 5)]; + T2e = ii[WS(rs, 5)]; + T2a = W[8]; + T5t = T5c - T5h; + T5i = T5c + T5h; + T2d = W[9]; + T4w = T2a * T2e; + T2c = T2a * T2b; + T2u = ri[WS(rs, 13)]; + T2x = ii[WS(rs, 13)]; + T4x = FNMS(T2d, T2b, T4w); + T2f = FMA(T2d, T2e, T2c); + T2t = W[24]; + T2w = W[25]; + } + { + E T2h, T2k, T2j, T4y, T2i, T4G, T2v, T2g; + T2h = ri[WS(rs, 21)]; + T2k = ii[WS(rs, 21)]; + T4G = T2t * T2x; + T2v = T2t * T2u; + T2g = W[40]; + T2j = W[41]; + T4H = FNMS(T2w, T2u, T4G); + T2y = FMA(T2w, T2x, T2v); + T4y = T2g * T2k; + T2i = T2g * T2h; + T2o = ri[WS(rs, 29)]; + T2r = ii[WS(rs, 29)]; + T4z = FNMS(T2j, T2h, T4y); + T2l = FMA(T2j, T2k, T2i); + T2n = W[56]; + T2q = W[57]; + } + } + T4A = T4x - T4z; + T71 = T4x + T4z; + T2m = T2f + T2l; + T4B = T2f - T2l; + T4E = T2n * T2r; + T2p = T2n * T2o; + T4F = FNMS(T2q, T2o, T4E); + T2s = FMA(T2q, T2r, T2p); + } + } + { + E T4T, T4C, T4J, T4U, T7y, T8q, T8p, T7B; + { + E T6E, T8j, T73, T6Y, T6H, T8k, T8i, T8h; + { + E T7C, TO, T80, T7Z, T8e, T89, T8d, T1H, T8b, T3v, T7T, T7L, T7U, T7Q, T2A; + E T7K, T7P, T7W, T1I; + { + E T7X, T7Y, T7J, T82, T88; + { + E Tm, T4I, T72, T4D, T2z, TN; + T6E = T8 - Tl; + Tm = T8 + Tl; + T4T = T4B + T4A; + T4C = T4A - T4B; + T4I = T4F - T4H; + T72 = T4F + T4H; + T4D = T2s - T2y; + T2z = T2s + T2y; + TN = Tz + TM; + T8j = TM - Tz; + T73 = T71 - T72; + T7J = T71 + T72; + T4J = T4D + T4I; + T4U = T4D - T4I; + T2A = T2m + T2z; + T6Y = T2z - T2m; + T7C = Tm - TN; + TO = Tm + TN; + } + T7K = T7I - T7J; + T7X = T7I + T7J; + T7Y = T7N + T7O; + T7P = T7N - T7O; + T6H = T6F - T6G; + T82 = T6F + T6G; + T88 = T83 + T87; + T8k = T87 - T83; + T80 = T7X + T7Y; + T7Z = T7X - T7Y; + T8e = T88 - T82; + T89 = T82 + T88; + } + { + E T7H, T7M, T2B, T3u; + T7H = T29 - T2A; + T2B = T29 + T2A; + T3u = T32 + T3t; + T7M = T32 - T3t; + T8d = T1G - T1f; + T1H = T1f + T1G; + T8b = T3u - T2B; + T3v = T2B + T3u; + T7T = T7K - T7H; + T7L = T7H + T7K; + T7U = T7M + T7P; + T7Q = T7M - T7P; + } + T7W = TO - T1H; + T1I = TO + T1H; + { + E T7S, T8f, T8g, T7V; + { + E T7R, T8c, T8a, T7G, T81, T7F; + T8i = T7Q - T7L; + T7R = T7L + T7Q; + T81 = T7D + T7E; + T7F = T7D - T7E; + ri[0] = T1I + T3v; + ri[WS(rs, 16)] = T1I - T3v; + ri[WS(rs, 8)] = T7W + T7Z; + ri[WS(rs, 24)] = T7W - T7Z; + T8c = T89 - T81; + T8a = T81 + T89; + T7G = T7C + T7F; + T7S = T7C - T7F; + T8h = T8e - T8d; + T8f = T8d + T8e; + ii[WS(rs, 24)] = T8c - T8b; + ii[WS(rs, 8)] = T8b + T8c; + ii[WS(rs, 16)] = T8a - T80; + ii[0] = T80 + T8a; + ri[WS(rs, 4)] = FMA(KP707106781, T7R, T7G); + ri[WS(rs, 20)] = FNMS(KP707106781, T7R, T7G); + T8g = T7T + T7U; + T7V = T7T - T7U; + } + ii[WS(rs, 20)] = FNMS(KP707106781, T8g, T8f); + ii[WS(rs, 4)] = FMA(KP707106781, T8g, T8f); + ri[WS(rs, 12)] = FMA(KP707106781, T7V, T7S); + ri[WS(rs, 28)] = FNMS(KP707106781, T7V, T7S); + } + } + { + E T7f, T7m, T6I, T7a, T7A, T7w, T8r, T8l, T8m, T6T, T7j, T75, T8s, T7p, T7z; + E T7t; + { + E T7n, T6N, T6S, T7o, T7u, T7v; + T7f = T7b - T7e; + T7u = T7b + T7e; + ii[WS(rs, 28)] = FNMS(KP707106781, T8i, T8h); + ii[WS(rs, 12)] = FMA(KP707106781, T8i, T8h); + T7m = T6E + T6H; + T6I = T6E - T6H; + T7v = T78 + T79; + T7a = T78 - T79; + T7n = T6M + T6L; + T6N = T6L - T6M; + T7A = FMA(KP414213562, T7u, T7v); + T7w = FNMS(KP414213562, T7v, T7u); + T8r = T8k - T8j; + T8l = T8j + T8k; + T6S = T6O + T6R; + T7o = T6O - T6R; + { + E T7s, T7r, T6Z, T74; + T7s = T6X + T6Y; + T6Z = T6X - T6Y; + T74 = T70 - T73; + T7r = T70 + T73; + T8m = T6N + T6S; + T6T = T6N - T6S; + T7j = FNMS(KP414213562, T6Z, T74); + T75 = FMA(KP414213562, T74, T6Z); + T8s = T7o - T7n; + T7p = T7n + T7o; + T7z = FNMS(KP414213562, T7r, T7s); + T7t = FMA(KP414213562, T7s, T7r); + } + } + { + E T7i, T6U, T8t, T8v, T7k, T7g; + T7i = FNMS(KP707106781, T6T, T6I); + T6U = FMA(KP707106781, T6T, T6I); + T8t = FMA(KP707106781, T8s, T8r); + T8v = FNMS(KP707106781, T8s, T8r); + T7k = FMA(KP414213562, T7a, T7f); + T7g = FNMS(KP414213562, T7f, T7a); + { + E T7q, T7x, T8n, T8o; + T7y = FNMS(KP707106781, T7p, T7m); + T7q = FMA(KP707106781, T7p, T7m); + { + E T7l, T8u, T8w, T7h; + T7l = T7j + T7k; + T8u = T7k - T7j; + T8w = T75 + T7g; + T7h = T75 - T7g; + ri[WS(rs, 30)] = FMA(KP923879532, T7l, T7i); + ri[WS(rs, 14)] = FNMS(KP923879532, T7l, T7i); + ii[WS(rs, 22)] = FNMS(KP923879532, T8u, T8t); + ii[WS(rs, 6)] = FMA(KP923879532, T8u, T8t); + ii[WS(rs, 30)] = FMA(KP923879532, T8w, T8v); + ii[WS(rs, 14)] = FNMS(KP923879532, T8w, T8v); + ri[WS(rs, 6)] = FMA(KP923879532, T7h, T6U); + ri[WS(rs, 22)] = FNMS(KP923879532, T7h, T6U); + T7x = T7t + T7w; + T8q = T7w - T7t; + } + T8p = FNMS(KP707106781, T8m, T8l); + T8n = FMA(KP707106781, T8m, T8l); + T8o = T7z + T7A; + T7B = T7z - T7A; + ri[WS(rs, 2)] = FMA(KP923879532, T7x, T7q); + ri[WS(rs, 18)] = FNMS(KP923879532, T7x, T7q); + ii[WS(rs, 18)] = FNMS(KP923879532, T8o, T8n); + ii[WS(rs, 2)] = FMA(KP923879532, T8o, T8n); + } + } + } + } + { + E T5S, T8O, T8N, T5V, T6d, T6g, T66, T69, T8G, T8F; + { + E T5C, T3S, T8C, T4n, T8H, T8B, T8I, T5F, T5k, T5L, T5u, T4K, T4V; + { + E T5D, T5E, T8z, T8A, T5j; + { + E T3C, T3R, T47, T4m; + T5S = T3w - T3B; + T3C = T3w + T3B; + ri[WS(rs, 10)] = FMA(KP923879532, T7B, T7y); + ri[WS(rs, 26)] = FNMS(KP923879532, T7B, T7y); + ii[WS(rs, 26)] = FNMS(KP923879532, T8q, T8p); + ii[WS(rs, 10)] = FMA(KP923879532, T8q, T8p); + T3R = T3J + T3Q; + T8O = T3Q - T3J; + T5D = FMA(KP414213562, T3Z, T46); + T47 = FNMS(KP414213562, T46, T3Z); + T4m = FMA(KP414213562, T4l, T4e); + T5E = FNMS(KP414213562, T4e, T4l); + T8N = T8y + T8x; + T8z = T8x - T8y; + T5C = FMA(KP707106781, T3R, T3C); + T3S = FNMS(KP707106781, T3R, T3C); + T8C = T47 + T4m; + T4n = T47 - T4m; + T8A = T5T + T5U; + T5V = T5T - T5U; + } + T6d = T5i - T5b; + T5j = T5b + T5i; + T8H = FNMS(KP707106781, T8A, T8z); + T8B = FMA(KP707106781, T8A, T8z); + T8I = T5E - T5D; + T5F = T5D + T5E; + T5k = FNMS(KP707106781, T5j, T54); + T5L = FMA(KP707106781, T5j, T54); + T5u = T5s + T5t; + T6g = T5s - T5t; + T66 = T4J - T4C; + T4K = T4C + T4J; + T4V = T4T + T4U; + T69 = T4T - T4U; + } + { + E T5M, T5Q, T5J, T5P, T8L, T8M; + { + E T5y, T4o, T5A, T5w, T5z, T4X, T8J, T5K, T5v, T8K, T5B, T5x; + T5y = FNMS(KP923879532, T4n, T3S); + T4o = FMA(KP923879532, T4n, T3S); + T5K = FMA(KP707106781, T5u, T5r); + T5v = FNMS(KP707106781, T5u, T5r); + { + E T5I, T4L, T5H, T4W; + T5I = FMA(KP707106781, T4K, T4v); + T4L = FNMS(KP707106781, T4K, T4v); + T5H = FMA(KP707106781, T4V, T4S); + T4W = FNMS(KP707106781, T4V, T4S); + T5M = FNMS(KP198912367, T5L, T5K); + T5Q = FMA(KP198912367, T5K, T5L); + T5A = FMA(KP668178637, T5k, T5v); + T5w = FNMS(KP668178637, T5v, T5k); + T5J = FMA(KP198912367, T5I, T5H); + T5P = FNMS(KP198912367, T5H, T5I); + T5z = FNMS(KP668178637, T4L, T4W); + T4X = FMA(KP668178637, T4W, T4L); + } + T8J = FMA(KP923879532, T8I, T8H); + T8L = FNMS(KP923879532, T8I, T8H); + T8K = T5A - T5z; + T5B = T5z + T5A; + T8M = T4X + T5w; + T5x = T4X - T5w; + ii[WS(rs, 21)] = FNMS(KP831469612, T8K, T8J); + ii[WS(rs, 5)] = FMA(KP831469612, T8K, T8J); + ri[WS(rs, 5)] = FMA(KP831469612, T5x, T4o); + ri[WS(rs, 21)] = FNMS(KP831469612, T5x, T4o); + ri[WS(rs, 29)] = FMA(KP831469612, T5B, T5y); + ri[WS(rs, 13)] = FNMS(KP831469612, T5B, T5y); + } + { + E T5O, T8D, T8E, T5R, T5G, T5N; + T5O = FNMS(KP923879532, T5F, T5C); + T5G = FMA(KP923879532, T5F, T5C); + T5N = T5J + T5M; + T8G = T5M - T5J; + T8F = FNMS(KP923879532, T8C, T8B); + T8D = FMA(KP923879532, T8C, T8B); + ii[WS(rs, 29)] = FMA(KP831469612, T8M, T8L); + ii[WS(rs, 13)] = FNMS(KP831469612, T8M, T8L); + ri[WS(rs, 1)] = FMA(KP980785280, T5N, T5G); + ri[WS(rs, 17)] = FNMS(KP980785280, T5N, T5G); + T8E = T5P + T5Q; + T5R = T5P - T5Q; + ii[WS(rs, 17)] = FNMS(KP980785280, T8E, T8D); + ii[WS(rs, 1)] = FMA(KP980785280, T8E, T8D); + ri[WS(rs, 9)] = FMA(KP980785280, T5R, T5O); + ri[WS(rs, 25)] = FNMS(KP980785280, T5R, T5O); + } + } + } + { + E T6o, T5W, T8W, T63, T8V, T8P, T8Q, T6r, T67, T6u, T6y, T6C, T6m, T6i; + { + E T6p, T5Z, T62, T6q; + T6p = FNMS(KP414213562, T5X, T5Y); + T5Z = FMA(KP414213562, T5Y, T5X); + ii[WS(rs, 25)] = FNMS(KP980785280, T8G, T8F); + ii[WS(rs, 9)] = FMA(KP980785280, T8G, T8F); + T6o = FNMS(KP707106781, T5V, T5S); + T5W = FMA(KP707106781, T5V, T5S); + T62 = FNMS(KP414213562, T61, T60); + T6q = FMA(KP414213562, T60, T61); + T8W = T5Z + T62; + T63 = T5Z - T62; + T8V = FNMS(KP707106781, T8O, T8N); + T8P = FMA(KP707106781, T8O, T8N); + { + E T6x, T6e, T6w, T6h; + T8Q = T6q - T6p; + T6r = T6p + T6q; + T6x = FMA(KP707106781, T6d, T6c); + T6e = FNMS(KP707106781, T6d, T6c); + T6w = FMA(KP707106781, T6g, T6f); + T6h = FNMS(KP707106781, T6g, T6f); + T67 = FNMS(KP707106781, T66, T65); + T6u = FMA(KP707106781, T66, T65); + T6y = FNMS(KP198912367, T6x, T6w); + T6C = FMA(KP198912367, T6w, T6x); + T6m = FMA(KP668178637, T6e, T6h); + T6i = FNMS(KP668178637, T6h, T6e); + } + } + { + E T6k, T64, T8R, T8T, T6t, T6a; + T6k = FNMS(KP923879532, T63, T5W); + T64 = FMA(KP923879532, T63, T5W); + T8R = FMA(KP923879532, T8Q, T8P); + T8T = FNMS(KP923879532, T8Q, T8P); + T6t = FMA(KP707106781, T69, T68); + T6a = FNMS(KP707106781, T69, T68); + { + E T6A, T8X, T8Y, T6D; + { + E T6s, T6B, T6l, T6b, T6z, T6v; + T6A = FMA(KP923879532, T6r, T6o); + T6s = FNMS(KP923879532, T6r, T6o); + T6v = FMA(KP198912367, T6u, T6t); + T6B = FNMS(KP198912367, T6t, T6u); + T6l = FNMS(KP668178637, T67, T6a); + T6b = FMA(KP668178637, T6a, T67); + T6z = T6v - T6y; + T90 = T6v + T6y; + T8Z = FMA(KP923879532, T8W, T8V); + T8X = FNMS(KP923879532, T8W, T8V); + { + E T6n, T8S, T8U, T6j; + T6n = T6l - T6m; + T8S = T6l + T6m; + T8U = T6i - T6b; + T6j = T6b + T6i; + ri[WS(rs, 7)] = FMA(KP980785280, T6z, T6s); + ri[WS(rs, 23)] = FNMS(KP980785280, T6z, T6s); + ri[WS(rs, 11)] = FMA(KP831469612, T6n, T6k); + ri[WS(rs, 27)] = FNMS(KP831469612, T6n, T6k); + ii[WS(rs, 19)] = FNMS(KP831469612, T8S, T8R); + ii[WS(rs, 3)] = FMA(KP831469612, T8S, T8R); + ii[WS(rs, 27)] = FNMS(KP831469612, T8U, T8T); + ii[WS(rs, 11)] = FMA(KP831469612, T8U, T8T); + ri[WS(rs, 3)] = FMA(KP831469612, T6j, T64); + ri[WS(rs, 19)] = FNMS(KP831469612, T6j, T64); + T8Y = T6C - T6B; + T6D = T6B + T6C; + } + } + ii[WS(rs, 23)] = FNMS(KP980785280, T8Y, T8X); + ii[WS(rs, 7)] = FMA(KP980785280, T8Y, T8X); + ri[WS(rs, 31)] = FMA(KP980785280, T6D, T6A); + ri[WS(rs, 15)] = FNMS(KP980785280, T6D, T6A); + } + } + } + } + } + } + ii[WS(rs, 31)] = FMA(KP980785280, T90, T8Z); + ii[WS(rs, 15)] = FNMS(KP980785280, T90, T8Z); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 32}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {236, 62, 198, 0}, 0, 0, 0 }; + +void X(codelet_t1_32) (planner *p) { + X(kdft_dit_register) (p, t1_32, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include t.h */ + +/* + * This function contains 434 FP additions, 208 FP multiplications, + * (or, 340 additions, 114 multiplications, 94 fused multiply/add), + * 96 stack variables, 7 constants, and 128 memory accesses + */ +#include "t.h" + +static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { + E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; + E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; + E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; + E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; + E T4m, T5h, T4v, T5e; + { + E T1, T76, T6, T75, Tc, T32, Th, T33; + T1 = ri[0]; + T76 = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 16)]; + T5 = ii[WS(rs, 16)]; + T2 = W[30]; + T4 = W[31]; + T6 = FMA(T2, T3, T4 * T5); + T75 = FNMS(T4, T3, T2 * T5); + } + { + E T9, Tb, T8, Ta; + T9 = ri[WS(rs, 8)]; + Tb = ii[WS(rs, 8)]; + T8 = W[14]; + Ta = W[15]; + Tc = FMA(T8, T9, Ta * Tb); + T32 = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 24)]; + Tg = ii[WS(rs, 24)]; + Td = W[46]; + Tf = W[47]; + Th = FMA(Td, Te, Tf * Tg); + T33 = FNMS(Tf, Te, Td * Tg); + } + { + E T7, Ti, T7A, T7B; + T7 = T1 + T6; + Ti = Tc + Th; + Tj = T7 + Ti; + T5F = T7 - Ti; + T7A = T76 - T75; + T7B = Tc - Th; + T7C = T7A - T7B; + T7Q = T7B + T7A; + } + { + E T31, T34, T74, T77; + T31 = T1 - T6; + T34 = T32 - T33; + T35 = T31 - T34; + T4T = T31 + T34; + T74 = T32 + T33; + T77 = T75 + T76; + T78 = T74 + T77; + T7m = T77 - T74; + } + } + { + E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; + { + E T1v, T1x, T1u, T1w; + T1v = ri[WS(rs, 1)]; + T1x = ii[WS(rs, 1)]; + T1u = W[0]; + T1w = W[1]; + T1y = FMA(T1u, T1v, T1w * T1x); + T3G = FNMS(T1w, T1v, T1u * T1x); + } + { + E T1L, T1N, T1K, T1M; + T1L = ri[WS(rs, 25)]; + T1N = ii[WS(rs, 25)]; + T1K = W[48]; + T1M = W[49]; + T1O = FMA(T1K, T1L, T1M * T1N); + T3Z = FNMS(T1M, T1L, T1K * T1N); + } + { + E T1A, T1C, T1z, T1B; + T1A = ri[WS(rs, 17)]; + T1C = ii[WS(rs, 17)]; + T1z = W[32]; + T1B = W[33]; + T1D = FMA(T1z, T1A, T1B * T1C); + T3H = FNMS(T1B, T1A, T1z * T1C); + } + { + E T1G, T1I, T1F, T1H; + T1G = ri[WS(rs, 9)]; + T1I = ii[WS(rs, 9)]; + T1F = W[16]; + T1H = W[17]; + T1J = FMA(T1F, T1G, T1H * T1I); + T3Y = FNMS(T1H, T1G, T1F * T1I); + } + { + E T1E, T1P, T5W, T5X; + T1E = T1y + T1D; + T1P = T1J + T1O; + T1Q = T1E + T1P; + T61 = T1E - T1P; + T5W = T3G + T3H; + T5X = T3Y + T3Z; + T5Y = T5W - T5X; + T6J = T5W + T5X; + } + { + E T3I, T3J, T3X, T40; + T3I = T3G - T3H; + T3J = T1J - T1O; + T3K = T3I + T3J; + T59 = T3I - T3J; + T3X = T1y - T1D; + T40 = T3Y - T3Z; + T41 = T3X - T40; + T56 = T3X + T40; + } + } + { + E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; + { + E T2g, T2i, T2f, T2h; + T2g = ri[WS(rs, 31)]; + T2i = ii[WS(rs, 31)]; + T2f = W[60]; + T2h = W[61]; + T2j = FMA(T2f, T2g, T2h * T2i); + T4o = FNMS(T2h, T2g, T2f * T2i); + } + { + E T2w, T2y, T2v, T2x; + T2w = ri[WS(rs, 23)]; + T2y = ii[WS(rs, 23)]; + T2v = W[44]; + T2x = W[45]; + T2z = FMA(T2v, T2w, T2x * T2y); + T49 = FNMS(T2x, T2w, T2v * T2y); + } + { + E T2l, T2n, T2k, T2m; + T2l = ri[WS(rs, 15)]; + T2n = ii[WS(rs, 15)]; + T2k = W[28]; + T2m = W[29]; + T2o = FMA(T2k, T2l, T2m * T2n); + T4p = FNMS(T2m, T2l, T2k * T2n); + } + { + E T2r, T2t, T2q, T2s; + T2r = ri[WS(rs, 7)]; + T2t = ii[WS(rs, 7)]; + T2q = W[12]; + T2s = W[13]; + T2u = FMA(T2q, T2r, T2s * T2t); + T48 = FNMS(T2s, T2r, T2q * T2t); + } + { + E T2p, T2A, T6c, T6d; + T2p = T2j + T2o; + T2A = T2u + T2z; + T2B = T2p + T2A; + T67 = T2p - T2A; + T6c = T4o + T4p; + T6d = T48 + T49; + T6e = T6c - T6d; + T6O = T6c + T6d; + } + { + E T47, T4a, T4q, T4r; + T47 = T2j - T2o; + T4a = T48 - T49; + T4b = T47 - T4a; + T5d = T47 + T4a; + T4q = T4o - T4p; + T4r = T2u - T2z; + T4s = T4q + T4r; + T5g = T4q - T4r; + } + } + { + E To, T36, TE, T3d, Tt, T37, Tz, T3c; + { + E Tl, Tn, Tk, Tm; + Tl = ri[WS(rs, 4)]; + Tn = ii[WS(rs, 4)]; + Tk = W[6]; + Tm = W[7]; + To = FMA(Tk, Tl, Tm * Tn); + T36 = FNMS(Tm, Tl, Tk * Tn); + } + { + E TB, TD, TA, TC; + TB = ri[WS(rs, 12)]; + TD = ii[WS(rs, 12)]; + TA = W[22]; + TC = W[23]; + TE = FMA(TA, TB, TC * TD); + T3d = FNMS(TC, TB, TA * TD); + } + { + E Tq, Ts, Tp, Tr; + Tq = ri[WS(rs, 20)]; + Ts = ii[WS(rs, 20)]; + Tp = W[38]; + Tr = W[39]; + Tt = FMA(Tp, Tq, Tr * Ts); + T37 = FNMS(Tr, Tq, Tp * Ts); + } + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(rs, 28)]; + Ty = ii[WS(rs, 28)]; + Tv = W[54]; + Tx = W[55]; + Tz = FMA(Tv, Tw, Tx * Ty); + T3c = FNMS(Tx, Tw, Tv * Ty); + } + { + E Tu, TF, T5G, T5H; + Tu = To + Tt; + TF = Tz + TE; + TG = Tu + TF; + T7l = TF - Tu; + T5G = T36 + T37; + T5H = T3c + T3d; + T5I = T5G - T5H; + T73 = T5G + T5H; + } + { + E T38, T39, T3b, T3e; + T38 = T36 - T37; + T39 = To - Tt; + T3a = T38 - T39; + T4U = T39 + T38; + T3b = Tz - TE; + T3e = T3c - T3d; + T3f = T3b + T3e; + T4V = T3b - T3e; + } + } + { + E TM, T3i, T12, T3p, TR, T3j, TX, T3o; + { + E TJ, TL, TI, TK; + TJ = ri[WS(rs, 2)]; + TL = ii[WS(rs, 2)]; + TI = W[2]; + TK = W[3]; + TM = FMA(TI, TJ, TK * TL); + T3i = FNMS(TK, TJ, TI * TL); + } + { + E TZ, T11, TY, T10; + TZ = ri[WS(rs, 26)]; + T11 = ii[WS(rs, 26)]; + TY = W[50]; + T10 = W[51]; + T12 = FMA(TY, TZ, T10 * T11); + T3p = FNMS(T10, TZ, TY * T11); + } + { + E TO, TQ, TN, TP; + TO = ri[WS(rs, 18)]; + TQ = ii[WS(rs, 18)]; + TN = W[34]; + TP = W[35]; + TR = FMA(TN, TO, TP * TQ); + T3j = FNMS(TP, TO, TN * TQ); + } + { + E TU, TW, TT, TV; + TU = ri[WS(rs, 10)]; + TW = ii[WS(rs, 10)]; + TT = W[18]; + TV = W[19]; + TX = FMA(TT, TU, TV * TW); + T3o = FNMS(TV, TU, TT * TW); + } + { + E TS, T13, T5K, T5L; + TS = TM + TR; + T13 = TX + T12; + T14 = TS + T13; + T5N = TS - T13; + T5K = T3i + T3j; + T5L = T3o + T3p; + T5M = T5K - T5L; + T6E = T5K + T5L; + } + { + E T3k, T3l, T3n, T3q; + T3k = T3i - T3j; + T3l = TX - T12; + T3m = T3k + T3l; + T4Y = T3k - T3l; + T3n = TM - TR; + T3q = T3o - T3p; + T3r = T3n - T3q; + T4Z = T3n + T3q; + } + } + { + E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; + { + E T16, T18, T15, T17; + T16 = ri[WS(rs, 30)]; + T18 = ii[WS(rs, 30)]; + T15 = W[58]; + T17 = W[59]; + T19 = FMA(T15, T16, T17 * T18); + T3t = FNMS(T17, T16, T15 * T18); + } + { + E T1m, T1o, T1l, T1n; + T1m = ri[WS(rs, 22)]; + T1o = ii[WS(rs, 22)]; + T1l = W[42]; + T1n = W[43]; + T1p = FMA(T1l, T1m, T1n * T1o); + T3A = FNMS(T1n, T1m, T1l * T1o); + } + { + E T1b, T1d, T1a, T1c; + T1b = ri[WS(rs, 14)]; + T1d = ii[WS(rs, 14)]; + T1a = W[26]; + T1c = W[27]; + T1e = FMA(T1a, T1b, T1c * T1d); + T3u = FNMS(T1c, T1b, T1a * T1d); + } + { + E T1h, T1j, T1g, T1i; + T1h = ri[WS(rs, 6)]; + T1j = ii[WS(rs, 6)]; + T1g = W[10]; + T1i = W[11]; + T1k = FMA(T1g, T1h, T1i * T1j); + T3z = FNMS(T1i, T1h, T1g * T1j); + } + { + E T1f, T1q, T5Q, T5R; + T1f = T19 + T1e; + T1q = T1k + T1p; + T1r = T1f + T1q; + T5P = T1f - T1q; + T5Q = T3t + T3u; + T5R = T3z + T3A; + T5S = T5Q - T5R; + T6F = T5Q + T5R; + } + { + E T3v, T3w, T3y, T3B; + T3v = T3t - T3u; + T3w = T1k - T1p; + T3x = T3v + T3w; + T51 = T3v - T3w; + T3y = T19 - T1e; + T3B = T3z - T3A; + T3C = T3y - T3B; + T52 = T3y + T3B; + } + } + { + E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; + { + E T1S, T1U, T1R, T1T; + T1S = ri[WS(rs, 5)]; + T1U = ii[WS(rs, 5)]; + T1R = W[8]; + T1T = W[9]; + T1V = FMA(T1R, T1S, T1T * T1U); + T3R = FNMS(T1T, T1S, T1R * T1U); + } + { + E T1X, T1Z, T1W, T1Y; + T1X = ri[WS(rs, 21)]; + T1Z = ii[WS(rs, 21)]; + T1W = W[40]; + T1Y = W[41]; + T20 = FMA(T1W, T1X, T1Y * T1Z); + T3S = FNMS(T1Y, T1X, T1W * T1Z); + } + T3Q = T1V - T20; + T3T = T3R - T3S; + { + E T23, T25, T22, T24; + T23 = ri[WS(rs, 29)]; + T25 = ii[WS(rs, 29)]; + T22 = W[56]; + T24 = W[57]; + T26 = FMA(T22, T23, T24 * T25); + T3M = FNMS(T24, T23, T22 * T25); + } + { + E T28, T2a, T27, T29; + T28 = ri[WS(rs, 13)]; + T2a = ii[WS(rs, 13)]; + T27 = W[24]; + T29 = W[25]; + T2b = FMA(T27, T28, T29 * T2a); + T3N = FNMS(T29, T28, T27 * T2a); + } + T3L = T26 - T2b; + T3O = T3M - T3N; + { + E T21, T2c, T62, T63; + T21 = T1V + T20; + T2c = T26 + T2b; + T2d = T21 + T2c; + T5Z = T2c - T21; + T62 = T3R + T3S; + T63 = T3M + T3N; + T64 = T62 - T63; + T6K = T62 + T63; + } + { + E T3P, T3U, T42, T43; + T3P = T3L - T3O; + T3U = T3Q + T3T; + T3V = KP707106781 * (T3P - T3U); + T57 = KP707106781 * (T3U + T3P); + T42 = T3T - T3Q; + T43 = T3L + T3O; + T44 = KP707106781 * (T42 - T43); + T5a = KP707106781 * (T42 + T43); + } + } + { + E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; + { + E T2D, T2F, T2C, T2E; + T2D = ri[WS(rs, 3)]; + T2F = ii[WS(rs, 3)]; + T2C = W[4]; + T2E = W[5]; + T2G = FMA(T2C, T2D, T2E * T2F); + T4c = FNMS(T2E, T2D, T2C * T2F); + } + { + E T2I, T2K, T2H, T2J; + T2I = ri[WS(rs, 19)]; + T2K = ii[WS(rs, 19)]; + T2H = W[36]; + T2J = W[37]; + T2L = FMA(T2H, T2I, T2J * T2K); + T4d = FNMS(T2J, T2I, T2H * T2K); + } + T4e = T4c - T4d; + T4f = T2G - T2L; + { + E T2O, T2Q, T2N, T2P; + T2O = ri[WS(rs, 27)]; + T2Q = ii[WS(rs, 27)]; + T2N = W[52]; + T2P = W[53]; + T2R = FMA(T2N, T2O, T2P * T2Q); + T4i = FNMS(T2P, T2O, T2N * T2Q); + } + { + E T2T, T2V, T2S, T2U; + T2T = ri[WS(rs, 11)]; + T2V = ii[WS(rs, 11)]; + T2S = W[20]; + T2U = W[21]; + T2W = FMA(T2S, T2T, T2U * T2V); + T4j = FNMS(T2U, T2T, T2S * T2V); + } + T4h = T2R - T2W; + T4k = T4i - T4j; + { + E T2M, T2X, T68, T69; + T2M = T2G + T2L; + T2X = T2R + T2W; + T2Y = T2M + T2X; + T6f = T2X - T2M; + T68 = T4c + T4d; + T69 = T4i + T4j; + T6a = T68 - T69; + T6P = T68 + T69; + } + { + E T4g, T4l, T4t, T4u; + T4g = T4e - T4f; + T4l = T4h + T4k; + T4m = KP707106781 * (T4g - T4l); + T5h = KP707106781 * (T4g + T4l); + T4t = T4h - T4k; + T4u = T4f + T4e; + T4v = KP707106781 * (T4t - T4u); + T5e = KP707106781 * (T4u + T4t); + } + } + { + E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; + { + E TH, T1s, T72, T79; + TH = Tj + TG; + T1s = T14 + T1r; + T1t = TH + T1s; + T6X = TH - T1s; + T72 = T6E + T6F; + T79 = T73 + T78; + T7a = T72 + T79; + T7c = T79 - T72; + } + { + E T2e, T2Z, T6Y, T6Z; + T2e = T1Q + T2d; + T2Z = T2B + T2Y; + T30 = T2e + T2Z; + T7b = T2Z - T2e; + T6Y = T6J + T6K; + T6Z = T6O + T6P; + T70 = T6Y - T6Z; + T71 = T6Y + T6Z; + } + ri[WS(rs, 16)] = T1t - T30; + ii[WS(rs, 16)] = T7a - T71; + ri[0] = T1t + T30; + ii[0] = T71 + T7a; + ri[WS(rs, 24)] = T6X - T70; + ii[WS(rs, 24)] = T7c - T7b; + ri[WS(rs, 8)] = T6X + T70; + ii[WS(rs, 8)] = T7b + T7c; + } + { + E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; + { + E T6D, T6G, T7e, T7f; + T6D = Tj - TG; + T6G = T6E - T6F; + T6H = T6D + T6G; + T6T = T6D - T6G; + T7e = T1r - T14; + T7f = T78 - T73; + T7g = T7e + T7f; + T7i = T7f - T7e; + } + { + E T6I, T6L, T6N, T6Q; + T6I = T1Q - T2d; + T6L = T6J - T6K; + T6M = T6I + T6L; + T6U = T6L - T6I; + T6N = T2B - T2Y; + T6Q = T6O - T6P; + T6R = T6N - T6Q; + T6V = T6N + T6Q; + } + { + E T6S, T7d, T6W, T7h; + T6S = KP707106781 * (T6M + T6R); + ri[WS(rs, 20)] = T6H - T6S; + ri[WS(rs, 4)] = T6H + T6S; + T7d = KP707106781 * (T6U + T6V); + ii[WS(rs, 4)] = T7d + T7g; + ii[WS(rs, 20)] = T7g - T7d; + T6W = KP707106781 * (T6U - T6V); + ri[WS(rs, 28)] = T6T - T6W; + ri[WS(rs, 12)] = T6T + T6W; + T7h = KP707106781 * (T6R - T6M); + ii[WS(rs, 12)] = T7h + T7i; + ii[WS(rs, 28)] = T7i - T7h; + } + } + { + E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; + E T6l; + { + E T5O, T5T, T60, T65; + T5J = T5F - T5I; + T7n = T7l + T7m; + T7t = T7m - T7l; + T6n = T5F + T5I; + T5O = T5M - T5N; + T5T = T5P + T5S; + T5U = KP707106781 * (T5O - T5T); + T7k = KP707106781 * (T5O + T5T); + { + E T6v, T6w, T6o, T6p; + T6v = T67 + T6a; + T6w = T6e + T6f; + T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); + T6B = FMA(KP923879532, T6w, KP382683432 * T6v); + T6o = T5N + T5M; + T6p = T5P - T5S; + T6q = KP707106781 * (T6o + T6p); + T7s = KP707106781 * (T6p - T6o); + } + T60 = T5Y - T5Z; + T65 = T61 - T64; + T66 = FMA(KP923879532, T60, KP382683432 * T65); + T6k = FNMS(KP923879532, T65, KP382683432 * T60); + { + E T6s, T6t, T6b, T6g; + T6s = T5Y + T5Z; + T6t = T61 + T64; + T6u = FMA(KP382683432, T6s, KP923879532 * T6t); + T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); + T6b = T67 - T6a; + T6g = T6e - T6f; + T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); + T6l = FMA(KP382683432, T6g, KP923879532 * T6b); + } + } + { + E T5V, T6i, T7r, T7u; + T5V = T5J + T5U; + T6i = T66 + T6h; + ri[WS(rs, 22)] = T5V - T6i; + ri[WS(rs, 6)] = T5V + T6i; + T7r = T6k + T6l; + T7u = T7s + T7t; + ii[WS(rs, 6)] = T7r + T7u; + ii[WS(rs, 22)] = T7u - T7r; + } + { + E T6j, T6m, T7v, T7w; + T6j = T5J - T5U; + T6m = T6k - T6l; + ri[WS(rs, 30)] = T6j - T6m; + ri[WS(rs, 14)] = T6j + T6m; + T7v = T6h - T66; + T7w = T7t - T7s; + ii[WS(rs, 14)] = T7v + T7w; + ii[WS(rs, 30)] = T7w - T7v; + } + { + E T6r, T6y, T7j, T7o; + T6r = T6n + T6q; + T6y = T6u + T6x; + ri[WS(rs, 18)] = T6r - T6y; + ri[WS(rs, 2)] = T6r + T6y; + T7j = T6A + T6B; + T7o = T7k + T7n; + ii[WS(rs, 2)] = T7j + T7o; + ii[WS(rs, 18)] = T7o - T7j; + } + { + E T6z, T6C, T7p, T7q; + T6z = T6n - T6q; + T6C = T6A - T6B; + ri[WS(rs, 26)] = T6z - T6C; + ri[WS(rs, 10)] = T6z + T6C; + T7p = T6x - T6u; + T7q = T7n - T7k; + ii[WS(rs, 10)] = T7p + T7q; + ii[WS(rs, 26)] = T7q - T7p; + } + } + { + E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; + E T4B, T3g, T7P; + T3g = KP707106781 * (T3a - T3f); + T3h = T35 - T3g; + T4D = T35 + T3g; + T7P = KP707106781 * (T4V - T4U); + T7R = T7P + T7Q; + T7X = T7Q - T7P; + { + E T3s, T3D, T4L, T4M; + T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); + T3D = FMA(KP382683432, T3x, KP923879532 * T3C); + T3E = T3s - T3D; + T7O = T3s + T3D; + T4L = T4b + T4m; + T4M = T4s + T4v; + T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); + T4R = FMA(KP831469612, T4M, KP555570233 * T4L); + } + { + E T3W, T45, T4E, T4F; + T3W = T3K - T3V; + T45 = T41 - T44; + T46 = FMA(KP980785280, T3W, KP195090322 * T45); + T4A = FNMS(KP980785280, T45, KP195090322 * T3W); + T4E = FMA(KP923879532, T3m, KP382683432 * T3r); + T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); + T4G = T4E + T4F; + T7W = T4F - T4E; + } + { + E T4I, T4J, T4n, T4w; + T4I = T3K + T3V; + T4J = T41 + T44; + T4K = FMA(KP555570233, T4I, KP831469612 * T4J); + T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); + T4n = T4b - T4m; + T4w = T4s - T4v; + T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); + T4B = FMA(KP195090322, T4w, KP980785280 * T4n); + } + { + E T3F, T4y, T7V, T7Y; + T3F = T3h + T3E; + T4y = T46 + T4x; + ri[WS(rs, 23)] = T3F - T4y; + ri[WS(rs, 7)] = T3F + T4y; + T7V = T4A + T4B; + T7Y = T7W + T7X; + ii[WS(rs, 7)] = T7V + T7Y; + ii[WS(rs, 23)] = T7Y - T7V; + } + { + E T4z, T4C, T7Z, T80; + T4z = T3h - T3E; + T4C = T4A - T4B; + ri[WS(rs, 31)] = T4z - T4C; + ri[WS(rs, 15)] = T4z + T4C; + T7Z = T4x - T46; + T80 = T7X - T7W; + ii[WS(rs, 15)] = T7Z + T80; + ii[WS(rs, 31)] = T80 - T7Z; + } + { + E T4H, T4O, T7N, T7S; + T4H = T4D + T4G; + T4O = T4K + T4N; + ri[WS(rs, 19)] = T4H - T4O; + ri[WS(rs, 3)] = T4H + T4O; + T7N = T4Q + T4R; + T7S = T7O + T7R; + ii[WS(rs, 3)] = T7N + T7S; + ii[WS(rs, 19)] = T7S - T7N; + } + { + E T4P, T4S, T7T, T7U; + T4P = T4D - T4G; + T4S = T4Q - T4R; + ri[WS(rs, 27)] = T4P - T4S; + ri[WS(rs, 11)] = T4P + T4S; + T7T = T4N - T4K; + T7U = T7R - T7O; + ii[WS(rs, 11)] = T7T + T7U; + ii[WS(rs, 27)] = T7U - T7T; + } + } + { + E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; + E T5n, T4W, T7z; + T4W = KP707106781 * (T4U + T4V); + T4X = T4T - T4W; + T5p = T4T + T4W; + T7z = KP707106781 * (T3a + T3f); + T7D = T7z + T7C; + T7J = T7C - T7z; + { + E T50, T53, T5x, T5y; + T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); + T53 = FMA(KP923879532, T51, KP382683432 * T52); + T54 = T50 - T53; + T7y = T50 + T53; + T5x = T5d + T5e; + T5y = T5g + T5h; + T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); + T5D = FMA(KP195090322, T5x, KP980785280 * T5y); + } + { + E T58, T5b, T5q, T5r; + T58 = T56 - T57; + T5b = T59 - T5a; + T5c = FMA(KP555570233, T58, KP831469612 * T5b); + T5m = FNMS(KP831469612, T58, KP555570233 * T5b); + T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); + T5r = FNMS(KP382683432, T51, KP923879532 * T52); + T5s = T5q + T5r; + T7I = T5r - T5q; + } + { + E T5u, T5v, T5f, T5i; + T5u = T56 + T57; + T5v = T59 + T5a; + T5w = FMA(KP980785280, T5u, KP195090322 * T5v); + T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); + T5f = T5d - T5e; + T5i = T5g - T5h; + T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); + T5n = FMA(KP831469612, T5f, KP555570233 * T5i); + } + { + E T55, T5k, T7H, T7K; + T55 = T4X + T54; + T5k = T5c + T5j; + ri[WS(rs, 21)] = T55 - T5k; + ri[WS(rs, 5)] = T55 + T5k; + T7H = T5m + T5n; + T7K = T7I + T7J; + ii[WS(rs, 5)] = T7H + T7K; + ii[WS(rs, 21)] = T7K - T7H; + } + { + E T5l, T5o, T7L, T7M; + T5l = T4X - T54; + T5o = T5m - T5n; + ri[WS(rs, 29)] = T5l - T5o; + ri[WS(rs, 13)] = T5l + T5o; + T7L = T5j - T5c; + T7M = T7J - T7I; + ii[WS(rs, 13)] = T7L + T7M; + ii[WS(rs, 29)] = T7M - T7L; + } + { + E T5t, T5A, T7x, T7E; + T5t = T5p + T5s; + T5A = T5w + T5z; + ri[WS(rs, 17)] = T5t - T5A; + ri[WS(rs, 1)] = T5t + T5A; + T7x = T5C + T5D; + T7E = T7y + T7D; + ii[WS(rs, 1)] = T7x + T7E; + ii[WS(rs, 17)] = T7E - T7x; + } + { + E T5B, T5E, T7F, T7G; + T5B = T5p - T5s; + T5E = T5C - T5D; + ri[WS(rs, 25)] = T5B - T5E; + ri[WS(rs, 9)] = T5B + T5E; + T7F = T5z - T5w; + T7G = T7D - T7y; + ii[WS(rs, 9)] = T7F + T7G; + ii[WS(rs, 25)] = T7G - T7F; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 32}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {340, 114, 94, 0}, 0, 0, 0 }; + +void X(codelet_t1_32) (planner *p) { + X(kdft_dit_register) (p, t1_32, &desc); +} +#endif /* HAVE_FMA */