Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/simd-support/simd-avx.h @ 10:37bf6b4a2645
Add FFTW3
| author | Chris Cannam |
|---|---|
| date | Wed, 20 Mar 2013 15:35:50 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 9:c0fb53affa76 | 10:37bf6b4a2645 |
|---|---|
| 1 /* | |
| 2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
| 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
| 4 * | |
| 5 * This program is free software; you can redistribute it and/or modify | |
| 6 * it under the terms of the GNU General Public License as published by | |
| 7 * the Free Software Foundation; either version 2 of the License, or | |
| 8 * (at your option) any later version. | |
| 9 * | |
| 10 * This program is distributed in the hope that it will be useful, | |
| 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 13 * GNU General Public License for more details. | |
| 14 * | |
| 15 * You should have received a copy of the GNU General Public License | |
| 16 * along with this program; if not, write to the Free Software | |
| 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
| 18 * | |
| 19 */ | |
| 20 | |
| 21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
| 22 #error "AVX only works in single or double precision" | |
| 23 #endif | |
| 24 | |
| 25 #ifdef FFTW_SINGLE | |
| 26 # define DS(d,s) s /* single-precision option */ | |
| 27 # define SUFF(name) name ## s | |
| 28 #else | |
| 29 # define DS(d,s) d /* double-precision option */ | |
| 30 # define SUFF(name) name ## d | |
| 31 #endif | |
| 32 | |
| 33 #define SIMD_SUFFIX _avx /* for renaming */ | |
| 34 #define VL DS(2, 4) /* SIMD complex vector length */ | |
| 35 #define SIMD_VSTRIDE_OKA(x) ((x) == 2) | |
| 36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
| 37 | |
| 38 #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */ | |
| 39 #error "compiling simd-avx.h without -mavx" | |
| 40 #endif | |
| 41 | |
| 42 #ifdef _MSC_VER | |
| 43 #ifndef inline | |
| 44 #define inline __inline | |
| 45 #endif | |
| 46 #endif | |
| 47 | |
| 48 #include <immintrin.h> | |
| 49 | |
| 50 typedef DS(__m256d, __m256) V; | |
| 51 #define VADD SUFF(_mm256_add_p) | |
| 52 #define VSUB SUFF(_mm256_sub_p) | |
| 53 #define VMUL SUFF(_mm256_mul_p) | |
| 54 #define VXOR SUFF(_mm256_xor_p) | |
| 55 #define VSHUF SUFF(_mm256_shuffle_p) | |
| 56 | |
| 57 #define SHUFVALD(fp0,fp1) \ | |
| 58 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) | |
| 59 #define SHUFVALS(fp0,fp1,fp2,fp3) \ | |
| 60 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) | |
| 61 | |
| 62 #define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2))) | |
| 63 #define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3))) | |
| 64 | |
| 65 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1)) | |
| 66 #define DVK(var, val) V var = VLIT(val, val) | |
| 67 #define LDK(x) x | |
| 68 | |
| 69 static inline V LDA(const R *x, INT ivs, const R *aligned_like) | |
| 70 { | |
| 71 (void)aligned_like; /* UNUSED */ | |
| 72 (void)ivs; /* UNUSED */ | |
| 73 return SUFF(_mm256_loadu_p)(x); | |
| 74 } | |
| 75 | |
| 76 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | |
| 77 { | |
| 78 (void)aligned_like; /* UNUSED */ | |
| 79 (void)ovs; /* UNUSED */ | |
| 80 SUFF(_mm256_storeu_p)(x, v); | |
| 81 } | |
| 82 | |
| 83 #if FFTW_SINGLE | |
| 84 | |
| 85 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) | |
| 86 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) | |
| 87 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val) | |
| 88 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val) | |
| 89 | |
| 90 /* it seems like the only AVX way to store 4 complex floats is to | |
| 91 extract two pairs of complex floats into two __m128 registers, and | |
| 92 then use SSE-like half-stores. Similarly, to load 4 complex | |
| 93 floats, we load two pairs of complex floats into two __m128 | |
| 94 registers, and then pack the two __m128 registers into one __m256 | |
| 95 value. */ | |
| 96 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
| 97 { | |
| 98 __m128 l, h; | |
| 99 V v; | |
| 100 (void)aligned_like; /* UNUSED */ | |
| 101 l = LOADL(x, l); | |
| 102 l = LOADH(x + ivs, l); | |
| 103 h = LOADL(x + 2*ivs, h); | |
| 104 h = LOADH(x + 3*ivs, h); | |
| 105 v = _mm256_castps128_ps256(l); | |
| 106 v = _mm256_insertf128_ps(v, h, 1); | |
| 107 return v; | |
| 108 } | |
| 109 | |
| 110 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
| 111 { | |
| 112 __m128 h = _mm256_extractf128_ps(v, 1); | |
| 113 __m128 l = _mm256_castps256_ps128(v); | |
| 114 (void)aligned_like; /* UNUSED */ | |
| 115 /* WARNING: the extra_iter hack depends upon STOREL occurring | |
| 116 after STOREH */ | |
| 117 STOREH(x + 3*ovs, h); | |
| 118 STOREL(x + 2*ovs, h); | |
| 119 STOREH(x + ovs, l); | |
| 120 STOREL(x, l); | |
| 121 } | |
| 122 | |
| 123 #define STM2(x, v, ovs, aligned_like) /* no-op */ | |
| 124 static inline void STN2(R *x, V v0, V v1, INT ovs) | |
| 125 { | |
| 126 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); | |
| 127 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); | |
| 128 __m128 h0 = _mm256_extractf128_ps(x0, 1); | |
| 129 __m128 l0 = _mm256_castps256_ps128(x0); | |
| 130 __m128 h1 = _mm256_extractf128_ps(x1, 1); | |
| 131 __m128 l1 = _mm256_castps256_ps128(x1); | |
| 132 *(__m128 *)(x + 3*ovs) = h1; | |
| 133 *(__m128 *)(x + 2*ovs) = h0; | |
| 134 *(__m128 *)(x + 1*ovs) = l1; | |
| 135 *(__m128 *)(x + 0*ovs) = l0; | |
| 136 } | |
| 137 | |
| 138 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
| 139 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
| 140 { \ | |
| 141 V xxx0, xxx1, xxx2, xxx3; \ | |
| 142 V yyy0, yyy1, yyy2, yyy3; \ | |
| 143 xxx0 = _mm256_unpacklo_ps(v0, v2); \ | |
| 144 xxx1 = _mm256_unpackhi_ps(v0, v2); \ | |
| 145 xxx2 = _mm256_unpacklo_ps(v1, v3); \ | |
| 146 xxx3 = _mm256_unpackhi_ps(v1, v3); \ | |
| 147 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \ | |
| 148 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \ | |
| 149 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \ | |
| 150 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \ | |
| 151 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \ | |
| 152 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \ | |
| 153 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \ | |
| 154 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \ | |
| 155 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \ | |
| 156 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \ | |
| 157 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \ | |
| 158 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \ | |
| 159 } | |
| 160 | |
| 161 #else | |
| 162 static inline __m128d VMOVAPD_LD(const R *x) | |
| 163 { | |
| 164 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x)) | |
| 165 into a 256-bit vmovapd, which requires 32-byte aligment instead of | |
| 166 16-byte alignment. | |
| 167 | |
| 168 Force the use of vmovapd via asm until compilers stabilize. | |
| 169 */ | |
| 170 #if defined(__GNUC__) | |
| 171 __m128d var; | |
| 172 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); | |
| 173 return var; | |
| 174 #else | |
| 175 return *(const __m128d *)x; | |
| 176 #endif | |
| 177 } | |
| 178 | |
| 179 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
| 180 { | |
| 181 V var; | |
| 182 (void)aligned_like; /* UNUSED */ | |
| 183 var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); | |
| 184 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); | |
| 185 return var; | |
| 186 } | |
| 187 | |
| 188 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
| 189 { | |
| 190 (void)aligned_like; /* UNUSED */ | |
| 191 /* WARNING: the extra_iter hack depends upon the store of the low | |
| 192 part occurring after the store of the high part */ | |
| 193 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); | |
| 194 *(__m128d *)x = _mm256_castpd256_pd128(v); | |
| 195 } | |
| 196 | |
| 197 | |
| 198 #define STM2 ST | |
| 199 #define STN2(x, v0, v1, ovs) /* nop */ | |
| 200 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
| 201 | |
| 202 /* STN4 is a macro, not a function, thanks to Visual C++ developers | |
| 203 deciding "it would be infrequent that people would want to pass more | |
| 204 than 3 [__m128 parameters] by value." Even though the comment | |
| 205 was made about __m128 parameters, it appears to apply to __m256 | |
| 206 parameters as well. */ | |
| 207 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
| 208 { \ | |
| 209 V xxx0, xxx1, xxx2, xxx3; \ | |
| 210 xxx0 = _mm256_unpacklo_pd(v0, v1); \ | |
| 211 xxx1 = _mm256_unpackhi_pd(v0, v1); \ | |
| 212 xxx2 = _mm256_unpacklo_pd(v2, v3); \ | |
| 213 xxx3 = _mm256_unpackhi_pd(v2, v3); \ | |
| 214 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ | |
| 215 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ | |
| 216 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ | |
| 217 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ | |
| 218 } | |
| 219 #endif | |
| 220 | |
| 221 static inline V FLIP_RI(V x) | |
| 222 { | |
| 223 return VSHUF(x, x, | |
| 224 DS(SHUFVALD(1, 0), | |
| 225 SHUFVALS(1, 0, 3, 2))); | |
| 226 } | |
| 227 | |
| 228 static inline V VCONJ(V x) | |
| 229 { | |
| 230 V pmpm = VLIT(-0.0, 0.0); | |
| 231 return VXOR(pmpm, x); | |
| 232 } | |
| 233 | |
| 234 static inline V VBYI(V x) | |
| 235 { | |
| 236 return FLIP_RI(VCONJ(x)); | |
| 237 } | |
| 238 | |
| 239 /* FMA support */ | |
| 240 #define VFMA(a, b, c) VADD(c, VMUL(a, b)) | |
| 241 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) | |
| 242 #define VFMS(a, b, c) VSUB(VMUL(a, b), c) | |
| 243 #define VFMAI(b, c) VADD(c, VBYI(b)) | |
| 244 #define VFNMSI(b, c) VSUB(c, VBYI(b)) | |
| 245 #define VFMACONJ(b,c) VADD(VCONJ(b),c) | |
| 246 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) | |
| 247 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) | |
| 248 | |
| 249 static inline V VZMUL(V tx, V sr) | |
| 250 { | |
| 251 V tr = VDUPL(tx); | |
| 252 V ti = VDUPH(tx); | |
| 253 tr = VMUL(sr, tr); | |
| 254 sr = VBYI(sr); | |
| 255 return VFMA(ti, sr, tr); | |
| 256 } | |
| 257 | |
| 258 static inline V VZMULJ(V tx, V sr) | |
| 259 { | |
| 260 V tr = VDUPL(tx); | |
| 261 V ti = VDUPH(tx); | |
| 262 tr = VMUL(sr, tr); | |
| 263 sr = VBYI(sr); | |
| 264 return VFNMS(ti, sr, tr); | |
| 265 } | |
| 266 | |
| 267 static inline V VZMULI(V tx, V sr) | |
| 268 { | |
| 269 V tr = VDUPL(tx); | |
| 270 V ti = VDUPH(tx); | |
| 271 ti = VMUL(ti, sr); | |
| 272 sr = VBYI(sr); | |
| 273 return VFMS(tr, sr, ti); | |
| 274 } | |
| 275 | |
| 276 static inline V VZMULIJ(V tx, V sr) | |
| 277 { | |
| 278 V tr = VDUPL(tx); | |
| 279 V ti = VDUPH(tx); | |
| 280 ti = VMUL(ti, sr); | |
| 281 sr = VBYI(sr); | |
| 282 return VFMA(tr, sr, ti); | |
| 283 } | |
| 284 | |
| 285 /* twiddle storage #1: compact, slower */ | |
| 286 #ifdef FFTW_SINGLE | |
| 287 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} | |
| 288 #else | |
| 289 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} | |
| 290 #endif | |
| 291 #define TWVL1 (VL) | |
| 292 | |
| 293 static inline V BYTW1(const R *t, V sr) | |
| 294 { | |
| 295 return VZMUL(LDA(t, 2, t), sr); | |
| 296 } | |
| 297 | |
| 298 static inline V BYTWJ1(const R *t, V sr) | |
| 299 { | |
| 300 return VZMULJ(LDA(t, 2, t), sr); | |
| 301 } | |
| 302 | |
| 303 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
| 304 #ifdef FFTW_SINGLE | |
| 305 # define VTW2(v,x) \ | |
| 306 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
| 307 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
| 308 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
| 309 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | |
| 310 #else | |
| 311 # define VTW2(v,x) \ | |
| 312 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
| 313 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | |
| 314 #endif | |
| 315 #define TWVL2 (2 * VL) | |
| 316 | |
| 317 static inline V BYTW2(const R *t, V sr) | |
| 318 { | |
| 319 const V *twp = (const V *)t; | |
| 320 V si = FLIP_RI(sr); | |
| 321 V tr = twp[0], ti = twp[1]; | |
| 322 return VFMA(tr, sr, VMUL(ti, si)); | |
| 323 } | |
| 324 | |
| 325 static inline V BYTWJ2(const R *t, V sr) | |
| 326 { | |
| 327 const V *twp = (const V *)t; | |
| 328 V si = FLIP_RI(sr); | |
| 329 V tr = twp[0], ti = twp[1]; | |
| 330 return VFNMS(ti, si, VMUL(tr, sr)); | |
| 331 } | |
| 332 | |
| 333 /* twiddle storage #3 */ | |
| 334 #define VTW3 VTW1 | |
| 335 #define TWVL3 TWVL1 | |
| 336 | |
| 337 /* twiddle storage for split arrays */ | |
| 338 #ifdef FFTW_SINGLE | |
| 339 # define VTWS(v,x) \ | |
| 340 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
| 341 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | |
| 342 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ | |
| 343 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | |
| 344 #else | |
| 345 # define VTWS(v,x) \ | |
| 346 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
| 347 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | |
| 348 #endif | |
| 349 #define TWVLS (2 * VL) | |
| 350 | |
| 351 | |
| 352 /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE. | |
| 353 See Intel Optimization Manual (April 2011, version 248966), Section | |
| 354 11.3 */ | |
| 355 #define VLEAVE _mm256_zeroupper | |
| 356 | |
| 357 #include "simd-common.h" |
