diff src/fftw-3.3.3/mpi/rdft-rank-geq2.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/mpi/rdft-rank-geq2.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,179 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* Complex RDFTs of rank >= 2, for the case where we are distributed
+   across the first dimension only, and the output is not transposed. */
+
+#include "mpi-rdft.h"
+
+typedef struct {
+     solver super;
+     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
+} S;
+
+typedef struct {
+     plan_mpi_rdft super;
+
+     plan *cld1, *cld2;
+     int preserve_input;
+} P;
+
+static void apply(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld1, *cld2;
+     
+     /* RDFT local dimensions */
+     cld1 = (plan_rdft *) ego->cld1;
+     if (ego->preserve_input) {
+	  cld1->apply(ego->cld1, I, O);
+	  I = O;
+     }
+     else
+	  cld1->apply(ego->cld1, I, I);
+
+     /* RDFT non-local dimension (via rdft-rank1-bigvec, usually): */
+     cld2 = (plan_rdft *) ego->cld2;
+     cld2->apply(ego->cld2, I, O);
+}
+
+static int applicable(const S *ego, const problem *p_,
+		      const planner *plnr)
+{
+     const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
+     return (1
+	     && p->sz->rnk > 1
+	     && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
+	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
+					  && p->I != p->O))
+	     && XM(is_local_after)(1, p->sz, IB)
+	     && XM(is_local_after)(1, p->sz, OB)
+	     && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
+		 || !XM(rdft_serial_applicable)(p))
+	  );
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cld1, wakefulness);
+     X(plan_awake)(ego->cld2, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cld2);
+     X(plan_destroy_internal)(ego->cld1);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     p->print(p, "(mpi-rdft-rank-geq2%s%(%p%)%(%p%))", 
+	      ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     const problem_mpi_rdft *p;
+     P *pln;
+     plan *cld1 = 0, *cld2 = 0;
+     R *I, *O, *I2;
+     tensor *sz;
+     dtensor *sz2;
+     int i, my_pe, n_pes;
+     INT nrest;
+     static const plan_adt padt = {
+          XM(rdft_solve), awake, print, destroy
+     };
+
+     UNUSED(ego);
+
+     if (!applicable(ego, p_, plnr))
+          return (plan *) 0;
+
+     p = (const problem_mpi_rdft *) p_;
+
+     I2 = I = p->I;
+     O = p->O;
+     if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) 
+	  I = O; 
+     MPI_Comm_rank(p->comm, &my_pe);
+     MPI_Comm_size(p->comm, &n_pes);
+
+     sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
+     i = p->sz->rnk - 2; A(i >= 0);
+     sz->dims[i].n = p->sz->dims[i+1].n;
+     sz->dims[i].is = sz->dims[i].os = p->vn;
+     for (--i; i >= 0; --i) {
+	  sz->dims[i].n = p->sz->dims[i+1].n;
+	  sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
+     }
+     nrest = X(tensor_sz)(sz);
+     {
+          INT is = sz->dims[0].n * sz->dims[0].is;
+          INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
+	  cld1 = X(mkplan_d)(plnr,
+                             X(mkproblem_rdft_d)(sz,
+						 X(mktensor_2d)(b, is, is,
+								p->vn, 1, 1),
+						 I2, I, p->kind + 1));
+	  if (XM(any_true)(!cld1, p->comm)) goto nada;
+     }
+
+     sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
+     sz2->dims[0] = p->sz->dims[0];
+     cld2 = X(mkplan_d)(plnr, XM(mkproblem_rdft_d)(sz2, nrest * p->vn,
+						   I, O,
+						   p->comm, p->kind,
+						   RANK1_BIGVEC_ONLY));
+     if (XM(any_true)(!cld2, p->comm)) goto nada;
+
+     pln = MKPLAN_MPI_RDFT(P, &padt, apply);
+     pln->cld1 = cld1;
+     pln->cld2 = cld2;
+     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
+
+     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
+
+     return &(pln->super.super);
+
+ nada:
+     X(plan_destroy_internal)(cld2);
+     X(plan_destroy_internal)(cld1);
+     return (plan *) 0;
+}
+
+static solver *mksolver(int preserve_input)
+{
+     static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->preserve_input = preserve_input;
+     return &(slv->super);
+}
+
+void XM(rdft_rank_geq2_register)(planner *p)
+{
+     int preserve_input;
+     for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
+	  REGISTER_SOLVER(p, mksolver(preserve_input));
+}