diff src/fftw-3.3.5/rdft/rank0.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/rdft/rank0.c	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,381 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+/* plans for rank-0 RDFTs (copy operations) */
+
+#include "rdft.h"
+
+#ifdef HAVE_STRING_H
+#include <string.h>		/* for memcpy() */
+#endif
+
+#define MAXRNK 32 /* FIXME: should malloc() */
+
+typedef struct {
+     plan_rdft super;
+     INT vl;
+     int rnk;
+     iodim d[MAXRNK];
+     const char *nam;
+} P;
+
+typedef struct {
+     solver super;
+     rdftapply apply;
+     int (*applicable)(const P *pln, const problem_rdft *p);
+     const char *nam;
+} S;
+
+/* copy up to MAXRNK dimensions from problem into plan.  If a
+   contiguous dimension exists, save its length in pln->vl */
+static int fill_iodim(P *pln, const problem_rdft *p)
+{
+     int i;
+     const tensor *vecsz = p->vecsz;
+
+     pln->vl = 1;
+     pln->rnk = 0;
+     for (i = 0; i < vecsz->rnk; ++i) {
+	  /* extract contiguous dimensions */
+	  if (pln->vl == 1 &&
+	      vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1) 
+	       pln->vl = vecsz->dims[i].n;
+	  else if (pln->rnk == MAXRNK) 
+	       return 0;
+	  else 
+	       pln->d[pln->rnk++] = vecsz->dims[i];
+     }
+
+     return 1;
+}
+
+/* generic higher-rank copy routine, calls cpy2d() to do the real work */
+static void copy(const iodim *d, int rnk, INT vl,
+		 R *I, R *O,
+		 cpy2d_func cpy2d)
+{
+     A(rnk >= 2);
+     if (rnk == 2)
+	  cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
+     else {
+	  INT i;
+	  for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
+	       copy(d + 1, rnk - 1, vl, I, O, cpy2d);
+     }
+}
+
+/* FIXME: should be more general */
+static int transposep(const P *pln)
+{
+     int i;
+
+     for (i = 0; i < pln->rnk - 2; ++i) 
+	  if (pln->d[i].is != pln->d[i].os)
+	       return 0;
+     
+     return (pln->d[i].n == pln->d[i+1].n &&
+	     pln->d[i].is == pln->d[i+1].os &&
+	     pln->d[i].os == pln->d[i+1].is);
+}
+
+/* generic higher-rank transpose routine, calls transpose2d() to do
+ * the real work */
+static void transpose(const iodim *d, int rnk, INT vl,
+		      R *I,
+		      transpose_func transpose2d)
+{
+     A(rnk >= 2);
+     if (rnk == 2)
+	  transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
+     else {
+	  INT i;
+	  for (i = 0; i < d[0].n; ++i, I += d[0].is)
+	       transpose(d + 1, rnk - 1, vl, I, transpose2d);
+     }
+}
+
+/**************************************************************/
+/* rank 0,1,2, out of place, iterative */
+static void apply_iter(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+
+     switch (ego->rnk) {
+	 case 0: 
+	      X(cpy1d)(I, O, ego->vl, 1, 1, 1);
+	      break;
+	 case 1:
+	      X(cpy1d)(I, O, 
+		       ego->d[0].n, ego->d[0].is, ego->d[0].os, 
+		       ego->vl);
+	      break;
+	 default:
+	      copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
+	      break;
+     }
+}
+
+static int applicable_iter(const P *pln, const problem_rdft *p)
+{
+     UNUSED(pln);
+     return (p->I != p->O);
+}
+
+/**************************************************************/
+/* out of place, write contiguous output */
+static void apply_cpy2dco(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
+}
+
+static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
+{
+     int rnk = pln->rnk;
+     return (1
+	     && p->I != p->O
+	     && rnk >= 2
+
+	     /* must not duplicate apply_iter */
+	     && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
+		 ||
+		 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
+	  );
+}
+
+/**************************************************************/
+/* out of place, tiled, no buffering */
+static void apply_tiled(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
+}
+
+static int applicable_tiled(const P *pln, const problem_rdft *p)
+{
+     return (1
+	     && p->I != p->O
+	     && pln->rnk >= 2
+
+	     /* somewhat arbitrary */
+	     && X(compute_tilesz)(pln->vl, 1) > 4
+	  );
+}
+
+/**************************************************************/
+/* out of place, tiled, with buffer */
+static void apply_tiledbuf(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
+}
+
+#define applicable_tiledbuf applicable_tiled
+
+/**************************************************************/
+/* rank 0, out of place, using memcpy */
+static void apply_memcpy(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+
+     A(ego->rnk == 0);
+     memcpy(O, I, ego->vl * sizeof(R));
+}
+
+static int applicable_memcpy(const P *pln, const problem_rdft *p)
+{
+     return (1
+	     && p->I != p->O 
+	     && pln->rnk == 0
+	     && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
+	     );
+}
+
+/**************************************************************/
+/* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
+   transposes of vl-tuples ... for large vl it should be more
+   efficient to use memcpy than the tiled stuff). */
+
+static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
+{
+     INT i, n = d->n, is = d->is, os = d->os;
+     if (rnk == 1)
+	  for (i = 0; i < n; ++i, I += is, O += os)
+	       memcpy(O, I, cpysz);
+     else {
+	  --rnk; ++d;
+	  for (i = 0; i < n; ++i, I += is, O += os)
+	       memcpy_loop(cpysz, rnk, d, I, O);
+     }
+}
+
+static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
+}
+
+static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
+{
+     return (p->I != p->O
+	     && pln->rnk > 0
+             && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
+}
+
+/**************************************************************/
+/* rank 2, in place, square transpose, iterative */
+static void apply_ip_sq(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     UNUSED(O);
+     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
+}
+
+
+static int applicable_ip_sq(const P *pln, const problem_rdft *p)
+{
+     return (1
+	     && p->I == p->O
+	     && pln->rnk >= 2
+	     && transposep(pln));
+}
+
+/**************************************************************/
+/* rank 2, in place, square transpose, tiled */
+static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     UNUSED(O);
+     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
+}
+
+static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
+{
+     return (1
+	     && applicable_ip_sq(pln, p)
+
+	     /* somewhat arbitrary */
+	     && X(compute_tilesz)(pln->vl, 2) > 4
+	  );
+}
+
+/**************************************************************/
+/* rank 2, in place, square transpose, tiled, buffered */
+static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     UNUSED(O);
+     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
+}
+
+#define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
+
+/**************************************************************/
+static int applicable(const S *ego, const problem *p_)
+{
+     const problem_rdft *p = (const problem_rdft *) p_;
+     P pln;
+     return (1
+	     && p->sz->rnk == 0
+	     && FINITE_RNK(p->vecsz->rnk)
+	     && fill_iodim(&pln, p)
+	     && ego->applicable(&pln, p)
+	  );
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     int i;
+     p->print(p, "(%s/%D", ego->nam, ego->vl);
+     for (i = 0; i < ego->rnk; ++i)
+	  p->print(p, "%v", ego->d[i].n);
+     p->print(p, ")");
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const problem_rdft *p;
+     const S *ego = (const S *) ego_;
+     P *pln;
+     int retval;
+
+     static const plan_adt padt = {
+	  X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
+     };
+
+     UNUSED(plnr);
+
+     if (!applicable(ego, p_))
+          return (plan *) 0;
+
+     p = (const problem_rdft *) p_;
+     pln = MKPLAN_RDFT(P, &padt, ego->apply);
+
+     retval = fill_iodim(pln, p);
+     (void)retval; /* UNUSED unless DEBUG */
+     A(retval);
+     A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
+     pln->nam = ego->nam;
+
+     /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
+     X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
+     return &(pln->super.super);
+}
+
+
+void X(rdft_rank0_register)(planner *p)
+{
+     unsigned i;
+     static struct {
+	  rdftapply apply;
+	  int (*applicable)(const P *, const problem_rdft *);
+	  const char *nam;
+     } tab[] = {
+	  { apply_memcpy,   applicable_memcpy,   "rdft-rank0-memcpy" },
+	  { apply_memcpy_loop,   applicable_memcpy_loop,  
+	    "rdft-rank0-memcpy-loop" },
+	  { apply_iter,     applicable_iter,     "rdft-rank0-iter-ci" },
+	  { apply_cpy2dco,  applicable_cpy2dco,  "rdft-rank0-iter-co" },
+	  { apply_tiled,    applicable_tiled,    "rdft-rank0-tiled" },
+	  { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
+	  { apply_ip_sq,    applicable_ip_sq,    "rdft-rank0-ip-sq" },
+	  { 
+	       apply_ip_sq_tiled,
+	       applicable_ip_sq_tiled,
+	       "rdft-rank0-ip-sq-tiled" 
+	  },
+	  { 
+	       apply_ip_sq_tiledbuf,
+	       applicable_ip_sq_tiledbuf,
+	       "rdft-rank0-ip-sq-tiledbuf" 
+	  },
+     };
+
+     for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
+	  static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
+	  S *slv = MKSOLVER(S, &sadt);
+	  slv->apply = tab[i].apply;
+	  slv->applicable = tab[i].applicable;
+	  slv->nam = tab[i].nam;
+	  REGISTER_SOLVER(p, &(slv->super));
+     }
+}