Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/mpi/dft-rank1.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/mpi/dft-rank1.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,352 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* Complex DFTs of rank == 1 via six-step algorithm. */ + +#include "mpi-dft.h" +#include "mpi-transpose.h" +#include "dft.h" + +typedef struct { + solver super; + rdftapply apply; /* apply_ddft_first or apply_ddft_last */ + int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ +} S; + +typedef struct { + plan_mpi_dft super; + + triggen *t; + plan *cldt, *cld_ddft, *cld_dft; + INT roff, ioff; + int preserve_input; + INT vn, xmin, xmax, xs, m, r; +} P; + +static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi) +{ + void (*rotate)(triggen *, INT, R, R, R *) = t->rotate; + INT im, iv; + for (im = 0; im < m; ++im) + for (iv = 0; iv < vn; ++iv) { + /* TODO: modify/inline rotate function + so that it can do whole vn vector at once? */ + R c[2]; + rotate(t, ir * im, *xr, *xi, c); + *xr = c[0]; *xi = c[1]; + xr += 2; xi += 2; + } +} + +/* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT, + plus twiddle factors between the size-m and size-r 1d DFTs, where + the m dimension is initially distributed. The output is transposed + to r x m where the r dimension is distributed. + + This algorithm follows the general sequence: + global transpose (m x r -> r x m) + DFTs of size m + multiply by twiddles + global transpose (r x m -> m x r) + DFTs of size r + global transpose (m x r -> r x m) + where the multiplication by twiddles can come before or after + the middle transpose. The first/last transposes are omitted + for SCRAMBLED_IN/OUT formats, respectively. + + However, we wish to exploit our dft-rank1-bigvec solver, which + solves a vector of distributed DFTs via transpose+dft+transpose. + Therefore, we can group *either* the DFTs of size m *or* the + DFTs of size r with their surrounding transposes as a single + distributed-DFT (ddft) plan. These two variations correspond to + apply_ddft_first or apply_ddft_last, respectively. +*/ + +static void apply_ddft_first(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_dft *cld_dft; + plan_rdft *cldt, *cld_ddft; + INT roff, ioff, im, mmax, ms, r, vn; + triggen *t; + R *dI, *dO; + + /* distributed size-m DFTs, with output in m x r format */ + cld_ddft = (plan_rdft *) ego->cld_ddft; + cld_ddft->apply(ego->cld_ddft, I, O); + + cldt = (plan_rdft *) ego->cldt; + if (ego->preserve_input || !cldt) I = O; + + /* twiddle multiplications, followed by 1d DFTs of size-r */ + cld_dft = (plan_dft *) ego->cld_dft; + roff = ego->roff; ioff = ego->ioff; + mmax = ego->xmax; ms = ego->xs; + t = ego->t; r = ego->r; vn = ego->vn; + dI = O; dO = I; + for (im = ego->xmin; im <= mmax; ++im) { + do_twiddle(t, im, r, vn, dI+roff, dI+ioff); + cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); + dI += ms; dO += ms; + } + + /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */ + if (cldt) + cldt->apply((plan *) cldt, I, O); +} + +static void apply_ddft_last(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_dft *cld_dft; + plan_rdft *cldt, *cld_ddft; + INT roff, ioff, ir, rmax, rs, m, vn; + triggen *t; + R *dI, *dO0, *dO; + + /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */ + cldt = (plan_rdft *) ego->cldt; + if (cldt) { + cldt->apply((plan *) cldt, I, O); + dI = O; + } + else + dI = I; + if (ego->preserve_input) dO = O; else dO = I; + dO0 = dO; + + /* 1d DFTs of size m, followed by twiddle multiplications */ + cld_dft = (plan_dft *) ego->cld_dft; + roff = ego->roff; ioff = ego->ioff; + rmax = ego->xmax; rs = ego->xs; + t = ego->t; m = ego->m; vn = ego->vn; + for (ir = ego->xmin; ir <= rmax; ++ir) { + cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); + do_twiddle(t, ir, m, vn, dO+roff, dO+ioff); + dI += rs; dO += rs; + } + + /* distributed size-r DFTs, with output in r x m format */ + cld_ddft = (plan_rdft *) ego->cld_ddft; + cld_ddft->apply(ego->cld_ddft, dO0, O); +} + +static int applicable(const S *ego, const problem *p_, + const planner *plnr, + INT *r, INT rblock[2], INT mblock[2]) +{ + const problem_mpi_dft *p = (const problem_mpi_dft *) p_; + int n_pes; + MPI_Comm_size(p->comm, &n_pes); + return (1 + && p->sz->rnk == 1 + + && ONLY_SCRAMBLEDP(p->flags) + + && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) + && p->I != p->O)) + + && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last) + && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first) + + && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */ + || !XM(dft_serial_applicable)(p)) + + /* disallow if dft-rank1-bigvec is applicable since the + data distribution may be slightly different (ugh!) */ + && (p->vn < n_pes || p->flags) + + && (*r = XM(choose_radix)(p->sz->dims[0], n_pes, + p->flags, p->sign, + rblock, mblock)) + + /* ddft_first or last has substantial advantages in the + bigvec transpositions for the common case where + n_pes == n/r or r, respectively */ + && (!NO_UGLYP(plnr) + || !(*r == n_pes && ego->apply == apply_ddft_first) + || !(p->sz->dims[0].n / *r == n_pes + && ego->apply == apply_ddft_last)) + ); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cldt, wakefulness); + X(plan_awake)(ego->cld_dft, wakefulness); + X(plan_awake)(ego->cld_ddft, wakefulness); + + switch (wakefulness) { + case SLEEPY: + X(triggen_destroy)(ego->t); ego->t = 0; + break; + default: + ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m); + break; + } +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cldt); + X(plan_destroy_internal)(ego->cld_dft); + X(plan_destroy_internal)(ego->cld_ddft); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))", + ego->r, + ego->super.apply == apply_ddft_first ? "/first" : "/last", + ego->preserve_input==2 ?"/p":"", + ego->cld_ddft, ego->cld_dft, ego->cldt); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_mpi_dft *p; + P *pln; + plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0; + R *ri, *ii, *ro, *io, *I, *O; + INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb; + int my_pe, n_pes, preserve_input, ddft_first; + dtensor *sz; + static const plan_adt padt = { + XM(dft_solve), awake, print, destroy + }; + + UNUSED(ego); + + if (!applicable(ego, p_, plnr, &r, rblock, mblock)) + return (plan *) 0; + + p = (const problem_mpi_dft *) p_; + + MPI_Comm_rank(p->comm, &my_pe); + MPI_Comm_size(p->comm, &n_pes); + + m = p->sz->dims[0].n / r; + + /* some hackery so that we can plan both ddft_first and ddft_last + as if they were ddft_first */ + if ((ddft_first = (ego->apply == apply_ddft_first))) { + rp = r; mp = m; + mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB]; + mpb = XM(block)(mp, mpblock[OB], my_pe); + } + else { + rp = m; mp = r; + mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB]; + mpb = XM(block)(mp, mpblock[IB], my_pe); + } + + preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); + + sz = XM(mkdtensor)(1); + sz->dims[0].n = mp; + sz->dims[0].b[IB] = mpblock[IB]; + sz->dims[0].b[OB] = mpblock[OB]; + I = (ddft_first || !preserve_input) ? p->I : p->O; + O = p->O; + cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn, + I, O, p->comm, p->sign, + RANK1_BIGVEC_ONLY)); + if (XM(any_true)(!cld_ddft, p->comm)) goto nada; + + I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2); + O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I, + rp * p->vn * 2); + X(extract_reim)(p->sign, I, &ri, &ii); + X(extract_reim)(p->sign, O, &ro, &io); + cld_dft = X(mkplan_d)(plnr, + X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2), + X(mktensor_1d)(p->vn, 2, 2), + ri, ii, ro, io)); + if (XM(any_true)(!cld_dft, p->comm)) goto nada; + + if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */ + I = (ddft_first && preserve_input) ? p->O : p->I; + O = p->O; + cldt = X(mkplan_d)(plnr, + XM(mkproblem_transpose)( + m, r, p->vn * 2, + I, O, + ddft_first ? mblock[OB] : mblock[IB], + ddft_first ? rblock[OB] : rblock[IB], + p->comm, 0)); + if (XM(any_true)(!cldt, p->comm)) goto nada; + } + + pln = MKPLAN_MPI_DFT(P, &padt, ego->apply); + + pln->cld_ddft = cld_ddft; + pln->cld_dft = cld_dft; + pln->cldt = cldt; + pln->preserve_input = preserve_input; + X(extract_reim)(p->sign, p->O, &ro, &io); + pln->roff = ro - p->O; + pln->ioff = io - p->O; + pln->vn = p->vn; + pln->m = m; + pln->r = r; + pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe; + pln->xmax = pln->xmin + mpb - 1; + pln->xs = rp * p->vn * 2; + pln->t = 0; + + X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops); + if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops); + { + double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn; + pln->super.super.ops.mul += 8 * n0; + pln->super.super.ops.add += 4 * n0; + pln->super.super.ops.other += 8 * n0; + } + + return &(pln->super.super); + + nada: + X(plan_destroy_internal)(cldt); + X(plan_destroy_internal)(cld_dft); + X(plan_destroy_internal)(cld_ddft); + return (plan *) 0; +} + +static solver *mksolver(rdftapply apply, int preserve_input) +{ + static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->apply = apply; + slv->preserve_input = preserve_input; + return &(slv->super); +} + +void XM(dft_rank1_register)(planner *p) +{ + rdftapply apply[] = { apply_ddft_first, apply_ddft_last }; + unsigned int iapply; + int preserve_input; + for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply) + for (preserve_input = 0; preserve_input <= 1; ++preserve_input) + REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input)); +}