Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/mpi/ifftw-mpi.h @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/mpi/ifftw-mpi.h Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,151 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* FFTW-MPI internal header file */ +#ifndef __IFFTW_MPI_H__ +#define __IFFTW_MPI_H__ + +#include "ifftw.h" +#include "rdft.h" + +#include <mpi.h> + +/* mpi problem flags: problem-dependent meaning, but in general + SCRAMBLED means some reordering *within* the dimensions, while + TRANSPOSED means some reordering *of* the dimensions */ +#define SCRAMBLED_IN (1 << 0) +#define SCRAMBLED_OUT (1 << 1) +#define TRANSPOSED_IN (1 << 2) +#define TRANSPOSED_OUT (1 << 3) +#define RANK1_BIGVEC_ONLY (1 << 4) /* for rank=1, allow only bigvec solver */ + +#define ONLY_SCRAMBLEDP(flags) (!((flags) & ~(SCRAMBLED_IN|SCRAMBLED_OUT))) +#define ONLY_TRANSPOSEDP(flags) (!((flags) & ~(TRANSPOSED_IN|TRANSPOSED_OUT))) + +#if defined(FFTW_SINGLE) +# define FFTW_MPI_TYPE MPI_FLOAT +#elif defined(FFTW_LDOUBLE) +# define FFTW_MPI_TYPE MPI_LONG_DOUBLE +#elif defined(FFTW_QUAD) +# error MPI quad-precision type is unknown +#else +# define FFTW_MPI_TYPE MPI_DOUBLE +#endif + +/* all fftw-mpi identifiers start with fftw_mpi (or fftwf_mpi etc.) */ +#define XM(name) X(CONCAT(mpi_, name)) + +/***********************************************************************/ +/* block distributions */ + +/* a distributed dimension of length n with input and output block + sizes ib and ob, respectively. */ +typedef enum { IB = 0, OB } block_kind; +typedef struct { + INT n; + INT b[2]; /* b[IB], b[OB] */ +} ddim; + +/* Loop over k in {IB, OB}. Note: need explicit casts for C++. */ +#define FORALL_BLOCK_KIND(k) for (k = IB; k <= OB; k = (block_kind) (((int) k) + 1)) + +/* unlike tensors in the serial FFTW, the ordering of the dtensor + dimensions matters - both the array and the block layout are + row-major order. */ +typedef struct { + int rnk; +#if defined(STRUCT_HACK_KR) + ddim dims[1]; +#elif defined(STRUCT_HACK_C99) + ddim dims[]; +#else + ddim *dims; +#endif +} dtensor; + + +/* dtensor.c: */ +dtensor *XM(mkdtensor)(int rnk); +void XM(dtensor_destroy)(dtensor *sz); +dtensor *XM(dtensor_copy)(const dtensor *sz); +dtensor *XM(dtensor_canonical)(const dtensor *sz, int compress); +int XM(dtensor_validp)(const dtensor *sz); +void XM(dtensor_md5)(md5 *p, const dtensor *t); +void XM(dtensor_print)(const dtensor *t, printer *p); + +/* block.c: */ + +/* for a single distributed dimension: */ +INT XM(num_blocks)(INT n, INT block); +int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm); +INT XM(default_block)(INT n, int n_pes); +INT XM(block)(INT n, INT block, int which_block); + +/* for multiple distributed dimensions: */ +INT XM(num_blocks_total)(const dtensor *sz, block_kind k); +int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe); +void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, + INT *coords); +INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe); +int XM(is_local_after)(int dim, const dtensor *sz, block_kind k); +int XM(is_local)(const dtensor *sz, block_kind k); +int XM(is_block1d)(const dtensor *sz, block_kind k); + +/* choose-radix.c */ +INT XM(choose_radix)(ddim d, int n_pes, unsigned flags, int sign, + INT rblock[2], INT mblock[2]); + +/***********************************************************************/ +/* any_true.c */ +int XM(any_true)(int condition, MPI_Comm comm); +int XM(md5_equal)(md5 m, MPI_Comm comm); + +/* conf.c */ +void XM(conf_standard)(planner *p); + +/***********************************************************************/ +/* rearrange.c */ + +/* Different ways to rearrange the vector dimension vn during transposition, + reflecting different tradeoffs between ease of transposition and + contiguity during the subsequent DFTs. + + TODO: can we pare this down to CONTIG and DISCONTIG, at least + in MEASURE mode? SQUARE_MIDDLE is also used for 1d destroy-input DFTs. */ +typedef enum { + CONTIG = 0, /* vn x 1: make subsequent DFTs contiguous */ + DISCONTIG, /* P x (vn/P) for P processes */ + SQUARE_BEFORE, /* try to get square transpose at beginning */ + SQUARE_MIDDLE, /* try to get square transpose in the middle */ + SQUARE_AFTER /* try to get square transpose at end */ +} rearrangement; + +/* skipping SQUARE_AFTER since it doesn't seem to offer any advantage + over SQUARE_BEFORE */ +#define FORALL_REARRANGE(rearrange) for (rearrange = CONTIG; rearrange <= SQUARE_MIDDLE; rearrange = (rearrangement) (((int) rearrange) + 1)) + +int XM(rearrange_applicable)(rearrangement rearrange, + ddim dim0, INT vn, int n_pes); +INT XM(rearrange_ny)(rearrangement rearrange, ddim dim0, INT vn, int n_pes); + +/***********************************************************************/ + +#endif /* __IFFTW_MPI_H__ */ +