Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/simd-support/simd-avx.h @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/simd-support/simd-avx.h Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,357 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) +#error "AVX only works in single or double precision" +#endif + +#ifdef FFTW_SINGLE +# define DS(d,s) s /* single-precision option */ +# define SUFF(name) name ## s +#else +# define DS(d,s) d /* double-precision option */ +# define SUFF(name) name ## d +#endif + +#define SIMD_SUFFIX _avx /* for renaming */ +#define VL DS(2, 4) /* SIMD complex vector length */ +#define SIMD_VSTRIDE_OKA(x) ((x) == 2) +#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK + +#if defined(__GNUC__) && !defined(__AVX__) /* sanity check */ +#error "compiling simd-avx.h without -mavx" +#endif + +#ifdef _MSC_VER +#ifndef inline +#define inline __inline +#endif +#endif + +#include <immintrin.h> + +typedef DS(__m256d, __m256) V; +#define VADD SUFF(_mm256_add_p) +#define VSUB SUFF(_mm256_sub_p) +#define VMUL SUFF(_mm256_mul_p) +#define VXOR SUFF(_mm256_xor_p) +#define VSHUF SUFF(_mm256_shuffle_p) + +#define SHUFVALD(fp0,fp1) \ + (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) +#define SHUFVALS(fp0,fp1,fp2,fp3) \ + (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) + +#define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2))) +#define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3))) + +#define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1)) +#define DVK(var, val) V var = VLIT(val, val) +#define LDK(x) x + +static inline V LDA(const R *x, INT ivs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + (void)ivs; /* UNUSED */ + return SUFF(_mm256_loadu_p)(x); +} + +static inline void STA(R *x, V v, INT ovs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + (void)ovs; /* UNUSED */ + SUFF(_mm256_storeu_p)(x, v); +} + +#if FFTW_SINGLE + +#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) +#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) +#define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val) +#define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val) + +/* it seems like the only AVX way to store 4 complex floats is to + extract two pairs of complex floats into two __m128 registers, and + then use SSE-like half-stores. Similarly, to load 4 complex + floats, we load two pairs of complex floats into two __m128 + registers, and then pack the two __m128 registers into one __m256 + value. */ +static inline V LD(const R *x, INT ivs, const R *aligned_like) +{ + __m128 l, h; + V v; + (void)aligned_like; /* UNUSED */ + l = LOADL(x, l); + l = LOADH(x + ivs, l); + h = LOADL(x + 2*ivs, h); + h = LOADH(x + 3*ivs, h); + v = _mm256_castps128_ps256(l); + v = _mm256_insertf128_ps(v, h, 1); + return v; +} + +static inline void ST(R *x, V v, INT ovs, const R *aligned_like) +{ + __m128 h = _mm256_extractf128_ps(v, 1); + __m128 l = _mm256_castps256_ps128(v); + (void)aligned_like; /* UNUSED */ + /* WARNING: the extra_iter hack depends upon STOREL occurring + after STOREH */ + STOREH(x + 3*ovs, h); + STOREL(x + 2*ovs, h); + STOREH(x + ovs, l); + STOREL(x, l); +} + +#define STM2(x, v, ovs, aligned_like) /* no-op */ +static inline void STN2(R *x, V v0, V v1, INT ovs) +{ + V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); + V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); + __m128 h0 = _mm256_extractf128_ps(x0, 1); + __m128 l0 = _mm256_castps256_ps128(x0); + __m128 h1 = _mm256_extractf128_ps(x1, 1); + __m128 l1 = _mm256_castps256_ps128(x1); + *(__m128 *)(x + 3*ovs) = h1; + *(__m128 *)(x + 2*ovs) = h0; + *(__m128 *)(x + 1*ovs) = l1; + *(__m128 *)(x + 0*ovs) = l0; +} + +#define STM4(x, v, ovs, aligned_like) /* no-op */ +#define STN4(x, v0, v1, v2, v3, ovs) \ +{ \ + V xxx0, xxx1, xxx2, xxx3; \ + V yyy0, yyy1, yyy2, yyy3; \ + xxx0 = _mm256_unpacklo_ps(v0, v2); \ + xxx1 = _mm256_unpackhi_ps(v0, v2); \ + xxx2 = _mm256_unpacklo_ps(v1, v3); \ + xxx3 = _mm256_unpackhi_ps(v1, v3); \ + yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \ + yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \ + yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \ + yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \ + *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \ + *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \ + *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \ + *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \ + *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \ + *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \ + *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \ + *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \ +} + +#else +static inline __m128d VMOVAPD_LD(const R *x) +{ + /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x)) + into a 256-bit vmovapd, which requires 32-byte aligment instead of + 16-byte alignment. + + Force the use of vmovapd via asm until compilers stabilize. + */ +#if defined(__GNUC__) + __m128d var; + __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); + return var; +#else + return *(const __m128d *)x; +#endif +} + +static inline V LD(const R *x, INT ivs, const R *aligned_like) +{ + V var; + (void)aligned_like; /* UNUSED */ + var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); + var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); + return var; +} + +static inline void ST(R *x, V v, INT ovs, const R *aligned_like) +{ + (void)aligned_like; /* UNUSED */ + /* WARNING: the extra_iter hack depends upon the store of the low + part occurring after the store of the high part */ + *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); + *(__m128d *)x = _mm256_castpd256_pd128(v); +} + + +#define STM2 ST +#define STN2(x, v0, v1, ovs) /* nop */ +#define STM4(x, v, ovs, aligned_like) /* no-op */ + +/* STN4 is a macro, not a function, thanks to Visual C++ developers + deciding "it would be infrequent that people would want to pass more + than 3 [__m128 parameters] by value." Even though the comment + was made about __m128 parameters, it appears to apply to __m256 + parameters as well. */ +#define STN4(x, v0, v1, v2, v3, ovs) \ +{ \ + V xxx0, xxx1, xxx2, xxx3; \ + xxx0 = _mm256_unpacklo_pd(v0, v1); \ + xxx1 = _mm256_unpackhi_pd(v0, v1); \ + xxx2 = _mm256_unpacklo_pd(v2, v3); \ + xxx3 = _mm256_unpackhi_pd(v2, v3); \ + STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ + STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ + STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ + STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ +} +#endif + +static inline V FLIP_RI(V x) +{ + return VSHUF(x, x, + DS(SHUFVALD(1, 0), + SHUFVALS(1, 0, 3, 2))); +} + +static inline V VCONJ(V x) +{ + V pmpm = VLIT(-0.0, 0.0); + return VXOR(pmpm, x); +} + +static inline V VBYI(V x) +{ + return FLIP_RI(VCONJ(x)); +} + +/* FMA support */ +#define VFMA(a, b, c) VADD(c, VMUL(a, b)) +#define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) +#define VFMS(a, b, c) VSUB(VMUL(a, b), c) +#define VFMAI(b, c) VADD(c, VBYI(b)) +#define VFNMSI(b, c) VSUB(c, VBYI(b)) +#define VFMACONJ(b,c) VADD(VCONJ(b),c) +#define VFMSCONJ(b,c) VSUB(VCONJ(b),c) +#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) + +static inline V VZMUL(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + tr = VMUL(sr, tr); + sr = VBYI(sr); + return VFMA(ti, sr, tr); +} + +static inline V VZMULJ(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + tr = VMUL(sr, tr); + sr = VBYI(sr); + return VFNMS(ti, sr, tr); +} + +static inline V VZMULI(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + ti = VMUL(ti, sr); + sr = VBYI(sr); + return VFMS(tr, sr, ti); +} + +static inline V VZMULIJ(V tx, V sr) +{ + V tr = VDUPL(tx); + V ti = VDUPH(tx); + ti = VMUL(ti, sr); + sr = VBYI(sr); + return VFMA(tr, sr, ti); +} + +/* twiddle storage #1: compact, slower */ +#ifdef FFTW_SINGLE +# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} +#else +# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} +#endif +#define TWVL1 (VL) + +static inline V BYTW1(const R *t, V sr) +{ + return VZMUL(LDA(t, 2, t), sr); +} + +static inline V BYTWJ1(const R *t, V sr) +{ + return VZMULJ(LDA(t, 2, t), sr); +} + +/* twiddle storage #2: twice the space, faster (when in cache) */ +#ifdef FFTW_SINGLE +# define VTW2(v,x) \ + {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ + {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ + {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ + {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} +#else +# define VTW2(v,x) \ + {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ + {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} +#endif +#define TWVL2 (2 * VL) + +static inline V BYTW2(const R *t, V sr) +{ + const V *twp = (const V *)t; + V si = FLIP_RI(sr); + V tr = twp[0], ti = twp[1]; + return VFMA(tr, sr, VMUL(ti, si)); +} + +static inline V BYTWJ2(const R *t, V sr) +{ + const V *twp = (const V *)t; + V si = FLIP_RI(sr); + V tr = twp[0], ti = twp[1]; + return VFNMS(ti, si, VMUL(tr, sr)); +} + +/* twiddle storage #3 */ +#define VTW3 VTW1 +#define TWVL3 TWVL1 + +/* twiddle storage for split arrays */ +#ifdef FFTW_SINGLE +# define VTWS(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ + {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ + {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ + {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} +#else +# define VTWS(v,x) \ + {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ + {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} +#endif +#define TWVLS (2 * VL) + + +/* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE. + See Intel Optimization Manual (April 2011, version 248966), Section + 11.3 */ +#define VLEAVE _mm256_zeroupper + +#include "simd-common.h"