diff src/fftw-3.3.3/mpi/ifftw-mpi.h @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/mpi/ifftw-mpi.h	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,151 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* FFTW-MPI internal header file */
+#ifndef __IFFTW_MPI_H__
+#define __IFFTW_MPI_H__
+
+#include "ifftw.h"
+#include "rdft.h"
+
+#include <mpi.h>
+
+/* mpi problem flags: problem-dependent meaning, but in general
+   SCRAMBLED means some reordering *within* the dimensions, while
+   TRANSPOSED means some reordering *of* the dimensions */
+#define SCRAMBLED_IN (1 << 0)
+#define SCRAMBLED_OUT (1 << 1)
+#define TRANSPOSED_IN (1 << 2)
+#define TRANSPOSED_OUT (1 << 3)
+#define RANK1_BIGVEC_ONLY (1 << 4) /* for rank=1, allow only bigvec solver */
+
+#define ONLY_SCRAMBLEDP(flags) (!((flags) & ~(SCRAMBLED_IN|SCRAMBLED_OUT)))
+#define ONLY_TRANSPOSEDP(flags) (!((flags) & ~(TRANSPOSED_IN|TRANSPOSED_OUT)))
+
+#if defined(FFTW_SINGLE)
+#  define FFTW_MPI_TYPE MPI_FLOAT
+#elif defined(FFTW_LDOUBLE)
+#  define FFTW_MPI_TYPE MPI_LONG_DOUBLE
+#elif defined(FFTW_QUAD)
+#  error MPI quad-precision type is unknown
+#else
+#  define FFTW_MPI_TYPE MPI_DOUBLE
+#endif
+
+/* all fftw-mpi identifiers start with fftw_mpi (or fftwf_mpi etc.) */
+#define XM(name) X(CONCAT(mpi_, name))
+
+/***********************************************************************/
+/* block distributions */
+
+/* a distributed dimension of length n with input and output block
+   sizes ib and ob, respectively. */
+typedef enum { IB = 0, OB } block_kind;
+typedef struct {
+     INT n;
+     INT b[2]; /* b[IB], b[OB] */
+} ddim;
+
+/* Loop over k in {IB, OB}.  Note: need explicit casts for C++. */
+#define FORALL_BLOCK_KIND(k) for (k = IB; k <= OB; k = (block_kind) (((int) k) + 1))
+
+/* unlike tensors in the serial FFTW, the ordering of the dtensor
+   dimensions matters - both the array and the block layout are
+   row-major order. */
+typedef struct {
+     int rnk;
+#if defined(STRUCT_HACK_KR)
+     ddim dims[1];
+#elif defined(STRUCT_HACK_C99)
+     ddim dims[];
+#else
+     ddim *dims;
+#endif
+} dtensor;
+
+
+/* dtensor.c: */
+dtensor *XM(mkdtensor)(int rnk);
+void XM(dtensor_destroy)(dtensor *sz);
+dtensor *XM(dtensor_copy)(const dtensor *sz);
+dtensor *XM(dtensor_canonical)(const dtensor *sz, int compress);
+int XM(dtensor_validp)(const dtensor *sz);
+void XM(dtensor_md5)(md5 *p, const dtensor *t);
+void XM(dtensor_print)(const dtensor *t, printer *p);
+
+/* block.c: */
+
+/* for a single distributed dimension: */
+INT XM(num_blocks)(INT n, INT block);
+int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm);
+INT XM(default_block)(INT n, int n_pes);
+INT XM(block)(INT n, INT block, int which_block);
+
+/* for multiple distributed dimensions: */
+INT XM(num_blocks_total)(const dtensor *sz, block_kind k);
+int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe);
+void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, 
+		     INT *coords);
+INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe);
+int XM(is_local_after)(int dim, const dtensor *sz, block_kind k);
+int XM(is_local)(const dtensor *sz, block_kind k);
+int XM(is_block1d)(const dtensor *sz, block_kind k);
+
+/* choose-radix.c */
+INT XM(choose_radix)(ddim d, int n_pes, unsigned flags, int sign,
+                     INT rblock[2], INT mblock[2]);
+
+/***********************************************************************/
+/* any_true.c */
+int XM(any_true)(int condition, MPI_Comm comm);
+int XM(md5_equal)(md5 m, MPI_Comm comm);
+
+/* conf.c */
+void XM(conf_standard)(planner *p);
+
+/***********************************************************************/
+/* rearrange.c */
+
+/* Different ways to rearrange the vector dimension vn during transposition,
+   reflecting different tradeoffs between ease of transposition and
+   contiguity during the subsequent DFTs.
+
+   TODO: can we pare this down to CONTIG and DISCONTIG, at least
+   in MEASURE mode?  SQUARE_MIDDLE is also used for 1d destroy-input DFTs. */
+typedef enum {
+     CONTIG = 0, /* vn x 1: make subsequent DFTs contiguous */
+     DISCONTIG, /* P x (vn/P) for P processes */
+     SQUARE_BEFORE, /* try to get square transpose at beginning */
+     SQUARE_MIDDLE, /* try to get square transpose in the middle */
+     SQUARE_AFTER /* try to get square transpose at end */
+} rearrangement;
+
+/* skipping SQUARE_AFTER since it doesn't seem to offer any advantage
+   over SQUARE_BEFORE */
+#define FORALL_REARRANGE(rearrange) for (rearrange = CONTIG; rearrange <= SQUARE_MIDDLE; rearrange = (rearrangement) (((int) rearrange) + 1))
+
+int XM(rearrange_applicable)(rearrangement rearrange, 
+			     ddim dim0, INT vn, int n_pes);
+INT XM(rearrange_ny)(rearrangement rearrange, ddim dim0, INT vn, int n_pes);
+
+/***********************************************************************/
+
+#endif /* __IFFTW_MPI_H__ */
+