Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/mpi/ifftw-mpi.h @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* FFTW-MPI internal header file */ | |
22 #ifndef __IFFTW_MPI_H__ | |
23 #define __IFFTW_MPI_H__ | |
24 | |
25 #include "ifftw.h" | |
26 #include "rdft.h" | |
27 | |
28 #include <mpi.h> | |
29 | |
30 /* mpi problem flags: problem-dependent meaning, but in general | |
31 SCRAMBLED means some reordering *within* the dimensions, while | |
32 TRANSPOSED means some reordering *of* the dimensions */ | |
33 #define SCRAMBLED_IN (1 << 0) | |
34 #define SCRAMBLED_OUT (1 << 1) | |
35 #define TRANSPOSED_IN (1 << 2) | |
36 #define TRANSPOSED_OUT (1 << 3) | |
37 #define RANK1_BIGVEC_ONLY (1 << 4) /* for rank=1, allow only bigvec solver */ | |
38 | |
39 #define ONLY_SCRAMBLEDP(flags) (!((flags) & ~(SCRAMBLED_IN|SCRAMBLED_OUT))) | |
40 #define ONLY_TRANSPOSEDP(flags) (!((flags) & ~(TRANSPOSED_IN|TRANSPOSED_OUT))) | |
41 | |
42 #if defined(FFTW_SINGLE) | |
43 # define FFTW_MPI_TYPE MPI_FLOAT | |
44 #elif defined(FFTW_LDOUBLE) | |
45 # define FFTW_MPI_TYPE MPI_LONG_DOUBLE | |
46 #elif defined(FFTW_QUAD) | |
47 # error MPI quad-precision type is unknown | |
48 #else | |
49 # define FFTW_MPI_TYPE MPI_DOUBLE | |
50 #endif | |
51 | |
52 /* all fftw-mpi identifiers start with fftw_mpi (or fftwf_mpi etc.) */ | |
53 #define XM(name) X(CONCAT(mpi_, name)) | |
54 | |
55 /***********************************************************************/ | |
56 /* block distributions */ | |
57 | |
58 /* a distributed dimension of length n with input and output block | |
59 sizes ib and ob, respectively. */ | |
60 typedef enum { IB = 0, OB } block_kind; | |
61 typedef struct { | |
62 INT n; | |
63 INT b[2]; /* b[IB], b[OB] */ | |
64 } ddim; | |
65 | |
66 /* Loop over k in {IB, OB}. Note: need explicit casts for C++. */ | |
67 #define FORALL_BLOCK_KIND(k) for (k = IB; k <= OB; k = (block_kind) (((int) k) + 1)) | |
68 | |
69 /* unlike tensors in the serial FFTW, the ordering of the dtensor | |
70 dimensions matters - both the array and the block layout are | |
71 row-major order. */ | |
72 typedef struct { | |
73 int rnk; | |
74 #if defined(STRUCT_HACK_KR) | |
75 ddim dims[1]; | |
76 #elif defined(STRUCT_HACK_C99) | |
77 ddim dims[]; | |
78 #else | |
79 ddim *dims; | |
80 #endif | |
81 } dtensor; | |
82 | |
83 | |
84 /* dtensor.c: */ | |
85 dtensor *XM(mkdtensor)(int rnk); | |
86 void XM(dtensor_destroy)(dtensor *sz); | |
87 dtensor *XM(dtensor_copy)(const dtensor *sz); | |
88 dtensor *XM(dtensor_canonical)(const dtensor *sz, int compress); | |
89 int XM(dtensor_validp)(const dtensor *sz); | |
90 void XM(dtensor_md5)(md5 *p, const dtensor *t); | |
91 void XM(dtensor_print)(const dtensor *t, printer *p); | |
92 | |
93 /* block.c: */ | |
94 | |
95 /* for a single distributed dimension: */ | |
96 INT XM(num_blocks)(INT n, INT block); | |
97 int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm); | |
98 INT XM(default_block)(INT n, int n_pes); | |
99 INT XM(block)(INT n, INT block, int which_block); | |
100 | |
101 /* for multiple distributed dimensions: */ | |
102 INT XM(num_blocks_total)(const dtensor *sz, block_kind k); | |
103 int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe); | |
104 void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, | |
105 INT *coords); | |
106 INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe); | |
107 int XM(is_local_after)(int dim, const dtensor *sz, block_kind k); | |
108 int XM(is_local)(const dtensor *sz, block_kind k); | |
109 int XM(is_block1d)(const dtensor *sz, block_kind k); | |
110 | |
111 /* choose-radix.c */ | |
112 INT XM(choose_radix)(ddim d, int n_pes, unsigned flags, int sign, | |
113 INT rblock[2], INT mblock[2]); | |
114 | |
115 /***********************************************************************/ | |
116 /* any_true.c */ | |
117 int XM(any_true)(int condition, MPI_Comm comm); | |
118 int XM(md5_equal)(md5 m, MPI_Comm comm); | |
119 | |
120 /* conf.c */ | |
121 void XM(conf_standard)(planner *p); | |
122 | |
123 /***********************************************************************/ | |
124 /* rearrange.c */ | |
125 | |
126 /* Different ways to rearrange the vector dimension vn during transposition, | |
127 reflecting different tradeoffs between ease of transposition and | |
128 contiguity during the subsequent DFTs. | |
129 | |
130 TODO: can we pare this down to CONTIG and DISCONTIG, at least | |
131 in MEASURE mode? SQUARE_MIDDLE is also used for 1d destroy-input DFTs. */ | |
132 typedef enum { | |
133 CONTIG = 0, /* vn x 1: make subsequent DFTs contiguous */ | |
134 DISCONTIG, /* P x (vn/P) for P processes */ | |
135 SQUARE_BEFORE, /* try to get square transpose at beginning */ | |
136 SQUARE_MIDDLE, /* try to get square transpose in the middle */ | |
137 SQUARE_AFTER /* try to get square transpose at end */ | |
138 } rearrangement; | |
139 | |
140 /* skipping SQUARE_AFTER since it doesn't seem to offer any advantage | |
141 over SQUARE_BEFORE */ | |
142 #define FORALL_REARRANGE(rearrange) for (rearrange = CONTIG; rearrange <= SQUARE_MIDDLE; rearrange = (rearrangement) (((int) rearrange) + 1)) | |
143 | |
144 int XM(rearrange_applicable)(rearrangement rearrange, | |
145 ddim dim0, INT vn, int n_pes); | |
146 INT XM(rearrange_ny)(rearrangement rearrange, ddim dim0, INT vn, int n_pes); | |
147 | |
148 /***********************************************************************/ | |
149 | |
150 #endif /* __IFFTW_MPI_H__ */ | |
151 |