Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/simd-support/simd-avx.h @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD) | |
22 #error "AVX only works in single or double precision" | |
23 #endif | |
24 | |
25 #ifdef FFTW_SINGLE | |
26 # define DS(d,s) s /* single-precision option */ | |
27 # define SUFF(name) name ## s | |
28 #else | |
29 # define DS(d,s) d /* double-precision option */ | |
30 # define SUFF(name) name ## d | |
31 #endif | |
32 | |
33 #define SIMD_SUFFIX _avx /* for renaming */ | |
34 #define VL DS(2, 4) /* SIMD complex vector length */ | |
35 #define SIMD_VSTRIDE_OKA(x) ((x) == 2) | |
36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK | |
37 | |
38 #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */ | |
39 #error "compiling simd-avx.h without -mavx" | |
40 #endif | |
41 | |
42 #ifdef _MSC_VER | |
43 #ifndef inline | |
44 #define inline __inline | |
45 #endif | |
46 #endif | |
47 | |
48 #include <immintrin.h> | |
49 | |
50 typedef DS(__m256d, __m256) V; | |
51 #define VADD SUFF(_mm256_add_p) | |
52 #define VSUB SUFF(_mm256_sub_p) | |
53 #define VMUL SUFF(_mm256_mul_p) | |
54 #define VXOR SUFF(_mm256_xor_p) | |
55 #define VSHUF SUFF(_mm256_shuffle_p) | |
56 | |
57 #define SHUFVALD(fp0,fp1) \ | |
58 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0))) | |
59 #define SHUFVALS(fp0,fp1,fp2,fp3) \ | |
60 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) | |
61 | |
62 #define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2))) | |
63 #define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3))) | |
64 | |
65 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1)) | |
66 #define DVK(var, val) V var = VLIT(val, val) | |
67 #define LDK(x) x | |
68 | |
69 static inline V LDA(const R *x, INT ivs, const R *aligned_like) | |
70 { | |
71 (void)aligned_like; /* UNUSED */ | |
72 (void)ivs; /* UNUSED */ | |
73 return SUFF(_mm256_loadu_p)(x); | |
74 } | |
75 | |
76 static inline void STA(R *x, V v, INT ovs, const R *aligned_like) | |
77 { | |
78 (void)aligned_like; /* UNUSED */ | |
79 (void)ovs; /* UNUSED */ | |
80 SUFF(_mm256_storeu_p)(x, v); | |
81 } | |
82 | |
83 #if FFTW_SINGLE | |
84 | |
85 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr)) | |
86 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr)) | |
87 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val) | |
88 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val) | |
89 | |
90 /* it seems like the only AVX way to store 4 complex floats is to | |
91 extract two pairs of complex floats into two __m128 registers, and | |
92 then use SSE-like half-stores. Similarly, to load 4 complex | |
93 floats, we load two pairs of complex floats into two __m128 | |
94 registers, and then pack the two __m128 registers into one __m256 | |
95 value. */ | |
96 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
97 { | |
98 __m128 l, h; | |
99 V v; | |
100 (void)aligned_like; /* UNUSED */ | |
101 l = LOADL(x, l); | |
102 l = LOADH(x + ivs, l); | |
103 h = LOADL(x + 2*ivs, h); | |
104 h = LOADH(x + 3*ivs, h); | |
105 v = _mm256_castps128_ps256(l); | |
106 v = _mm256_insertf128_ps(v, h, 1); | |
107 return v; | |
108 } | |
109 | |
110 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
111 { | |
112 __m128 h = _mm256_extractf128_ps(v, 1); | |
113 __m128 l = _mm256_castps256_ps128(v); | |
114 (void)aligned_like; /* UNUSED */ | |
115 /* WARNING: the extra_iter hack depends upon STOREL occurring | |
116 after STOREH */ | |
117 STOREH(x + 3*ovs, h); | |
118 STOREL(x + 2*ovs, h); | |
119 STOREH(x + ovs, l); | |
120 STOREL(x, l); | |
121 } | |
122 | |
123 #define STM2(x, v, ovs, aligned_like) /* no-op */ | |
124 static inline void STN2(R *x, V v0, V v1, INT ovs) | |
125 { | |
126 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1)); | |
127 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3)); | |
128 __m128 h0 = _mm256_extractf128_ps(x0, 1); | |
129 __m128 l0 = _mm256_castps256_ps128(x0); | |
130 __m128 h1 = _mm256_extractf128_ps(x1, 1); | |
131 __m128 l1 = _mm256_castps256_ps128(x1); | |
132 *(__m128 *)(x + 3*ovs) = h1; | |
133 *(__m128 *)(x + 2*ovs) = h0; | |
134 *(__m128 *)(x + 1*ovs) = l1; | |
135 *(__m128 *)(x + 0*ovs) = l0; | |
136 } | |
137 | |
138 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
139 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
140 { \ | |
141 V xxx0, xxx1, xxx2, xxx3; \ | |
142 V yyy0, yyy1, yyy2, yyy3; \ | |
143 xxx0 = _mm256_unpacklo_ps(v0, v2); \ | |
144 xxx1 = _mm256_unpackhi_ps(v0, v2); \ | |
145 xxx2 = _mm256_unpacklo_ps(v1, v3); \ | |
146 xxx3 = _mm256_unpackhi_ps(v1, v3); \ | |
147 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \ | |
148 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \ | |
149 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \ | |
150 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \ | |
151 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \ | |
152 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \ | |
153 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \ | |
154 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \ | |
155 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \ | |
156 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \ | |
157 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \ | |
158 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \ | |
159 } | |
160 | |
161 #else | |
162 static inline __m128d VMOVAPD_LD(const R *x) | |
163 { | |
164 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x)) | |
165 into a 256-bit vmovapd, which requires 32-byte aligment instead of | |
166 16-byte alignment. | |
167 | |
168 Force the use of vmovapd via asm until compilers stabilize. | |
169 */ | |
170 #if defined(__GNUC__) | |
171 __m128d var; | |
172 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0])); | |
173 return var; | |
174 #else | |
175 return *(const __m128d *)x; | |
176 #endif | |
177 } | |
178 | |
179 static inline V LD(const R *x, INT ivs, const R *aligned_like) | |
180 { | |
181 V var; | |
182 (void)aligned_like; /* UNUSED */ | |
183 var = _mm256_castpd128_pd256(VMOVAPD_LD(x)); | |
184 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1); | |
185 return var; | |
186 } | |
187 | |
188 static inline void ST(R *x, V v, INT ovs, const R *aligned_like) | |
189 { | |
190 (void)aligned_like; /* UNUSED */ | |
191 /* WARNING: the extra_iter hack depends upon the store of the low | |
192 part occurring after the store of the high part */ | |
193 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1); | |
194 *(__m128d *)x = _mm256_castpd256_pd128(v); | |
195 } | |
196 | |
197 | |
198 #define STM2 ST | |
199 #define STN2(x, v0, v1, ovs) /* nop */ | |
200 #define STM4(x, v, ovs, aligned_like) /* no-op */ | |
201 | |
202 /* STN4 is a macro, not a function, thanks to Visual C++ developers | |
203 deciding "it would be infrequent that people would want to pass more | |
204 than 3 [__m128 parameters] by value." Even though the comment | |
205 was made about __m128 parameters, it appears to apply to __m256 | |
206 parameters as well. */ | |
207 #define STN4(x, v0, v1, v2, v3, ovs) \ | |
208 { \ | |
209 V xxx0, xxx1, xxx2, xxx3; \ | |
210 xxx0 = _mm256_unpacklo_pd(v0, v1); \ | |
211 xxx1 = _mm256_unpackhi_pd(v0, v1); \ | |
212 xxx2 = _mm256_unpacklo_pd(v2, v3); \ | |
213 xxx3 = _mm256_unpackhi_pd(v2, v3); \ | |
214 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \ | |
215 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \ | |
216 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \ | |
217 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \ | |
218 } | |
219 #endif | |
220 | |
221 static inline V FLIP_RI(V x) | |
222 { | |
223 return VSHUF(x, x, | |
224 DS(SHUFVALD(1, 0), | |
225 SHUFVALS(1, 0, 3, 2))); | |
226 } | |
227 | |
228 static inline V VCONJ(V x) | |
229 { | |
230 V pmpm = VLIT(-0.0, 0.0); | |
231 return VXOR(pmpm, x); | |
232 } | |
233 | |
234 static inline V VBYI(V x) | |
235 { | |
236 return FLIP_RI(VCONJ(x)); | |
237 } | |
238 | |
239 /* FMA support */ | |
240 #define VFMA(a, b, c) VADD(c, VMUL(a, b)) | |
241 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b)) | |
242 #define VFMS(a, b, c) VSUB(VMUL(a, b), c) | |
243 #define VFMAI(b, c) VADD(c, VBYI(b)) | |
244 #define VFNMSI(b, c) VSUB(c, VBYI(b)) | |
245 #define VFMACONJ(b,c) VADD(VCONJ(b),c) | |
246 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c) | |
247 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b)) | |
248 | |
249 static inline V VZMUL(V tx, V sr) | |
250 { | |
251 V tr = VDUPL(tx); | |
252 V ti = VDUPH(tx); | |
253 tr = VMUL(sr, tr); | |
254 sr = VBYI(sr); | |
255 return VFMA(ti, sr, tr); | |
256 } | |
257 | |
258 static inline V VZMULJ(V tx, V sr) | |
259 { | |
260 V tr = VDUPL(tx); | |
261 V ti = VDUPH(tx); | |
262 tr = VMUL(sr, tr); | |
263 sr = VBYI(sr); | |
264 return VFNMS(ti, sr, tr); | |
265 } | |
266 | |
267 static inline V VZMULI(V tx, V sr) | |
268 { | |
269 V tr = VDUPL(tx); | |
270 V ti = VDUPH(tx); | |
271 ti = VMUL(ti, sr); | |
272 sr = VBYI(sr); | |
273 return VFMS(tr, sr, ti); | |
274 } | |
275 | |
276 static inline V VZMULIJ(V tx, V sr) | |
277 { | |
278 V tr = VDUPL(tx); | |
279 V ti = VDUPH(tx); | |
280 ti = VMUL(ti, sr); | |
281 sr = VBYI(sr); | |
282 return VFMA(tr, sr, ti); | |
283 } | |
284 | |
285 /* twiddle storage #1: compact, slower */ | |
286 #ifdef FFTW_SINGLE | |
287 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x} | |
288 #else | |
289 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x} | |
290 #endif | |
291 #define TWVL1 (VL) | |
292 | |
293 static inline V BYTW1(const R *t, V sr) | |
294 { | |
295 return VZMUL(LDA(t, 2, t), sr); | |
296 } | |
297 | |
298 static inline V BYTWJ1(const R *t, V sr) | |
299 { | |
300 return VZMULJ(LDA(t, 2, t), sr); | |
301 } | |
302 | |
303 /* twiddle storage #2: twice the space, faster (when in cache) */ | |
304 #ifdef FFTW_SINGLE | |
305 # define VTW2(v,x) \ | |
306 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
307 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \ | |
308 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \ | |
309 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x} | |
310 #else | |
311 # define VTW2(v,x) \ | |
312 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \ | |
313 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x} | |
314 #endif | |
315 #define TWVL2 (2 * VL) | |
316 | |
317 static inline V BYTW2(const R *t, V sr) | |
318 { | |
319 const V *twp = (const V *)t; | |
320 V si = FLIP_RI(sr); | |
321 V tr = twp[0], ti = twp[1]; | |
322 return VFMA(tr, sr, VMUL(ti, si)); | |
323 } | |
324 | |
325 static inline V BYTWJ2(const R *t, V sr) | |
326 { | |
327 const V *twp = (const V *)t; | |
328 V si = FLIP_RI(sr); | |
329 V tr = twp[0], ti = twp[1]; | |
330 return VFNMS(ti, si, VMUL(tr, sr)); | |
331 } | |
332 | |
333 /* twiddle storage #3 */ | |
334 #define VTW3 VTW1 | |
335 #define TWVL3 TWVL1 | |
336 | |
337 /* twiddle storage for split arrays */ | |
338 #ifdef FFTW_SINGLE | |
339 # define VTWS(v,x) \ | |
340 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
341 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \ | |
342 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \ | |
343 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x} | |
344 #else | |
345 # define VTWS(v,x) \ | |
346 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \ | |
347 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x} | |
348 #endif | |
349 #define TWVLS (2 * VL) | |
350 | |
351 | |
352 /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE. | |
353 See Intel Optimization Manual (April 2011, version 248966), Section | |
354 11.3 */ | |
355 #define VLEAVE _mm256_zeroupper | |
356 | |
357 #include "simd-common.h" |