comparison src/fftw-3.3.3/dft/scalar/codelets/t1_32.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
94:d278df1123f9 95:89f5e221ed7b
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Sun Nov 25 07:35:51 EST 2012 */
23
24 #include "codelet-dft.h"
25
26 #ifdef HAVE_FMA
27
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include t.h */
29
30 /*
31 * This function contains 434 FP additions, 260 FP multiplications,
32 * (or, 236 additions, 62 multiplications, 198 fused multiply/add),
33 * 135 stack variables, 7 constants, and 128 memory accesses
34 */
35 #include "t.h"
36
37 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
41 DK(KP668178637, +0.668178637919298919997757686523080761552472251);
42 DK(KP198912367, +0.198912367379658006911597622644676228597850501);
43 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44 DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46 {
47 INT m;
48 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
49 E T90, T8Z;
50 {
51 E T8x, T87, T8, T3w, T83, T3B, T8y, Tl, T6F, Tz, T3J, T5T, T6G, TM, T3Q;
52 E T5U, T46, T5Y, T7D, T6L, T5X, T3Z, T6M, T1f, T7E, T6R, T60, T4e, T6O, T1G;
53 E T61, T4l, T78, T7N, T54, T6f, T32, T7b, T6c, T5r, T6X, T7I, T4v, T68, T29;
54 E T70, T65, T4S, T5s, T5b, T7O, T7e, T79, T3t, T5t, T5i, T4H, T2y, T4A, T71;
55 E T2m, T4B, T4F, T2s;
56 {
57 E T44, T1d, T3X, T6J, T11, T40, T42, T17, T5h, T5c;
58 {
59 E Ta, Td, Tg, T3x, Tb, Tj, Tf, Tc, Ti;
60 {
61 E T1, T86, T3, T6, T2, T5;
62 T1 = ri[0];
63 T86 = ii[0];
64 T3 = ri[WS(rs, 16)];
65 T6 = ii[WS(rs, 16)];
66 T2 = W[30];
67 T5 = W[31];
68 {
69 E T84, T4, T9, T85, T7;
70 Ta = ri[WS(rs, 8)];
71 Td = ii[WS(rs, 8)];
72 T84 = T2 * T6;
73 T4 = T2 * T3;
74 T9 = W[14];
75 Tg = ri[WS(rs, 24)];
76 T85 = FNMS(T5, T3, T84);
77 T7 = FMA(T5, T6, T4);
78 T3x = T9 * Td;
79 Tb = T9 * Ta;
80 T8x = T86 - T85;
81 T87 = T85 + T86;
82 T8 = T1 + T7;
83 T3w = T1 - T7;
84 Tj = ii[WS(rs, 24)];
85 Tf = W[46];
86 }
87 Tc = W[15];
88 Ti = W[47];
89 }
90 {
91 E Tu, Tx, T3F, Ts, Tw, T3G, Tv;
92 {
93 E To, Tr, Tp, T3E, Tq, Tt;
94 {
95 E T3y, Te, T3A, Tk, T3z, Th, Tn;
96 To = ri[WS(rs, 4)];
97 T3z = Tf * Tj;
98 Th = Tf * Tg;
99 T3y = FNMS(Tc, Ta, T3x);
100 Te = FMA(Tc, Td, Tb);
101 T3A = FNMS(Ti, Tg, T3z);
102 Tk = FMA(Ti, Tj, Th);
103 Tr = ii[WS(rs, 4)];
104 Tn = W[6];
105 T83 = T3y + T3A;
106 T3B = T3y - T3A;
107 T8y = Te - Tk;
108 Tl = Te + Tk;
109 Tp = Tn * To;
110 T3E = Tn * Tr;
111 }
112 Tq = W[7];
113 Tu = ri[WS(rs, 20)];
114 Tx = ii[WS(rs, 20)];
115 Tt = W[38];
116 T3F = FNMS(Tq, To, T3E);
117 Ts = FMA(Tq, Tr, Tp);
118 Tw = W[39];
119 T3G = Tt * Tx;
120 Tv = Tt * Tu;
121 }
122 {
123 E T3M, TF, TH, TK, TG, TJ, TE, TD, TC;
124 {
125 E TB, T3H, Ty, TA, T3I, T3D, T3L;
126 TB = ri[WS(rs, 28)];
127 TE = ii[WS(rs, 28)];
128 T3H = FNMS(Tw, Tu, T3G);
129 Ty = FMA(Tw, Tx, Tv);
130 TA = W[54];
131 TD = W[55];
132 T6F = T3F + T3H;
133 T3I = T3F - T3H;
134 Tz = Ts + Ty;
135 T3D = Ts - Ty;
136 T3L = TA * TE;
137 TC = TA * TB;
138 T3J = T3D + T3I;
139 T5T = T3I - T3D;
140 T3M = FNMS(TD, TB, T3L);
141 }
142 TF = FMA(TD, TE, TC);
143 TH = ri[WS(rs, 12)];
144 TK = ii[WS(rs, 12)];
145 TG = W[22];
146 TJ = W[23];
147 {
148 E TU, T3U, T13, T16, T3W, T10, T12, T15, T41, T14;
149 {
150 E T19, T1c, T18, T1b, T3P, T3K;
151 {
152 E TQ, TT, T3N, TI, TP, TS;
153 TQ = ri[WS(rs, 2)];
154 TT = ii[WS(rs, 2)];
155 T3N = TG * TK;
156 TI = TG * TH;
157 TP = W[2];
158 TS = W[3];
159 {
160 E T3O, TL, T3T, TR;
161 T3O = FNMS(TJ, TH, T3N);
162 TL = FMA(TJ, TK, TI);
163 T3T = TP * TT;
164 TR = TP * TQ;
165 T6G = T3M + T3O;
166 T3P = T3M - T3O;
167 TM = TF + TL;
168 T3K = TF - TL;
169 TU = FMA(TS, TT, TR);
170 T3U = FNMS(TS, TQ, T3T);
171 }
172 }
173 T3Q = T3K - T3P;
174 T5U = T3K + T3P;
175 T19 = ri[WS(rs, 26)];
176 T1c = ii[WS(rs, 26)];
177 T18 = W[50];
178 T1b = W[51];
179 {
180 E TW, TZ, TY, T3V, TX, T43, T1a, TV;
181 TW = ri[WS(rs, 18)];
182 TZ = ii[WS(rs, 18)];
183 T43 = T18 * T1c;
184 T1a = T18 * T19;
185 TV = W[34];
186 TY = W[35];
187 T44 = FNMS(T1b, T19, T43);
188 T1d = FMA(T1b, T1c, T1a);
189 T3V = TV * TZ;
190 TX = TV * TW;
191 T13 = ri[WS(rs, 10)];
192 T16 = ii[WS(rs, 10)];
193 T3W = FNMS(TY, TW, T3V);
194 T10 = FMA(TY, TZ, TX);
195 T12 = W[18];
196 T15 = W[19];
197 }
198 }
199 T3X = T3U - T3W;
200 T6J = T3U + T3W;
201 T11 = TU + T10;
202 T40 = TU - T10;
203 T41 = T12 * T16;
204 T14 = T12 * T13;
205 T42 = FNMS(T15, T13, T41);
206 T17 = FMA(T15, T16, T14);
207 }
208 }
209 }
210 }
211 {
212 E T49, T1l, T4j, T1E, T1u, T1x, T1w, T4b, T1r, T4g, T1v;
213 {
214 E T1A, T1D, T1C, T4i, T1B;
215 {
216 E T1h, T1k, T1g, T1j, T48, T1i, T1z;
217 T1h = ri[WS(rs, 30)];
218 T1k = ii[WS(rs, 30)];
219 {
220 E T6K, T45, T1e, T3Y;
221 T6K = T42 + T44;
222 T45 = T42 - T44;
223 T1e = T17 + T1d;
224 T3Y = T17 - T1d;
225 T46 = T40 + T45;
226 T5Y = T40 - T45;
227 T7D = T6J + T6K;
228 T6L = T6J - T6K;
229 T5X = T3X + T3Y;
230 T3Z = T3X - T3Y;
231 T6M = T11 - T1e;
232 T1f = T11 + T1e;
233 T1g = W[58];
234 }
235 T1j = W[59];
236 T1A = ri[WS(rs, 22)];
237 T1D = ii[WS(rs, 22)];
238 T48 = T1g * T1k;
239 T1i = T1g * T1h;
240 T1z = W[42];
241 T1C = W[43];
242 T49 = FNMS(T1j, T1h, T48);
243 T1l = FMA(T1j, T1k, T1i);
244 T4i = T1z * T1D;
245 T1B = T1z * T1A;
246 }
247 {
248 E T1n, T1q, T1m, T1p, T4a, T1o, T1t;
249 T1n = ri[WS(rs, 14)];
250 T1q = ii[WS(rs, 14)];
251 T4j = FNMS(T1C, T1A, T4i);
252 T1E = FMA(T1C, T1D, T1B);
253 T1m = W[26];
254 T1p = W[27];
255 T1u = ri[WS(rs, 6)];
256 T1x = ii[WS(rs, 6)];
257 T4a = T1m * T1q;
258 T1o = T1m * T1n;
259 T1t = W[10];
260 T1w = W[11];
261 T4b = FNMS(T1p, T1n, T4a);
262 T1r = FMA(T1p, T1q, T1o);
263 T4g = T1t * T1x;
264 T1v = T1t * T1u;
265 }
266 }
267 {
268 E T4c, T6P, T1s, T4f, T4h, T1y;
269 T4c = T49 - T4b;
270 T6P = T49 + T4b;
271 T1s = T1l + T1r;
272 T4f = T1l - T1r;
273 T4h = FNMS(T1w, T1u, T4g);
274 T1y = FMA(T1w, T1x, T1v);
275 {
276 E T4k, T6Q, T4d, T1F;
277 T4k = T4h - T4j;
278 T6Q = T4h + T4j;
279 T4d = T1y - T1E;
280 T1F = T1y + T1E;
281 T7E = T6P + T6Q;
282 T6R = T6P - T6Q;
283 T60 = T4c + T4d;
284 T4e = T4c - T4d;
285 T6O = T1s - T1F;
286 T1G = T1s + T1F;
287 T61 = T4f - T4k;
288 T4l = T4f + T4k;
289 }
290 }
291 }
292 {
293 E T4Z, T2H, T5p, T30, T2Q, T2T, T2S, T51, T2N, T5m, T2R;
294 {
295 E T2W, T2Z, T2Y, T5o, T2X;
296 {
297 E T2D, T2G, T2C, T2F, T4Y, T2E, T2V;
298 T2D = ri[WS(rs, 31)];
299 T2G = ii[WS(rs, 31)];
300 T2C = W[60];
301 T2F = W[61];
302 T2W = ri[WS(rs, 23)];
303 T2Z = ii[WS(rs, 23)];
304 T4Y = T2C * T2G;
305 T2E = T2C * T2D;
306 T2V = W[44];
307 T2Y = W[45];
308 T4Z = FNMS(T2F, T2D, T4Y);
309 T2H = FMA(T2F, T2G, T2E);
310 T5o = T2V * T2Z;
311 T2X = T2V * T2W;
312 }
313 {
314 E T2J, T2M, T2I, T2L, T50, T2K, T2P;
315 T2J = ri[WS(rs, 15)];
316 T2M = ii[WS(rs, 15)];
317 T5p = FNMS(T2Y, T2W, T5o);
318 T30 = FMA(T2Y, T2Z, T2X);
319 T2I = W[28];
320 T2L = W[29];
321 T2Q = ri[WS(rs, 7)];
322 T2T = ii[WS(rs, 7)];
323 T50 = T2I * T2M;
324 T2K = T2I * T2J;
325 T2P = W[12];
326 T2S = W[13];
327 T51 = FNMS(T2L, T2J, T50);
328 T2N = FMA(T2L, T2M, T2K);
329 T5m = T2P * T2T;
330 T2R = T2P * T2Q;
331 }
332 }
333 {
334 E T52, T76, T2O, T5l, T5n, T2U;
335 T52 = T4Z - T51;
336 T76 = T4Z + T51;
337 T2O = T2H + T2N;
338 T5l = T2H - T2N;
339 T5n = FNMS(T2S, T2Q, T5m);
340 T2U = FMA(T2S, T2T, T2R);
341 {
342 E T5q, T77, T53, T31;
343 T5q = T5n - T5p;
344 T77 = T5n + T5p;
345 T53 = T2U - T30;
346 T31 = T2U + T30;
347 T78 = T76 - T77;
348 T7N = T76 + T77;
349 T54 = T52 - T53;
350 T6f = T52 + T53;
351 T32 = T2O + T31;
352 T7b = T2O - T31;
353 T6c = T5l - T5q;
354 T5r = T5l + T5q;
355 }
356 }
357 }
358 {
359 E T4q, T1O, T4Q, T27, T1X, T20, T1Z, T4s, T1U, T4N, T1Y;
360 {
361 E T23, T26, T25, T4P, T24;
362 {
363 E T1K, T1N, T1J, T1M, T4p, T1L, T22;
364 T1K = ri[WS(rs, 1)];
365 T1N = ii[WS(rs, 1)];
366 T1J = W[0];
367 T1M = W[1];
368 T23 = ri[WS(rs, 25)];
369 T26 = ii[WS(rs, 25)];
370 T4p = T1J * T1N;
371 T1L = T1J * T1K;
372 T22 = W[48];
373 T25 = W[49];
374 T4q = FNMS(T1M, T1K, T4p);
375 T1O = FMA(T1M, T1N, T1L);
376 T4P = T22 * T26;
377 T24 = T22 * T23;
378 }
379 {
380 E T1Q, T1T, T1P, T1S, T4r, T1R, T1W;
381 T1Q = ri[WS(rs, 17)];
382 T1T = ii[WS(rs, 17)];
383 T4Q = FNMS(T25, T23, T4P);
384 T27 = FMA(T25, T26, T24);
385 T1P = W[32];
386 T1S = W[33];
387 T1X = ri[WS(rs, 9)];
388 T20 = ii[WS(rs, 9)];
389 T4r = T1P * T1T;
390 T1R = T1P * T1Q;
391 T1W = W[16];
392 T1Z = W[17];
393 T4s = FNMS(T1S, T1Q, T4r);
394 T1U = FMA(T1S, T1T, T1R);
395 T4N = T1W * T20;
396 T1Y = T1W * T1X;
397 }
398 }
399 {
400 E T4t, T6V, T1V, T4M, T4O, T21;
401 T4t = T4q - T4s;
402 T6V = T4q + T4s;
403 T1V = T1O + T1U;
404 T4M = T1O - T1U;
405 T4O = FNMS(T1Z, T1X, T4N);
406 T21 = FMA(T1Z, T20, T1Y);
407 {
408 E T4R, T6W, T4u, T28;
409 T4R = T4O - T4Q;
410 T6W = T4O + T4Q;
411 T4u = T21 - T27;
412 T28 = T21 + T27;
413 T6X = T6V - T6W;
414 T7I = T6V + T6W;
415 T4v = T4t - T4u;
416 T68 = T4t + T4u;
417 T29 = T1V + T28;
418 T70 = T1V - T28;
419 T65 = T4M - T4R;
420 T4S = T4M + T4R;
421 }
422 }
423 }
424 {
425 E T56, T38, T5g, T3r, T3h, T3k, T3j, T58, T3e, T5d, T3i;
426 {
427 E T3n, T3q, T3p, T5f, T3o;
428 {
429 E T34, T37, T33, T36, T55, T35, T3m;
430 T34 = ri[WS(rs, 3)];
431 T37 = ii[WS(rs, 3)];
432 T33 = W[4];
433 T36 = W[5];
434 T3n = ri[WS(rs, 11)];
435 T3q = ii[WS(rs, 11)];
436 T55 = T33 * T37;
437 T35 = T33 * T34;
438 T3m = W[20];
439 T3p = W[21];
440 T56 = FNMS(T36, T34, T55);
441 T38 = FMA(T36, T37, T35);
442 T5f = T3m * T3q;
443 T3o = T3m * T3n;
444 }
445 {
446 E T3a, T3d, T39, T3c, T57, T3b, T3g;
447 T3a = ri[WS(rs, 19)];
448 T3d = ii[WS(rs, 19)];
449 T5g = FNMS(T3p, T3n, T5f);
450 T3r = FMA(T3p, T3q, T3o);
451 T39 = W[36];
452 T3c = W[37];
453 T3h = ri[WS(rs, 27)];
454 T3k = ii[WS(rs, 27)];
455 T57 = T39 * T3d;
456 T3b = T39 * T3a;
457 T3g = W[52];
458 T3j = W[53];
459 T58 = FNMS(T3c, T3a, T57);
460 T3e = FMA(T3c, T3d, T3b);
461 T5d = T3g * T3k;
462 T3i = T3g * T3h;
463 }
464 }
465 {
466 E T59, T7c, T3f, T5a, T5e, T3l, T7d, T3s;
467 T59 = T56 - T58;
468 T7c = T56 + T58;
469 T3f = T38 + T3e;
470 T5a = T38 - T3e;
471 T5e = FNMS(T3j, T3h, T5d);
472 T3l = FMA(T3j, T3k, T3i);
473 T5h = T5e - T5g;
474 T7d = T5e + T5g;
475 T3s = T3l + T3r;
476 T5c = T3l - T3r;
477 T5s = T5a + T59;
478 T5b = T59 - T5a;
479 T7O = T7c + T7d;
480 T7e = T7c - T7d;
481 T79 = T3s - T3f;
482 T3t = T3f + T3s;
483 }
484 }
485 {
486 E T4x, T2f, T2o, T2r, T4z, T2l, T2n, T2q, T4E, T2p;
487 {
488 E T2u, T2x, T2t, T2w;
489 {
490 E T2b, T2e, T2d, T4w, T2c, T2a;
491 T2b = ri[WS(rs, 5)];
492 T2e = ii[WS(rs, 5)];
493 T2a = W[8];
494 T5t = T5c - T5h;
495 T5i = T5c + T5h;
496 T2d = W[9];
497 T4w = T2a * T2e;
498 T2c = T2a * T2b;
499 T2u = ri[WS(rs, 13)];
500 T2x = ii[WS(rs, 13)];
501 T4x = FNMS(T2d, T2b, T4w);
502 T2f = FMA(T2d, T2e, T2c);
503 T2t = W[24];
504 T2w = W[25];
505 }
506 {
507 E T2h, T2k, T2j, T4y, T2i, T4G, T2v, T2g;
508 T2h = ri[WS(rs, 21)];
509 T2k = ii[WS(rs, 21)];
510 T4G = T2t * T2x;
511 T2v = T2t * T2u;
512 T2g = W[40];
513 T2j = W[41];
514 T4H = FNMS(T2w, T2u, T4G);
515 T2y = FMA(T2w, T2x, T2v);
516 T4y = T2g * T2k;
517 T2i = T2g * T2h;
518 T2o = ri[WS(rs, 29)];
519 T2r = ii[WS(rs, 29)];
520 T4z = FNMS(T2j, T2h, T4y);
521 T2l = FMA(T2j, T2k, T2i);
522 T2n = W[56];
523 T2q = W[57];
524 }
525 }
526 T4A = T4x - T4z;
527 T71 = T4x + T4z;
528 T2m = T2f + T2l;
529 T4B = T2f - T2l;
530 T4E = T2n * T2r;
531 T2p = T2n * T2o;
532 T4F = FNMS(T2q, T2o, T4E);
533 T2s = FMA(T2q, T2r, T2p);
534 }
535 }
536 {
537 E T4T, T4C, T4J, T4U, T7y, T8q, T8p, T7B;
538 {
539 E T6E, T8j, T73, T6Y, T6H, T8k, T8i, T8h;
540 {
541 E T7C, TO, T80, T7Z, T8e, T89, T8d, T1H, T8b, T3v, T7T, T7L, T7U, T7Q, T2A;
542 E T7K, T7P, T7W, T1I;
543 {
544 E T7X, T7Y, T7J, T82, T88;
545 {
546 E Tm, T4I, T72, T4D, T2z, TN;
547 T6E = T8 - Tl;
548 Tm = T8 + Tl;
549 T4T = T4B + T4A;
550 T4C = T4A - T4B;
551 T4I = T4F - T4H;
552 T72 = T4F + T4H;
553 T4D = T2s - T2y;
554 T2z = T2s + T2y;
555 TN = Tz + TM;
556 T8j = TM - Tz;
557 T73 = T71 - T72;
558 T7J = T71 + T72;
559 T4J = T4D + T4I;
560 T4U = T4D - T4I;
561 T2A = T2m + T2z;
562 T6Y = T2z - T2m;
563 T7C = Tm - TN;
564 TO = Tm + TN;
565 }
566 T7K = T7I - T7J;
567 T7X = T7I + T7J;
568 T7Y = T7N + T7O;
569 T7P = T7N - T7O;
570 T6H = T6F - T6G;
571 T82 = T6F + T6G;
572 T88 = T83 + T87;
573 T8k = T87 - T83;
574 T80 = T7X + T7Y;
575 T7Z = T7X - T7Y;
576 T8e = T88 - T82;
577 T89 = T82 + T88;
578 }
579 {
580 E T7H, T7M, T2B, T3u;
581 T7H = T29 - T2A;
582 T2B = T29 + T2A;
583 T3u = T32 + T3t;
584 T7M = T32 - T3t;
585 T8d = T1G - T1f;
586 T1H = T1f + T1G;
587 T8b = T3u - T2B;
588 T3v = T2B + T3u;
589 T7T = T7K - T7H;
590 T7L = T7H + T7K;
591 T7U = T7M + T7P;
592 T7Q = T7M - T7P;
593 }
594 T7W = TO - T1H;
595 T1I = TO + T1H;
596 {
597 E T7S, T8f, T8g, T7V;
598 {
599 E T7R, T8c, T8a, T7G, T81, T7F;
600 T8i = T7Q - T7L;
601 T7R = T7L + T7Q;
602 T81 = T7D + T7E;
603 T7F = T7D - T7E;
604 ri[0] = T1I + T3v;
605 ri[WS(rs, 16)] = T1I - T3v;
606 ri[WS(rs, 8)] = T7W + T7Z;
607 ri[WS(rs, 24)] = T7W - T7Z;
608 T8c = T89 - T81;
609 T8a = T81 + T89;
610 T7G = T7C + T7F;
611 T7S = T7C - T7F;
612 T8h = T8e - T8d;
613 T8f = T8d + T8e;
614 ii[WS(rs, 24)] = T8c - T8b;
615 ii[WS(rs, 8)] = T8b + T8c;
616 ii[WS(rs, 16)] = T8a - T80;
617 ii[0] = T80 + T8a;
618 ri[WS(rs, 4)] = FMA(KP707106781, T7R, T7G);
619 ri[WS(rs, 20)] = FNMS(KP707106781, T7R, T7G);
620 T8g = T7T + T7U;
621 T7V = T7T - T7U;
622 }
623 ii[WS(rs, 20)] = FNMS(KP707106781, T8g, T8f);
624 ii[WS(rs, 4)] = FMA(KP707106781, T8g, T8f);
625 ri[WS(rs, 12)] = FMA(KP707106781, T7V, T7S);
626 ri[WS(rs, 28)] = FNMS(KP707106781, T7V, T7S);
627 }
628 }
629 {
630 E T7f, T7m, T6I, T7a, T7A, T7w, T8r, T8l, T8m, T6T, T7j, T75, T8s, T7p, T7z;
631 E T7t;
632 {
633 E T7n, T6N, T6S, T7o, T7u, T7v;
634 T7f = T7b - T7e;
635 T7u = T7b + T7e;
636 ii[WS(rs, 28)] = FNMS(KP707106781, T8i, T8h);
637 ii[WS(rs, 12)] = FMA(KP707106781, T8i, T8h);
638 T7m = T6E + T6H;
639 T6I = T6E - T6H;
640 T7v = T78 + T79;
641 T7a = T78 - T79;
642 T7n = T6M + T6L;
643 T6N = T6L - T6M;
644 T7A = FMA(KP414213562, T7u, T7v);
645 T7w = FNMS(KP414213562, T7v, T7u);
646 T8r = T8k - T8j;
647 T8l = T8j + T8k;
648 T6S = T6O + T6R;
649 T7o = T6O - T6R;
650 {
651 E T7s, T7r, T6Z, T74;
652 T7s = T6X + T6Y;
653 T6Z = T6X - T6Y;
654 T74 = T70 - T73;
655 T7r = T70 + T73;
656 T8m = T6N + T6S;
657 T6T = T6N - T6S;
658 T7j = FNMS(KP414213562, T6Z, T74);
659 T75 = FMA(KP414213562, T74, T6Z);
660 T8s = T7o - T7n;
661 T7p = T7n + T7o;
662 T7z = FNMS(KP414213562, T7r, T7s);
663 T7t = FMA(KP414213562, T7s, T7r);
664 }
665 }
666 {
667 E T7i, T6U, T8t, T8v, T7k, T7g;
668 T7i = FNMS(KP707106781, T6T, T6I);
669 T6U = FMA(KP707106781, T6T, T6I);
670 T8t = FMA(KP707106781, T8s, T8r);
671 T8v = FNMS(KP707106781, T8s, T8r);
672 T7k = FMA(KP414213562, T7a, T7f);
673 T7g = FNMS(KP414213562, T7f, T7a);
674 {
675 E T7q, T7x, T8n, T8o;
676 T7y = FNMS(KP707106781, T7p, T7m);
677 T7q = FMA(KP707106781, T7p, T7m);
678 {
679 E T7l, T8u, T8w, T7h;
680 T7l = T7j + T7k;
681 T8u = T7k - T7j;
682 T8w = T75 + T7g;
683 T7h = T75 - T7g;
684 ri[WS(rs, 30)] = FMA(KP923879532, T7l, T7i);
685 ri[WS(rs, 14)] = FNMS(KP923879532, T7l, T7i);
686 ii[WS(rs, 22)] = FNMS(KP923879532, T8u, T8t);
687 ii[WS(rs, 6)] = FMA(KP923879532, T8u, T8t);
688 ii[WS(rs, 30)] = FMA(KP923879532, T8w, T8v);
689 ii[WS(rs, 14)] = FNMS(KP923879532, T8w, T8v);
690 ri[WS(rs, 6)] = FMA(KP923879532, T7h, T6U);
691 ri[WS(rs, 22)] = FNMS(KP923879532, T7h, T6U);
692 T7x = T7t + T7w;
693 T8q = T7w - T7t;
694 }
695 T8p = FNMS(KP707106781, T8m, T8l);
696 T8n = FMA(KP707106781, T8m, T8l);
697 T8o = T7z + T7A;
698 T7B = T7z - T7A;
699 ri[WS(rs, 2)] = FMA(KP923879532, T7x, T7q);
700 ri[WS(rs, 18)] = FNMS(KP923879532, T7x, T7q);
701 ii[WS(rs, 18)] = FNMS(KP923879532, T8o, T8n);
702 ii[WS(rs, 2)] = FMA(KP923879532, T8o, T8n);
703 }
704 }
705 }
706 }
707 {
708 E T5S, T8O, T8N, T5V, T6d, T6g, T66, T69, T8G, T8F;
709 {
710 E T5C, T3S, T8C, T4n, T8H, T8B, T8I, T5F, T5k, T5L, T5u, T4K, T4V;
711 {
712 E T5D, T5E, T8z, T8A, T5j;
713 {
714 E T3C, T3R, T47, T4m;
715 T5S = T3w - T3B;
716 T3C = T3w + T3B;
717 ri[WS(rs, 10)] = FMA(KP923879532, T7B, T7y);
718 ri[WS(rs, 26)] = FNMS(KP923879532, T7B, T7y);
719 ii[WS(rs, 26)] = FNMS(KP923879532, T8q, T8p);
720 ii[WS(rs, 10)] = FMA(KP923879532, T8q, T8p);
721 T3R = T3J + T3Q;
722 T8O = T3Q - T3J;
723 T5D = FMA(KP414213562, T3Z, T46);
724 T47 = FNMS(KP414213562, T46, T3Z);
725 T4m = FMA(KP414213562, T4l, T4e);
726 T5E = FNMS(KP414213562, T4e, T4l);
727 T8N = T8y + T8x;
728 T8z = T8x - T8y;
729 T5C = FMA(KP707106781, T3R, T3C);
730 T3S = FNMS(KP707106781, T3R, T3C);
731 T8C = T47 + T4m;
732 T4n = T47 - T4m;
733 T8A = T5T + T5U;
734 T5V = T5T - T5U;
735 }
736 T6d = T5i - T5b;
737 T5j = T5b + T5i;
738 T8H = FNMS(KP707106781, T8A, T8z);
739 T8B = FMA(KP707106781, T8A, T8z);
740 T8I = T5E - T5D;
741 T5F = T5D + T5E;
742 T5k = FNMS(KP707106781, T5j, T54);
743 T5L = FMA(KP707106781, T5j, T54);
744 T5u = T5s + T5t;
745 T6g = T5s - T5t;
746 T66 = T4J - T4C;
747 T4K = T4C + T4J;
748 T4V = T4T + T4U;
749 T69 = T4T - T4U;
750 }
751 {
752 E T5M, T5Q, T5J, T5P, T8L, T8M;
753 {
754 E T5y, T4o, T5A, T5w, T5z, T4X, T8J, T5K, T5v, T8K, T5B, T5x;
755 T5y = FNMS(KP923879532, T4n, T3S);
756 T4o = FMA(KP923879532, T4n, T3S);
757 T5K = FMA(KP707106781, T5u, T5r);
758 T5v = FNMS(KP707106781, T5u, T5r);
759 {
760 E T5I, T4L, T5H, T4W;
761 T5I = FMA(KP707106781, T4K, T4v);
762 T4L = FNMS(KP707106781, T4K, T4v);
763 T5H = FMA(KP707106781, T4V, T4S);
764 T4W = FNMS(KP707106781, T4V, T4S);
765 T5M = FNMS(KP198912367, T5L, T5K);
766 T5Q = FMA(KP198912367, T5K, T5L);
767 T5A = FMA(KP668178637, T5k, T5v);
768 T5w = FNMS(KP668178637, T5v, T5k);
769 T5J = FMA(KP198912367, T5I, T5H);
770 T5P = FNMS(KP198912367, T5H, T5I);
771 T5z = FNMS(KP668178637, T4L, T4W);
772 T4X = FMA(KP668178637, T4W, T4L);
773 }
774 T8J = FMA(KP923879532, T8I, T8H);
775 T8L = FNMS(KP923879532, T8I, T8H);
776 T8K = T5A - T5z;
777 T5B = T5z + T5A;
778 T8M = T4X + T5w;
779 T5x = T4X - T5w;
780 ii[WS(rs, 21)] = FNMS(KP831469612, T8K, T8J);
781 ii[WS(rs, 5)] = FMA(KP831469612, T8K, T8J);
782 ri[WS(rs, 5)] = FMA(KP831469612, T5x, T4o);
783 ri[WS(rs, 21)] = FNMS(KP831469612, T5x, T4o);
784 ri[WS(rs, 29)] = FMA(KP831469612, T5B, T5y);
785 ri[WS(rs, 13)] = FNMS(KP831469612, T5B, T5y);
786 }
787 {
788 E T5O, T8D, T8E, T5R, T5G, T5N;
789 T5O = FNMS(KP923879532, T5F, T5C);
790 T5G = FMA(KP923879532, T5F, T5C);
791 T5N = T5J + T5M;
792 T8G = T5M - T5J;
793 T8F = FNMS(KP923879532, T8C, T8B);
794 T8D = FMA(KP923879532, T8C, T8B);
795 ii[WS(rs, 29)] = FMA(KP831469612, T8M, T8L);
796 ii[WS(rs, 13)] = FNMS(KP831469612, T8M, T8L);
797 ri[WS(rs, 1)] = FMA(KP980785280, T5N, T5G);
798 ri[WS(rs, 17)] = FNMS(KP980785280, T5N, T5G);
799 T8E = T5P + T5Q;
800 T5R = T5P - T5Q;
801 ii[WS(rs, 17)] = FNMS(KP980785280, T8E, T8D);
802 ii[WS(rs, 1)] = FMA(KP980785280, T8E, T8D);
803 ri[WS(rs, 9)] = FMA(KP980785280, T5R, T5O);
804 ri[WS(rs, 25)] = FNMS(KP980785280, T5R, T5O);
805 }
806 }
807 }
808 {
809 E T6o, T5W, T8W, T63, T8V, T8P, T8Q, T6r, T67, T6u, T6y, T6C, T6m, T6i;
810 {
811 E T6p, T5Z, T62, T6q;
812 T6p = FNMS(KP414213562, T5X, T5Y);
813 T5Z = FMA(KP414213562, T5Y, T5X);
814 ii[WS(rs, 25)] = FNMS(KP980785280, T8G, T8F);
815 ii[WS(rs, 9)] = FMA(KP980785280, T8G, T8F);
816 T6o = FNMS(KP707106781, T5V, T5S);
817 T5W = FMA(KP707106781, T5V, T5S);
818 T62 = FNMS(KP414213562, T61, T60);
819 T6q = FMA(KP414213562, T60, T61);
820 T8W = T5Z + T62;
821 T63 = T5Z - T62;
822 T8V = FNMS(KP707106781, T8O, T8N);
823 T8P = FMA(KP707106781, T8O, T8N);
824 {
825 E T6x, T6e, T6w, T6h;
826 T8Q = T6q - T6p;
827 T6r = T6p + T6q;
828 T6x = FMA(KP707106781, T6d, T6c);
829 T6e = FNMS(KP707106781, T6d, T6c);
830 T6w = FMA(KP707106781, T6g, T6f);
831 T6h = FNMS(KP707106781, T6g, T6f);
832 T67 = FNMS(KP707106781, T66, T65);
833 T6u = FMA(KP707106781, T66, T65);
834 T6y = FNMS(KP198912367, T6x, T6w);
835 T6C = FMA(KP198912367, T6w, T6x);
836 T6m = FMA(KP668178637, T6e, T6h);
837 T6i = FNMS(KP668178637, T6h, T6e);
838 }
839 }
840 {
841 E T6k, T64, T8R, T8T, T6t, T6a;
842 T6k = FNMS(KP923879532, T63, T5W);
843 T64 = FMA(KP923879532, T63, T5W);
844 T8R = FMA(KP923879532, T8Q, T8P);
845 T8T = FNMS(KP923879532, T8Q, T8P);
846 T6t = FMA(KP707106781, T69, T68);
847 T6a = FNMS(KP707106781, T69, T68);
848 {
849 E T6A, T8X, T8Y, T6D;
850 {
851 E T6s, T6B, T6l, T6b, T6z, T6v;
852 T6A = FMA(KP923879532, T6r, T6o);
853 T6s = FNMS(KP923879532, T6r, T6o);
854 T6v = FMA(KP198912367, T6u, T6t);
855 T6B = FNMS(KP198912367, T6t, T6u);
856 T6l = FNMS(KP668178637, T67, T6a);
857 T6b = FMA(KP668178637, T6a, T67);
858 T6z = T6v - T6y;
859 T90 = T6v + T6y;
860 T8Z = FMA(KP923879532, T8W, T8V);
861 T8X = FNMS(KP923879532, T8W, T8V);
862 {
863 E T6n, T8S, T8U, T6j;
864 T6n = T6l - T6m;
865 T8S = T6l + T6m;
866 T8U = T6i - T6b;
867 T6j = T6b + T6i;
868 ri[WS(rs, 7)] = FMA(KP980785280, T6z, T6s);
869 ri[WS(rs, 23)] = FNMS(KP980785280, T6z, T6s);
870 ri[WS(rs, 11)] = FMA(KP831469612, T6n, T6k);
871 ri[WS(rs, 27)] = FNMS(KP831469612, T6n, T6k);
872 ii[WS(rs, 19)] = FNMS(KP831469612, T8S, T8R);
873 ii[WS(rs, 3)] = FMA(KP831469612, T8S, T8R);
874 ii[WS(rs, 27)] = FNMS(KP831469612, T8U, T8T);
875 ii[WS(rs, 11)] = FMA(KP831469612, T8U, T8T);
876 ri[WS(rs, 3)] = FMA(KP831469612, T6j, T64);
877 ri[WS(rs, 19)] = FNMS(KP831469612, T6j, T64);
878 T8Y = T6C - T6B;
879 T6D = T6B + T6C;
880 }
881 }
882 ii[WS(rs, 23)] = FNMS(KP980785280, T8Y, T8X);
883 ii[WS(rs, 7)] = FMA(KP980785280, T8Y, T8X);
884 ri[WS(rs, 31)] = FMA(KP980785280, T6D, T6A);
885 ri[WS(rs, 15)] = FNMS(KP980785280, T6D, T6A);
886 }
887 }
888 }
889 }
890 }
891 }
892 ii[WS(rs, 31)] = FMA(KP980785280, T90, T8Z);
893 ii[WS(rs, 15)] = FNMS(KP980785280, T90, T8Z);
894 }
895 }
896 }
897
898 static const tw_instr twinstr[] = {
899 {TW_FULL, 0, 32},
900 {TW_NEXT, 1, 0}
901 };
902
903 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {236, 62, 198, 0}, 0, 0, 0 };
904
905 void X(codelet_t1_32) (planner *p) {
906 X(kdft_dit_register) (p, t1_32, &desc);
907 }
908 #else /* HAVE_FMA */
909
910 /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include t.h */
911
912 /*
913 * This function contains 434 FP additions, 208 FP multiplications,
914 * (or, 340 additions, 114 multiplications, 94 fused multiply/add),
915 * 96 stack variables, 7 constants, and 128 memory accesses
916 */
917 #include "t.h"
918
919 static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
920 {
921 DK(KP195090322, +0.195090322016128267848284868477022240927691618);
922 DK(KP980785280, +0.980785280403230449126182236134239036973933731);
923 DK(KP555570233, +0.555570233019602224742830813948532874374937191);
924 DK(KP831469612, +0.831469612302545237078788377617905756738560812);
925 DK(KP382683432, +0.382683432365089771728459984030398866761344562);
926 DK(KP923879532, +0.923879532511286756128183189396788286822416626);
927 DK(KP707106781, +0.707106781186547524400844362104849039284835938);
928 {
929 INT m;
930 for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
931 E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41;
932 E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U;
933 E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x;
934 E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P;
935 E T4m, T5h, T4v, T5e;
936 {
937 E T1, T76, T6, T75, Tc, T32, Th, T33;
938 T1 = ri[0];
939 T76 = ii[0];
940 {
941 E T3, T5, T2, T4;
942 T3 = ri[WS(rs, 16)];
943 T5 = ii[WS(rs, 16)];
944 T2 = W[30];
945 T4 = W[31];
946 T6 = FMA(T2, T3, T4 * T5);
947 T75 = FNMS(T4, T3, T2 * T5);
948 }
949 {
950 E T9, Tb, T8, Ta;
951 T9 = ri[WS(rs, 8)];
952 Tb = ii[WS(rs, 8)];
953 T8 = W[14];
954 Ta = W[15];
955 Tc = FMA(T8, T9, Ta * Tb);
956 T32 = FNMS(Ta, T9, T8 * Tb);
957 }
958 {
959 E Te, Tg, Td, Tf;
960 Te = ri[WS(rs, 24)];
961 Tg = ii[WS(rs, 24)];
962 Td = W[46];
963 Tf = W[47];
964 Th = FMA(Td, Te, Tf * Tg);
965 T33 = FNMS(Tf, Te, Td * Tg);
966 }
967 {
968 E T7, Ti, T7A, T7B;
969 T7 = T1 + T6;
970 Ti = Tc + Th;
971 Tj = T7 + Ti;
972 T5F = T7 - Ti;
973 T7A = T76 - T75;
974 T7B = Tc - Th;
975 T7C = T7A - T7B;
976 T7Q = T7B + T7A;
977 }
978 {
979 E T31, T34, T74, T77;
980 T31 = T1 - T6;
981 T34 = T32 - T33;
982 T35 = T31 - T34;
983 T4T = T31 + T34;
984 T74 = T32 + T33;
985 T77 = T75 + T76;
986 T78 = T74 + T77;
987 T7m = T77 - T74;
988 }
989 }
990 {
991 E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y;
992 {
993 E T1v, T1x, T1u, T1w;
994 T1v = ri[WS(rs, 1)];
995 T1x = ii[WS(rs, 1)];
996 T1u = W[0];
997 T1w = W[1];
998 T1y = FMA(T1u, T1v, T1w * T1x);
999 T3G = FNMS(T1w, T1v, T1u * T1x);
1000 }
1001 {
1002 E T1L, T1N, T1K, T1M;
1003 T1L = ri[WS(rs, 25)];
1004 T1N = ii[WS(rs, 25)];
1005 T1K = W[48];
1006 T1M = W[49];
1007 T1O = FMA(T1K, T1L, T1M * T1N);
1008 T3Z = FNMS(T1M, T1L, T1K * T1N);
1009 }
1010 {
1011 E T1A, T1C, T1z, T1B;
1012 T1A = ri[WS(rs, 17)];
1013 T1C = ii[WS(rs, 17)];
1014 T1z = W[32];
1015 T1B = W[33];
1016 T1D = FMA(T1z, T1A, T1B * T1C);
1017 T3H = FNMS(T1B, T1A, T1z * T1C);
1018 }
1019 {
1020 E T1G, T1I, T1F, T1H;
1021 T1G = ri[WS(rs, 9)];
1022 T1I = ii[WS(rs, 9)];
1023 T1F = W[16];
1024 T1H = W[17];
1025 T1J = FMA(T1F, T1G, T1H * T1I);
1026 T3Y = FNMS(T1H, T1G, T1F * T1I);
1027 }
1028 {
1029 E T1E, T1P, T5W, T5X;
1030 T1E = T1y + T1D;
1031 T1P = T1J + T1O;
1032 T1Q = T1E + T1P;
1033 T61 = T1E - T1P;
1034 T5W = T3G + T3H;
1035 T5X = T3Y + T3Z;
1036 T5Y = T5W - T5X;
1037 T6J = T5W + T5X;
1038 }
1039 {
1040 E T3I, T3J, T3X, T40;
1041 T3I = T3G - T3H;
1042 T3J = T1J - T1O;
1043 T3K = T3I + T3J;
1044 T59 = T3I - T3J;
1045 T3X = T1y - T1D;
1046 T40 = T3Y - T3Z;
1047 T41 = T3X - T40;
1048 T56 = T3X + T40;
1049 }
1050 }
1051 {
1052 E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48;
1053 {
1054 E T2g, T2i, T2f, T2h;
1055 T2g = ri[WS(rs, 31)];
1056 T2i = ii[WS(rs, 31)];
1057 T2f = W[60];
1058 T2h = W[61];
1059 T2j = FMA(T2f, T2g, T2h * T2i);
1060 T4o = FNMS(T2h, T2g, T2f * T2i);
1061 }
1062 {
1063 E T2w, T2y, T2v, T2x;
1064 T2w = ri[WS(rs, 23)];
1065 T2y = ii[WS(rs, 23)];
1066 T2v = W[44];
1067 T2x = W[45];
1068 T2z = FMA(T2v, T2w, T2x * T2y);
1069 T49 = FNMS(T2x, T2w, T2v * T2y);
1070 }
1071 {
1072 E T2l, T2n, T2k, T2m;
1073 T2l = ri[WS(rs, 15)];
1074 T2n = ii[WS(rs, 15)];
1075 T2k = W[28];
1076 T2m = W[29];
1077 T2o = FMA(T2k, T2l, T2m * T2n);
1078 T4p = FNMS(T2m, T2l, T2k * T2n);
1079 }
1080 {
1081 E T2r, T2t, T2q, T2s;
1082 T2r = ri[WS(rs, 7)];
1083 T2t = ii[WS(rs, 7)];
1084 T2q = W[12];
1085 T2s = W[13];
1086 T2u = FMA(T2q, T2r, T2s * T2t);
1087 T48 = FNMS(T2s, T2r, T2q * T2t);
1088 }
1089 {
1090 E T2p, T2A, T6c, T6d;
1091 T2p = T2j + T2o;
1092 T2A = T2u + T2z;
1093 T2B = T2p + T2A;
1094 T67 = T2p - T2A;
1095 T6c = T4o + T4p;
1096 T6d = T48 + T49;
1097 T6e = T6c - T6d;
1098 T6O = T6c + T6d;
1099 }
1100 {
1101 E T47, T4a, T4q, T4r;
1102 T47 = T2j - T2o;
1103 T4a = T48 - T49;
1104 T4b = T47 - T4a;
1105 T5d = T47 + T4a;
1106 T4q = T4o - T4p;
1107 T4r = T2u - T2z;
1108 T4s = T4q + T4r;
1109 T5g = T4q - T4r;
1110 }
1111 }
1112 {
1113 E To, T36, TE, T3d, Tt, T37, Tz, T3c;
1114 {
1115 E Tl, Tn, Tk, Tm;
1116 Tl = ri[WS(rs, 4)];
1117 Tn = ii[WS(rs, 4)];
1118 Tk = W[6];
1119 Tm = W[7];
1120 To = FMA(Tk, Tl, Tm * Tn);
1121 T36 = FNMS(Tm, Tl, Tk * Tn);
1122 }
1123 {
1124 E TB, TD, TA, TC;
1125 TB = ri[WS(rs, 12)];
1126 TD = ii[WS(rs, 12)];
1127 TA = W[22];
1128 TC = W[23];
1129 TE = FMA(TA, TB, TC * TD);
1130 T3d = FNMS(TC, TB, TA * TD);
1131 }
1132 {
1133 E Tq, Ts, Tp, Tr;
1134 Tq = ri[WS(rs, 20)];
1135 Ts = ii[WS(rs, 20)];
1136 Tp = W[38];
1137 Tr = W[39];
1138 Tt = FMA(Tp, Tq, Tr * Ts);
1139 T37 = FNMS(Tr, Tq, Tp * Ts);
1140 }
1141 {
1142 E Tw, Ty, Tv, Tx;
1143 Tw = ri[WS(rs, 28)];
1144 Ty = ii[WS(rs, 28)];
1145 Tv = W[54];
1146 Tx = W[55];
1147 Tz = FMA(Tv, Tw, Tx * Ty);
1148 T3c = FNMS(Tx, Tw, Tv * Ty);
1149 }
1150 {
1151 E Tu, TF, T5G, T5H;
1152 Tu = To + Tt;
1153 TF = Tz + TE;
1154 TG = Tu + TF;
1155 T7l = TF - Tu;
1156 T5G = T36 + T37;
1157 T5H = T3c + T3d;
1158 T5I = T5G - T5H;
1159 T73 = T5G + T5H;
1160 }
1161 {
1162 E T38, T39, T3b, T3e;
1163 T38 = T36 - T37;
1164 T39 = To - Tt;
1165 T3a = T38 - T39;
1166 T4U = T39 + T38;
1167 T3b = Tz - TE;
1168 T3e = T3c - T3d;
1169 T3f = T3b + T3e;
1170 T4V = T3b - T3e;
1171 }
1172 }
1173 {
1174 E TM, T3i, T12, T3p, TR, T3j, TX, T3o;
1175 {
1176 E TJ, TL, TI, TK;
1177 TJ = ri[WS(rs, 2)];
1178 TL = ii[WS(rs, 2)];
1179 TI = W[2];
1180 TK = W[3];
1181 TM = FMA(TI, TJ, TK * TL);
1182 T3i = FNMS(TK, TJ, TI * TL);
1183 }
1184 {
1185 E TZ, T11, TY, T10;
1186 TZ = ri[WS(rs, 26)];
1187 T11 = ii[WS(rs, 26)];
1188 TY = W[50];
1189 T10 = W[51];
1190 T12 = FMA(TY, TZ, T10 * T11);
1191 T3p = FNMS(T10, TZ, TY * T11);
1192 }
1193 {
1194 E TO, TQ, TN, TP;
1195 TO = ri[WS(rs, 18)];
1196 TQ = ii[WS(rs, 18)];
1197 TN = W[34];
1198 TP = W[35];
1199 TR = FMA(TN, TO, TP * TQ);
1200 T3j = FNMS(TP, TO, TN * TQ);
1201 }
1202 {
1203 E TU, TW, TT, TV;
1204 TU = ri[WS(rs, 10)];
1205 TW = ii[WS(rs, 10)];
1206 TT = W[18];
1207 TV = W[19];
1208 TX = FMA(TT, TU, TV * TW);
1209 T3o = FNMS(TV, TU, TT * TW);
1210 }
1211 {
1212 E TS, T13, T5K, T5L;
1213 TS = TM + TR;
1214 T13 = TX + T12;
1215 T14 = TS + T13;
1216 T5N = TS - T13;
1217 T5K = T3i + T3j;
1218 T5L = T3o + T3p;
1219 T5M = T5K - T5L;
1220 T6E = T5K + T5L;
1221 }
1222 {
1223 E T3k, T3l, T3n, T3q;
1224 T3k = T3i - T3j;
1225 T3l = TX - T12;
1226 T3m = T3k + T3l;
1227 T4Y = T3k - T3l;
1228 T3n = TM - TR;
1229 T3q = T3o - T3p;
1230 T3r = T3n - T3q;
1231 T4Z = T3n + T3q;
1232 }
1233 }
1234 {
1235 E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z;
1236 {
1237 E T16, T18, T15, T17;
1238 T16 = ri[WS(rs, 30)];
1239 T18 = ii[WS(rs, 30)];
1240 T15 = W[58];
1241 T17 = W[59];
1242 T19 = FMA(T15, T16, T17 * T18);
1243 T3t = FNMS(T17, T16, T15 * T18);
1244 }
1245 {
1246 E T1m, T1o, T1l, T1n;
1247 T1m = ri[WS(rs, 22)];
1248 T1o = ii[WS(rs, 22)];
1249 T1l = W[42];
1250 T1n = W[43];
1251 T1p = FMA(T1l, T1m, T1n * T1o);
1252 T3A = FNMS(T1n, T1m, T1l * T1o);
1253 }
1254 {
1255 E T1b, T1d, T1a, T1c;
1256 T1b = ri[WS(rs, 14)];
1257 T1d = ii[WS(rs, 14)];
1258 T1a = W[26];
1259 T1c = W[27];
1260 T1e = FMA(T1a, T1b, T1c * T1d);
1261 T3u = FNMS(T1c, T1b, T1a * T1d);
1262 }
1263 {
1264 E T1h, T1j, T1g, T1i;
1265 T1h = ri[WS(rs, 6)];
1266 T1j = ii[WS(rs, 6)];
1267 T1g = W[10];
1268 T1i = W[11];
1269 T1k = FMA(T1g, T1h, T1i * T1j);
1270 T3z = FNMS(T1i, T1h, T1g * T1j);
1271 }
1272 {
1273 E T1f, T1q, T5Q, T5R;
1274 T1f = T19 + T1e;
1275 T1q = T1k + T1p;
1276 T1r = T1f + T1q;
1277 T5P = T1f - T1q;
1278 T5Q = T3t + T3u;
1279 T5R = T3z + T3A;
1280 T5S = T5Q - T5R;
1281 T6F = T5Q + T5R;
1282 }
1283 {
1284 E T3v, T3w, T3y, T3B;
1285 T3v = T3t - T3u;
1286 T3w = T1k - T1p;
1287 T3x = T3v + T3w;
1288 T51 = T3v - T3w;
1289 T3y = T19 - T1e;
1290 T3B = T3z - T3A;
1291 T3C = T3y - T3B;
1292 T52 = T3y + T3B;
1293 }
1294 }
1295 {
1296 E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O;
1297 {
1298 E T1S, T1U, T1R, T1T;
1299 T1S = ri[WS(rs, 5)];
1300 T1U = ii[WS(rs, 5)];
1301 T1R = W[8];
1302 T1T = W[9];
1303 T1V = FMA(T1R, T1S, T1T * T1U);
1304 T3R = FNMS(T1T, T1S, T1R * T1U);
1305 }
1306 {
1307 E T1X, T1Z, T1W, T1Y;
1308 T1X = ri[WS(rs, 21)];
1309 T1Z = ii[WS(rs, 21)];
1310 T1W = W[40];
1311 T1Y = W[41];
1312 T20 = FMA(T1W, T1X, T1Y * T1Z);
1313 T3S = FNMS(T1Y, T1X, T1W * T1Z);
1314 }
1315 T3Q = T1V - T20;
1316 T3T = T3R - T3S;
1317 {
1318 E T23, T25, T22, T24;
1319 T23 = ri[WS(rs, 29)];
1320 T25 = ii[WS(rs, 29)];
1321 T22 = W[56];
1322 T24 = W[57];
1323 T26 = FMA(T22, T23, T24 * T25);
1324 T3M = FNMS(T24, T23, T22 * T25);
1325 }
1326 {
1327 E T28, T2a, T27, T29;
1328 T28 = ri[WS(rs, 13)];
1329 T2a = ii[WS(rs, 13)];
1330 T27 = W[24];
1331 T29 = W[25];
1332 T2b = FMA(T27, T28, T29 * T2a);
1333 T3N = FNMS(T29, T28, T27 * T2a);
1334 }
1335 T3L = T26 - T2b;
1336 T3O = T3M - T3N;
1337 {
1338 E T21, T2c, T62, T63;
1339 T21 = T1V + T20;
1340 T2c = T26 + T2b;
1341 T2d = T21 + T2c;
1342 T5Z = T2c - T21;
1343 T62 = T3R + T3S;
1344 T63 = T3M + T3N;
1345 T64 = T62 - T63;
1346 T6K = T62 + T63;
1347 }
1348 {
1349 E T3P, T3U, T42, T43;
1350 T3P = T3L - T3O;
1351 T3U = T3Q + T3T;
1352 T3V = KP707106781 * (T3P - T3U);
1353 T57 = KP707106781 * (T3U + T3P);
1354 T42 = T3T - T3Q;
1355 T43 = T3L + T3O;
1356 T44 = KP707106781 * (T42 - T43);
1357 T5a = KP707106781 * (T42 + T43);
1358 }
1359 }
1360 {
1361 E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k;
1362 {
1363 E T2D, T2F, T2C, T2E;
1364 T2D = ri[WS(rs, 3)];
1365 T2F = ii[WS(rs, 3)];
1366 T2C = W[4];
1367 T2E = W[5];
1368 T2G = FMA(T2C, T2D, T2E * T2F);
1369 T4c = FNMS(T2E, T2D, T2C * T2F);
1370 }
1371 {
1372 E T2I, T2K, T2H, T2J;
1373 T2I = ri[WS(rs, 19)];
1374 T2K = ii[WS(rs, 19)];
1375 T2H = W[36];
1376 T2J = W[37];
1377 T2L = FMA(T2H, T2I, T2J * T2K);
1378 T4d = FNMS(T2J, T2I, T2H * T2K);
1379 }
1380 T4e = T4c - T4d;
1381 T4f = T2G - T2L;
1382 {
1383 E T2O, T2Q, T2N, T2P;
1384 T2O = ri[WS(rs, 27)];
1385 T2Q = ii[WS(rs, 27)];
1386 T2N = W[52];
1387 T2P = W[53];
1388 T2R = FMA(T2N, T2O, T2P * T2Q);
1389 T4i = FNMS(T2P, T2O, T2N * T2Q);
1390 }
1391 {
1392 E T2T, T2V, T2S, T2U;
1393 T2T = ri[WS(rs, 11)];
1394 T2V = ii[WS(rs, 11)];
1395 T2S = W[20];
1396 T2U = W[21];
1397 T2W = FMA(T2S, T2T, T2U * T2V);
1398 T4j = FNMS(T2U, T2T, T2S * T2V);
1399 }
1400 T4h = T2R - T2W;
1401 T4k = T4i - T4j;
1402 {
1403 E T2M, T2X, T68, T69;
1404 T2M = T2G + T2L;
1405 T2X = T2R + T2W;
1406 T2Y = T2M + T2X;
1407 T6f = T2X - T2M;
1408 T68 = T4c + T4d;
1409 T69 = T4i + T4j;
1410 T6a = T68 - T69;
1411 T6P = T68 + T69;
1412 }
1413 {
1414 E T4g, T4l, T4t, T4u;
1415 T4g = T4e - T4f;
1416 T4l = T4h + T4k;
1417 T4m = KP707106781 * (T4g - T4l);
1418 T5h = KP707106781 * (T4g + T4l);
1419 T4t = T4h - T4k;
1420 T4u = T4f + T4e;
1421 T4v = KP707106781 * (T4t - T4u);
1422 T5e = KP707106781 * (T4u + T4t);
1423 }
1424 }
1425 {
1426 E T1t, T6X, T7a, T7c, T30, T7b, T70, T71;
1427 {
1428 E TH, T1s, T72, T79;
1429 TH = Tj + TG;
1430 T1s = T14 + T1r;
1431 T1t = TH + T1s;
1432 T6X = TH - T1s;
1433 T72 = T6E + T6F;
1434 T79 = T73 + T78;
1435 T7a = T72 + T79;
1436 T7c = T79 - T72;
1437 }
1438 {
1439 E T2e, T2Z, T6Y, T6Z;
1440 T2e = T1Q + T2d;
1441 T2Z = T2B + T2Y;
1442 T30 = T2e + T2Z;
1443 T7b = T2Z - T2e;
1444 T6Y = T6J + T6K;
1445 T6Z = T6O + T6P;
1446 T70 = T6Y - T6Z;
1447 T71 = T6Y + T6Z;
1448 }
1449 ri[WS(rs, 16)] = T1t - T30;
1450 ii[WS(rs, 16)] = T7a - T71;
1451 ri[0] = T1t + T30;
1452 ii[0] = T71 + T7a;
1453 ri[WS(rs, 24)] = T6X - T70;
1454 ii[WS(rs, 24)] = T7c - T7b;
1455 ri[WS(rs, 8)] = T6X + T70;
1456 ii[WS(rs, 8)] = T7b + T7c;
1457 }
1458 {
1459 E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V;
1460 {
1461 E T6D, T6G, T7e, T7f;
1462 T6D = Tj - TG;
1463 T6G = T6E - T6F;
1464 T6H = T6D + T6G;
1465 T6T = T6D - T6G;
1466 T7e = T1r - T14;
1467 T7f = T78 - T73;
1468 T7g = T7e + T7f;
1469 T7i = T7f - T7e;
1470 }
1471 {
1472 E T6I, T6L, T6N, T6Q;
1473 T6I = T1Q - T2d;
1474 T6L = T6J - T6K;
1475 T6M = T6I + T6L;
1476 T6U = T6L - T6I;
1477 T6N = T2B - T2Y;
1478 T6Q = T6O - T6P;
1479 T6R = T6N - T6Q;
1480 T6V = T6N + T6Q;
1481 }
1482 {
1483 E T6S, T7d, T6W, T7h;
1484 T6S = KP707106781 * (T6M + T6R);
1485 ri[WS(rs, 20)] = T6H - T6S;
1486 ri[WS(rs, 4)] = T6H + T6S;
1487 T7d = KP707106781 * (T6U + T6V);
1488 ii[WS(rs, 4)] = T7d + T7g;
1489 ii[WS(rs, 20)] = T7g - T7d;
1490 T6W = KP707106781 * (T6U - T6V);
1491 ri[WS(rs, 28)] = T6T - T6W;
1492 ri[WS(rs, 12)] = T6T + T6W;
1493 T7h = KP707106781 * (T6R - T6M);
1494 ii[WS(rs, 12)] = T7h + T7i;
1495 ii[WS(rs, 28)] = T7i - T7h;
1496 }
1497 }
1498 {
1499 E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h;
1500 E T6l;
1501 {
1502 E T5O, T5T, T60, T65;
1503 T5J = T5F - T5I;
1504 T7n = T7l + T7m;
1505 T7t = T7m - T7l;
1506 T6n = T5F + T5I;
1507 T5O = T5M - T5N;
1508 T5T = T5P + T5S;
1509 T5U = KP707106781 * (T5O - T5T);
1510 T7k = KP707106781 * (T5O + T5T);
1511 {
1512 E T6v, T6w, T6o, T6p;
1513 T6v = T67 + T6a;
1514 T6w = T6e + T6f;
1515 T6x = FNMS(KP382683432, T6w, KP923879532 * T6v);
1516 T6B = FMA(KP923879532, T6w, KP382683432 * T6v);
1517 T6o = T5N + T5M;
1518 T6p = T5P - T5S;
1519 T6q = KP707106781 * (T6o + T6p);
1520 T7s = KP707106781 * (T6p - T6o);
1521 }
1522 T60 = T5Y - T5Z;
1523 T65 = T61 - T64;
1524 T66 = FMA(KP923879532, T60, KP382683432 * T65);
1525 T6k = FNMS(KP923879532, T65, KP382683432 * T60);
1526 {
1527 E T6s, T6t, T6b, T6g;
1528 T6s = T5Y + T5Z;
1529 T6t = T61 + T64;
1530 T6u = FMA(KP382683432, T6s, KP923879532 * T6t);
1531 T6A = FNMS(KP382683432, T6t, KP923879532 * T6s);
1532 T6b = T67 - T6a;
1533 T6g = T6e - T6f;
1534 T6h = FNMS(KP923879532, T6g, KP382683432 * T6b);
1535 T6l = FMA(KP382683432, T6g, KP923879532 * T6b);
1536 }
1537 }
1538 {
1539 E T5V, T6i, T7r, T7u;
1540 T5V = T5J + T5U;
1541 T6i = T66 + T6h;
1542 ri[WS(rs, 22)] = T5V - T6i;
1543 ri[WS(rs, 6)] = T5V + T6i;
1544 T7r = T6k + T6l;
1545 T7u = T7s + T7t;
1546 ii[WS(rs, 6)] = T7r + T7u;
1547 ii[WS(rs, 22)] = T7u - T7r;
1548 }
1549 {
1550 E T6j, T6m, T7v, T7w;
1551 T6j = T5J - T5U;
1552 T6m = T6k - T6l;
1553 ri[WS(rs, 30)] = T6j - T6m;
1554 ri[WS(rs, 14)] = T6j + T6m;
1555 T7v = T6h - T66;
1556 T7w = T7t - T7s;
1557 ii[WS(rs, 14)] = T7v + T7w;
1558 ii[WS(rs, 30)] = T7w - T7v;
1559 }
1560 {
1561 E T6r, T6y, T7j, T7o;
1562 T6r = T6n + T6q;
1563 T6y = T6u + T6x;
1564 ri[WS(rs, 18)] = T6r - T6y;
1565 ri[WS(rs, 2)] = T6r + T6y;
1566 T7j = T6A + T6B;
1567 T7o = T7k + T7n;
1568 ii[WS(rs, 2)] = T7j + T7o;
1569 ii[WS(rs, 18)] = T7o - T7j;
1570 }
1571 {
1572 E T6z, T6C, T7p, T7q;
1573 T6z = T6n - T6q;
1574 T6C = T6A - T6B;
1575 ri[WS(rs, 26)] = T6z - T6C;
1576 ri[WS(rs, 10)] = T6z + T6C;
1577 T7p = T6x - T6u;
1578 T7q = T7n - T7k;
1579 ii[WS(rs, 10)] = T7p + T7q;
1580 ii[WS(rs, 26)] = T7q - T7p;
1581 }
1582 }
1583 {
1584 E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x;
1585 E T4B, T3g, T7P;
1586 T3g = KP707106781 * (T3a - T3f);
1587 T3h = T35 - T3g;
1588 T4D = T35 + T3g;
1589 T7P = KP707106781 * (T4V - T4U);
1590 T7R = T7P + T7Q;
1591 T7X = T7Q - T7P;
1592 {
1593 E T3s, T3D, T4L, T4M;
1594 T3s = FNMS(KP923879532, T3r, KP382683432 * T3m);
1595 T3D = FMA(KP382683432, T3x, KP923879532 * T3C);
1596 T3E = T3s - T3D;
1597 T7O = T3s + T3D;
1598 T4L = T4b + T4m;
1599 T4M = T4s + T4v;
1600 T4N = FNMS(KP555570233, T4M, KP831469612 * T4L);
1601 T4R = FMA(KP831469612, T4M, KP555570233 * T4L);
1602 }
1603 {
1604 E T3W, T45, T4E, T4F;
1605 T3W = T3K - T3V;
1606 T45 = T41 - T44;
1607 T46 = FMA(KP980785280, T3W, KP195090322 * T45);
1608 T4A = FNMS(KP980785280, T45, KP195090322 * T3W);
1609 T4E = FMA(KP923879532, T3m, KP382683432 * T3r);
1610 T4F = FNMS(KP923879532, T3x, KP382683432 * T3C);
1611 T4G = T4E + T4F;
1612 T7W = T4F - T4E;
1613 }
1614 {
1615 E T4I, T4J, T4n, T4w;
1616 T4I = T3K + T3V;
1617 T4J = T41 + T44;
1618 T4K = FMA(KP555570233, T4I, KP831469612 * T4J);
1619 T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I);
1620 T4n = T4b - T4m;
1621 T4w = T4s - T4v;
1622 T4x = FNMS(KP980785280, T4w, KP195090322 * T4n);
1623 T4B = FMA(KP195090322, T4w, KP980785280 * T4n);
1624 }
1625 {
1626 E T3F, T4y, T7V, T7Y;
1627 T3F = T3h + T3E;
1628 T4y = T46 + T4x;
1629 ri[WS(rs, 23)] = T3F - T4y;
1630 ri[WS(rs, 7)] = T3F + T4y;
1631 T7V = T4A + T4B;
1632 T7Y = T7W + T7X;
1633 ii[WS(rs, 7)] = T7V + T7Y;
1634 ii[WS(rs, 23)] = T7Y - T7V;
1635 }
1636 {
1637 E T4z, T4C, T7Z, T80;
1638 T4z = T3h - T3E;
1639 T4C = T4A - T4B;
1640 ri[WS(rs, 31)] = T4z - T4C;
1641 ri[WS(rs, 15)] = T4z + T4C;
1642 T7Z = T4x - T46;
1643 T80 = T7X - T7W;
1644 ii[WS(rs, 15)] = T7Z + T80;
1645 ii[WS(rs, 31)] = T80 - T7Z;
1646 }
1647 {
1648 E T4H, T4O, T7N, T7S;
1649 T4H = T4D + T4G;
1650 T4O = T4K + T4N;
1651 ri[WS(rs, 19)] = T4H - T4O;
1652 ri[WS(rs, 3)] = T4H + T4O;
1653 T7N = T4Q + T4R;
1654 T7S = T7O + T7R;
1655 ii[WS(rs, 3)] = T7N + T7S;
1656 ii[WS(rs, 19)] = T7S - T7N;
1657 }
1658 {
1659 E T4P, T4S, T7T, T7U;
1660 T4P = T4D - T4G;
1661 T4S = T4Q - T4R;
1662 ri[WS(rs, 27)] = T4P - T4S;
1663 ri[WS(rs, 11)] = T4P + T4S;
1664 T7T = T4N - T4K;
1665 T7U = T7R - T7O;
1666 ii[WS(rs, 11)] = T7T + T7U;
1667 ii[WS(rs, 27)] = T7U - T7T;
1668 }
1669 }
1670 {
1671 E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j;
1672 E T5n, T4W, T7z;
1673 T4W = KP707106781 * (T4U + T4V);
1674 T4X = T4T - T4W;
1675 T5p = T4T + T4W;
1676 T7z = KP707106781 * (T3a + T3f);
1677 T7D = T7z + T7C;
1678 T7J = T7C - T7z;
1679 {
1680 E T50, T53, T5x, T5y;
1681 T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y);
1682 T53 = FMA(KP923879532, T51, KP382683432 * T52);
1683 T54 = T50 - T53;
1684 T7y = T50 + T53;
1685 T5x = T5d + T5e;
1686 T5y = T5g + T5h;
1687 T5z = FNMS(KP195090322, T5y, KP980785280 * T5x);
1688 T5D = FMA(KP195090322, T5x, KP980785280 * T5y);
1689 }
1690 {
1691 E T58, T5b, T5q, T5r;
1692 T58 = T56 - T57;
1693 T5b = T59 - T5a;
1694 T5c = FMA(KP555570233, T58, KP831469612 * T5b);
1695 T5m = FNMS(KP831469612, T58, KP555570233 * T5b);
1696 T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z);
1697 T5r = FNMS(KP382683432, T51, KP923879532 * T52);
1698 T5s = T5q + T5r;
1699 T7I = T5r - T5q;
1700 }
1701 {
1702 E T5u, T5v, T5f, T5i;
1703 T5u = T56 + T57;
1704 T5v = T59 + T5a;
1705 T5w = FMA(KP980785280, T5u, KP195090322 * T5v);
1706 T5C = FNMS(KP195090322, T5u, KP980785280 * T5v);
1707 T5f = T5d - T5e;
1708 T5i = T5g - T5h;
1709 T5j = FNMS(KP831469612, T5i, KP555570233 * T5f);
1710 T5n = FMA(KP831469612, T5f, KP555570233 * T5i);
1711 }
1712 {
1713 E T55, T5k, T7H, T7K;
1714 T55 = T4X + T54;
1715 T5k = T5c + T5j;
1716 ri[WS(rs, 21)] = T55 - T5k;
1717 ri[WS(rs, 5)] = T55 + T5k;
1718 T7H = T5m + T5n;
1719 T7K = T7I + T7J;
1720 ii[WS(rs, 5)] = T7H + T7K;
1721 ii[WS(rs, 21)] = T7K - T7H;
1722 }
1723 {
1724 E T5l, T5o, T7L, T7M;
1725 T5l = T4X - T54;
1726 T5o = T5m - T5n;
1727 ri[WS(rs, 29)] = T5l - T5o;
1728 ri[WS(rs, 13)] = T5l + T5o;
1729 T7L = T5j - T5c;
1730 T7M = T7J - T7I;
1731 ii[WS(rs, 13)] = T7L + T7M;
1732 ii[WS(rs, 29)] = T7M - T7L;
1733 }
1734 {
1735 E T5t, T5A, T7x, T7E;
1736 T5t = T5p + T5s;
1737 T5A = T5w + T5z;
1738 ri[WS(rs, 17)] = T5t - T5A;
1739 ri[WS(rs, 1)] = T5t + T5A;
1740 T7x = T5C + T5D;
1741 T7E = T7y + T7D;
1742 ii[WS(rs, 1)] = T7x + T7E;
1743 ii[WS(rs, 17)] = T7E - T7x;
1744 }
1745 {
1746 E T5B, T5E, T7F, T7G;
1747 T5B = T5p - T5s;
1748 T5E = T5C - T5D;
1749 ri[WS(rs, 25)] = T5B - T5E;
1750 ri[WS(rs, 9)] = T5B + T5E;
1751 T7F = T5z - T5w;
1752 T7G = T7D - T7y;
1753 ii[WS(rs, 9)] = T7F + T7G;
1754 ii[WS(rs, 25)] = T7G - T7F;
1755 }
1756 }
1757 }
1758 }
1759 }
1760
1761 static const tw_instr twinstr[] = {
1762 {TW_FULL, 0, 32},
1763 {TW_NEXT, 1, 0}
1764 };
1765
1766 static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {340, 114, 94, 0}, 0, 0, 0 };
1767
1768 void X(codelet_t1_32) (planner *p) {
1769 X(kdft_dit_register) (p, t1_32, &desc);
1770 }
1771 #endif /* HAVE_FMA */