comparison src/fftw-3.3.3/mpi/rdft-rank-geq2.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* Complex RDFTs of rank >= 2, for the case where we are distributed
22 across the first dimension only, and the output is not transposed. */
23
24 #include "mpi-rdft.h"
25
26 typedef struct {
27 solver super;
28 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
29 } S;
30
31 typedef struct {
32 plan_mpi_rdft super;
33
34 plan *cld1, *cld2;
35 int preserve_input;
36 } P;
37
38 static void apply(const plan *ego_, R *I, R *O)
39 {
40 const P *ego = (const P *) ego_;
41 plan_rdft *cld1, *cld2;
42
43 /* RDFT local dimensions */
44 cld1 = (plan_rdft *) ego->cld1;
45 if (ego->preserve_input) {
46 cld1->apply(ego->cld1, I, O);
47 I = O;
48 }
49 else
50 cld1->apply(ego->cld1, I, I);
51
52 /* RDFT non-local dimension (via rdft-rank1-bigvec, usually): */
53 cld2 = (plan_rdft *) ego->cld2;
54 cld2->apply(ego->cld2, I, O);
55 }
56
57 static int applicable(const S *ego, const problem *p_,
58 const planner *plnr)
59 {
60 const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
61 return (1
62 && p->sz->rnk > 1
63 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
64 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
65 && p->I != p->O))
66 && XM(is_local_after)(1, p->sz, IB)
67 && XM(is_local_after)(1, p->sz, OB)
68 && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
69 || !XM(rdft_serial_applicable)(p))
70 );
71 }
72
73 static void awake(plan *ego_, enum wakefulness wakefulness)
74 {
75 P *ego = (P *) ego_;
76 X(plan_awake)(ego->cld1, wakefulness);
77 X(plan_awake)(ego->cld2, wakefulness);
78 }
79
80 static void destroy(plan *ego_)
81 {
82 P *ego = (P *) ego_;
83 X(plan_destroy_internal)(ego->cld2);
84 X(plan_destroy_internal)(ego->cld1);
85 }
86
87 static void print(const plan *ego_, printer *p)
88 {
89 const P *ego = (const P *) ego_;
90 p->print(p, "(mpi-rdft-rank-geq2%s%(%p%)%(%p%))",
91 ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
92 }
93
94 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
95 {
96 const S *ego = (const S *) ego_;
97 const problem_mpi_rdft *p;
98 P *pln;
99 plan *cld1 = 0, *cld2 = 0;
100 R *I, *O, *I2;
101 tensor *sz;
102 dtensor *sz2;
103 int i, my_pe, n_pes;
104 INT nrest;
105 static const plan_adt padt = {
106 XM(rdft_solve), awake, print, destroy
107 };
108
109 UNUSED(ego);
110
111 if (!applicable(ego, p_, plnr))
112 return (plan *) 0;
113
114 p = (const problem_mpi_rdft *) p_;
115
116 I2 = I = p->I;
117 O = p->O;
118 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr))
119 I = O;
120 MPI_Comm_rank(p->comm, &my_pe);
121 MPI_Comm_size(p->comm, &n_pes);
122
123 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
124 i = p->sz->rnk - 2; A(i >= 0);
125 sz->dims[i].n = p->sz->dims[i+1].n;
126 sz->dims[i].is = sz->dims[i].os = p->vn;
127 for (--i; i >= 0; --i) {
128 sz->dims[i].n = p->sz->dims[i+1].n;
129 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
130 }
131 nrest = X(tensor_sz)(sz);
132 {
133 INT is = sz->dims[0].n * sz->dims[0].is;
134 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
135 cld1 = X(mkplan_d)(plnr,
136 X(mkproblem_rdft_d)(sz,
137 X(mktensor_2d)(b, is, is,
138 p->vn, 1, 1),
139 I2, I, p->kind + 1));
140 if (XM(any_true)(!cld1, p->comm)) goto nada;
141 }
142
143 sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
144 sz2->dims[0] = p->sz->dims[0];
145 cld2 = X(mkplan_d)(plnr, XM(mkproblem_rdft_d)(sz2, nrest * p->vn,
146 I, O,
147 p->comm, p->kind,
148 RANK1_BIGVEC_ONLY));
149 if (XM(any_true)(!cld2, p->comm)) goto nada;
150
151 pln = MKPLAN_MPI_RDFT(P, &padt, apply);
152 pln->cld1 = cld1;
153 pln->cld2 = cld2;
154 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
155
156 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
157
158 return &(pln->super.super);
159
160 nada:
161 X(plan_destroy_internal)(cld2);
162 X(plan_destroy_internal)(cld1);
163 return (plan *) 0;
164 }
165
166 static solver *mksolver(int preserve_input)
167 {
168 static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
169 S *slv = MKSOLVER(S, &sadt);
170 slv->preserve_input = preserve_input;
171 return &(slv->super);
172 }
173
174 void XM(rdft_rank_geq2_register)(planner *p)
175 {
176 int preserve_input;
177 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
178 REGISTER_SOLVER(p, mksolver(preserve_input));
179 }