comparison src/fftw-3.3.5/rdft/rank0.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
comparison
equal deleted inserted replaced
126:4a7071416412 127:7867fa7e1b6b
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 /* plans for rank-0 RDFTs (copy operations) */
23
24 #include "rdft.h"
25
26 #ifdef HAVE_STRING_H
27 #include <string.h> /* for memcpy() */
28 #endif
29
30 #define MAXRNK 32 /* FIXME: should malloc() */
31
32 typedef struct {
33 plan_rdft super;
34 INT vl;
35 int rnk;
36 iodim d[MAXRNK];
37 const char *nam;
38 } P;
39
40 typedef struct {
41 solver super;
42 rdftapply apply;
43 int (*applicable)(const P *pln, const problem_rdft *p);
44 const char *nam;
45 } S;
46
47 /* copy up to MAXRNK dimensions from problem into plan. If a
48 contiguous dimension exists, save its length in pln->vl */
49 static int fill_iodim(P *pln, const problem_rdft *p)
50 {
51 int i;
52 const tensor *vecsz = p->vecsz;
53
54 pln->vl = 1;
55 pln->rnk = 0;
56 for (i = 0; i < vecsz->rnk; ++i) {
57 /* extract contiguous dimensions */
58 if (pln->vl == 1 &&
59 vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
60 pln->vl = vecsz->dims[i].n;
61 else if (pln->rnk == MAXRNK)
62 return 0;
63 else
64 pln->d[pln->rnk++] = vecsz->dims[i];
65 }
66
67 return 1;
68 }
69
70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
71 static void copy(const iodim *d, int rnk, INT vl,
72 R *I, R *O,
73 cpy2d_func cpy2d)
74 {
75 A(rnk >= 2);
76 if (rnk == 2)
77 cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
78 else {
79 INT i;
80 for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
81 copy(d + 1, rnk - 1, vl, I, O, cpy2d);
82 }
83 }
84
85 /* FIXME: should be more general */
86 static int transposep(const P *pln)
87 {
88 int i;
89
90 for (i = 0; i < pln->rnk - 2; ++i)
91 if (pln->d[i].is != pln->d[i].os)
92 return 0;
93
94 return (pln->d[i].n == pln->d[i+1].n &&
95 pln->d[i].is == pln->d[i+1].os &&
96 pln->d[i].os == pln->d[i+1].is);
97 }
98
99 /* generic higher-rank transpose routine, calls transpose2d() to do
100 * the real work */
101 static void transpose(const iodim *d, int rnk, INT vl,
102 R *I,
103 transpose_func transpose2d)
104 {
105 A(rnk >= 2);
106 if (rnk == 2)
107 transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
108 else {
109 INT i;
110 for (i = 0; i < d[0].n; ++i, I += d[0].is)
111 transpose(d + 1, rnk - 1, vl, I, transpose2d);
112 }
113 }
114
115 /**************************************************************/
116 /* rank 0,1,2, out of place, iterative */
117 static void apply_iter(const plan *ego_, R *I, R *O)
118 {
119 const P *ego = (const P *) ego_;
120
121 switch (ego->rnk) {
122 case 0:
123 X(cpy1d)(I, O, ego->vl, 1, 1, 1);
124 break;
125 case 1:
126 X(cpy1d)(I, O,
127 ego->d[0].n, ego->d[0].is, ego->d[0].os,
128 ego->vl);
129 break;
130 default:
131 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
132 break;
133 }
134 }
135
136 static int applicable_iter(const P *pln, const problem_rdft *p)
137 {
138 UNUSED(pln);
139 return (p->I != p->O);
140 }
141
142 /**************************************************************/
143 /* out of place, write contiguous output */
144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
145 {
146 const P *ego = (const P *) ego_;
147 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
148 }
149
150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
151 {
152 int rnk = pln->rnk;
153 return (1
154 && p->I != p->O
155 && rnk >= 2
156
157 /* must not duplicate apply_iter */
158 && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
159 ||
160 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
161 );
162 }
163
164 /**************************************************************/
165 /* out of place, tiled, no buffering */
166 static void apply_tiled(const plan *ego_, R *I, R *O)
167 {
168 const P *ego = (const P *) ego_;
169 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
170 }
171
172 static int applicable_tiled(const P *pln, const problem_rdft *p)
173 {
174 return (1
175 && p->I != p->O
176 && pln->rnk >= 2
177
178 /* somewhat arbitrary */
179 && X(compute_tilesz)(pln->vl, 1) > 4
180 );
181 }
182
183 /**************************************************************/
184 /* out of place, tiled, with buffer */
185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
186 {
187 const P *ego = (const P *) ego_;
188 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
189 }
190
191 #define applicable_tiledbuf applicable_tiled
192
193 /**************************************************************/
194 /* rank 0, out of place, using memcpy */
195 static void apply_memcpy(const plan *ego_, R *I, R *O)
196 {
197 const P *ego = (const P *) ego_;
198
199 A(ego->rnk == 0);
200 memcpy(O, I, ego->vl * sizeof(R));
201 }
202
203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
204 {
205 return (1
206 && p->I != p->O
207 && pln->rnk == 0
208 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
209 );
210 }
211
212 /**************************************************************/
213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
214 transposes of vl-tuples ... for large vl it should be more
215 efficient to use memcpy than the tiled stuff). */
216
217 static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
218 {
219 INT i, n = d->n, is = d->is, os = d->os;
220 if (rnk == 1)
221 for (i = 0; i < n; ++i, I += is, O += os)
222 memcpy(O, I, cpysz);
223 else {
224 --rnk; ++d;
225 for (i = 0; i < n; ++i, I += is, O += os)
226 memcpy_loop(cpysz, rnk, d, I, O);
227 }
228 }
229
230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
231 {
232 const P *ego = (const P *) ego_;
233 memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
234 }
235
236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
237 {
238 return (p->I != p->O
239 && pln->rnk > 0
240 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
241 }
242
243 /**************************************************************/
244 /* rank 2, in place, square transpose, iterative */
245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
246 {
247 const P *ego = (const P *) ego_;
248 UNUSED(O);
249 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
250 }
251
252
253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
254 {
255 return (1
256 && p->I == p->O
257 && pln->rnk >= 2
258 && transposep(pln));
259 }
260
261 /**************************************************************/
262 /* rank 2, in place, square transpose, tiled */
263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
264 {
265 const P *ego = (const P *) ego_;
266 UNUSED(O);
267 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
268 }
269
270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
271 {
272 return (1
273 && applicable_ip_sq(pln, p)
274
275 /* somewhat arbitrary */
276 && X(compute_tilesz)(pln->vl, 2) > 4
277 );
278 }
279
280 /**************************************************************/
281 /* rank 2, in place, square transpose, tiled, buffered */
282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
283 {
284 const P *ego = (const P *) ego_;
285 UNUSED(O);
286 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
287 }
288
289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
290
291 /**************************************************************/
292 static int applicable(const S *ego, const problem *p_)
293 {
294 const problem_rdft *p = (const problem_rdft *) p_;
295 P pln;
296 return (1
297 && p->sz->rnk == 0
298 && FINITE_RNK(p->vecsz->rnk)
299 && fill_iodim(&pln, p)
300 && ego->applicable(&pln, p)
301 );
302 }
303
304 static void print(const plan *ego_, printer *p)
305 {
306 const P *ego = (const P *) ego_;
307 int i;
308 p->print(p, "(%s/%D", ego->nam, ego->vl);
309 for (i = 0; i < ego->rnk; ++i)
310 p->print(p, "%v", ego->d[i].n);
311 p->print(p, ")");
312 }
313
314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
315 {
316 const problem_rdft *p;
317 const S *ego = (const S *) ego_;
318 P *pln;
319 int retval;
320
321 static const plan_adt padt = {
322 X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
323 };
324
325 UNUSED(plnr);
326
327 if (!applicable(ego, p_))
328 return (plan *) 0;
329
330 p = (const problem_rdft *) p_;
331 pln = MKPLAN_RDFT(P, &padt, ego->apply);
332
333 retval = fill_iodim(pln, p);
334 (void)retval; /* UNUSED unless DEBUG */
335 A(retval);
336 A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
337 pln->nam = ego->nam;
338
339 /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
340 X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
341 return &(pln->super.super);
342 }
343
344
345 void X(rdft_rank0_register)(planner *p)
346 {
347 unsigned i;
348 static struct {
349 rdftapply apply;
350 int (*applicable)(const P *, const problem_rdft *);
351 const char *nam;
352 } tab[] = {
353 { apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
354 { apply_memcpy_loop, applicable_memcpy_loop,
355 "rdft-rank0-memcpy-loop" },
356 { apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
357 { apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
358 { apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
359 { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
360 { apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
361 {
362 apply_ip_sq_tiled,
363 applicable_ip_sq_tiled,
364 "rdft-rank0-ip-sq-tiled"
365 },
366 {
367 apply_ip_sq_tiledbuf,
368 applicable_ip_sq_tiledbuf,
369 "rdft-rank0-ip-sq-tiledbuf"
370 },
371 };
372
373 for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
374 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
375 S *slv = MKSOLVER(S, &sadt);
376 slv->apply = tab[i].apply;
377 slv->applicable = tab[i].applicable;
378 slv->nam = tab[i].nam;
379 REGISTER_SOLVER(p, &(slv->super));
380 }
381 }