comparison src/fftw-3.3.3/mpi/dft-rank1.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* Complex DFTs of rank == 1 via six-step algorithm. */
22
23 #include "mpi-dft.h"
24 #include "mpi-transpose.h"
25 #include "dft.h"
26
27 typedef struct {
28 solver super;
29 rdftapply apply; /* apply_ddft_first or apply_ddft_last */
30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
31 } S;
32
33 typedef struct {
34 plan_mpi_dft super;
35
36 triggen *t;
37 plan *cldt, *cld_ddft, *cld_dft;
38 INT roff, ioff;
39 int preserve_input;
40 INT vn, xmin, xmax, xs, m, r;
41 } P;
42
43 static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
44 {
45 void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
46 INT im, iv;
47 for (im = 0; im < m; ++im)
48 for (iv = 0; iv < vn; ++iv) {
49 /* TODO: modify/inline rotate function
50 so that it can do whole vn vector at once? */
51 R c[2];
52 rotate(t, ir * im, *xr, *xi, c);
53 *xr = c[0]; *xi = c[1];
54 xr += 2; xi += 2;
55 }
56 }
57
58 /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
59 plus twiddle factors between the size-m and size-r 1d DFTs, where
60 the m dimension is initially distributed. The output is transposed
61 to r x m where the r dimension is distributed.
62
63 This algorithm follows the general sequence:
64 global transpose (m x r -> r x m)
65 DFTs of size m
66 multiply by twiddles + global transpose (r x m -> m x r)
67 DFTs of size r
68 global transpose (m x r -> r x m)
69 where the multiplication by twiddles can come before or after
70 the middle transpose. The first/last transposes are omitted
71 for SCRAMBLED_IN/OUT formats, respectively.
72
73 However, we wish to exploit our dft-rank1-bigvec solver, which
74 solves a vector of distributed DFTs via transpose+dft+transpose.
75 Therefore, we can group *either* the DFTs of size m *or* the
76 DFTs of size r with their surrounding transposes as a single
77 distributed-DFT (ddft) plan. These two variations correspond to
78 apply_ddft_first or apply_ddft_last, respectively.
79 */
80
81 static void apply_ddft_first(const plan *ego_, R *I, R *O)
82 {
83 const P *ego = (const P *) ego_;
84 plan_dft *cld_dft;
85 plan_rdft *cldt, *cld_ddft;
86 INT roff, ioff, im, mmax, ms, r, vn;
87 triggen *t;
88 R *dI, *dO;
89
90 /* distributed size-m DFTs, with output in m x r format */
91 cld_ddft = (plan_rdft *) ego->cld_ddft;
92 cld_ddft->apply(ego->cld_ddft, I, O);
93
94 cldt = (plan_rdft *) ego->cldt;
95 if (ego->preserve_input || !cldt) I = O;
96
97 /* twiddle multiplications, followed by 1d DFTs of size-r */
98 cld_dft = (plan_dft *) ego->cld_dft;
99 roff = ego->roff; ioff = ego->ioff;
100 mmax = ego->xmax; ms = ego->xs;
101 t = ego->t; r = ego->r; vn = ego->vn;
102 dI = O; dO = I;
103 for (im = ego->xmin; im <= mmax; ++im) {
104 do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
105 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
106 dI += ms; dO += ms;
107 }
108
109 /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
110 if (cldt)
111 cldt->apply((plan *) cldt, I, O);
112 }
113
114 static void apply_ddft_last(const plan *ego_, R *I, R *O)
115 {
116 const P *ego = (const P *) ego_;
117 plan_dft *cld_dft;
118 plan_rdft *cldt, *cld_ddft;
119 INT roff, ioff, ir, rmax, rs, m, vn;
120 triggen *t;
121 R *dI, *dO0, *dO;
122
123 /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
124 cldt = (plan_rdft *) ego->cldt;
125 if (cldt) {
126 cldt->apply((plan *) cldt, I, O);
127 dI = O;
128 }
129 else
130 dI = I;
131 if (ego->preserve_input) dO = O; else dO = I;
132 dO0 = dO;
133
134 /* 1d DFTs of size m, followed by twiddle multiplications */
135 cld_dft = (plan_dft *) ego->cld_dft;
136 roff = ego->roff; ioff = ego->ioff;
137 rmax = ego->xmax; rs = ego->xs;
138 t = ego->t; m = ego->m; vn = ego->vn;
139 for (ir = ego->xmin; ir <= rmax; ++ir) {
140 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
141 do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
142 dI += rs; dO += rs;
143 }
144
145 /* distributed size-r DFTs, with output in r x m format */
146 cld_ddft = (plan_rdft *) ego->cld_ddft;
147 cld_ddft->apply(ego->cld_ddft, dO0, O);
148 }
149
150 static int applicable(const S *ego, const problem *p_,
151 const planner *plnr,
152 INT *r, INT rblock[2], INT mblock[2])
153 {
154 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
155 int n_pes;
156 MPI_Comm_size(p->comm, &n_pes);
157 return (1
158 && p->sz->rnk == 1
159
160 && ONLY_SCRAMBLEDP(p->flags)
161
162 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
163 && p->I != p->O))
164
165 && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
166 && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
167
168 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
169 || !XM(dft_serial_applicable)(p))
170
171 /* disallow if dft-rank1-bigvec is applicable since the
172 data distribution may be slightly different (ugh!) */
173 && (p->vn < n_pes || p->flags)
174
175 && (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
176 p->flags, p->sign,
177 rblock, mblock))
178
179 /* ddft_first or last has substantial advantages in the
180 bigvec transpositions for the common case where
181 n_pes == n/r or r, respectively */
182 && (!NO_UGLYP(plnr)
183 || !(*r == n_pes && ego->apply == apply_ddft_first)
184 || !(p->sz->dims[0].n / *r == n_pes
185 && ego->apply == apply_ddft_last))
186 );
187 }
188
189 static void awake(plan *ego_, enum wakefulness wakefulness)
190 {
191 P *ego = (P *) ego_;
192 X(plan_awake)(ego->cldt, wakefulness);
193 X(plan_awake)(ego->cld_dft, wakefulness);
194 X(plan_awake)(ego->cld_ddft, wakefulness);
195
196 switch (wakefulness) {
197 case SLEEPY:
198 X(triggen_destroy)(ego->t); ego->t = 0;
199 break;
200 default:
201 ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
202 break;
203 }
204 }
205
206 static void destroy(plan *ego_)
207 {
208 P *ego = (P *) ego_;
209 X(plan_destroy_internal)(ego->cldt);
210 X(plan_destroy_internal)(ego->cld_dft);
211 X(plan_destroy_internal)(ego->cld_ddft);
212 }
213
214 static void print(const plan *ego_, printer *p)
215 {
216 const P *ego = (const P *) ego_;
217 p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
218 ego->r,
219 ego->super.apply == apply_ddft_first ? "/first" : "/last",
220 ego->preserve_input==2 ?"/p":"",
221 ego->cld_ddft, ego->cld_dft, ego->cldt);
222 }
223
224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
225 {
226 const S *ego = (const S *) ego_;
227 const problem_mpi_dft *p;
228 P *pln;
229 plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
230 R *ri, *ii, *ro, *io, *I, *O;
231 INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
232 int my_pe, n_pes, preserve_input, ddft_first;
233 dtensor *sz;
234 static const plan_adt padt = {
235 XM(dft_solve), awake, print, destroy
236 };
237
238 UNUSED(ego);
239
240 if (!applicable(ego, p_, plnr, &r, rblock, mblock))
241 return (plan *) 0;
242
243 p = (const problem_mpi_dft *) p_;
244
245 MPI_Comm_rank(p->comm, &my_pe);
246 MPI_Comm_size(p->comm, &n_pes);
247
248 m = p->sz->dims[0].n / r;
249
250 /* some hackery so that we can plan both ddft_first and ddft_last
251 as if they were ddft_first */
252 if ((ddft_first = (ego->apply == apply_ddft_first))) {
253 rp = r; mp = m;
254 mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
255 mpb = XM(block)(mp, mpblock[OB], my_pe);
256 }
257 else {
258 rp = m; mp = r;
259 mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
260 mpb = XM(block)(mp, mpblock[IB], my_pe);
261 }
262
263 preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
264
265 sz = XM(mkdtensor)(1);
266 sz->dims[0].n = mp;
267 sz->dims[0].b[IB] = mpblock[IB];
268 sz->dims[0].b[OB] = mpblock[OB];
269 I = (ddft_first || !preserve_input) ? p->I : p->O;
270 O = p->O;
271 cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
272 I, O, p->comm, p->sign,
273 RANK1_BIGVEC_ONLY));
274 if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
275
276 I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
277 O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
278 rp * p->vn * 2);
279 X(extract_reim)(p->sign, I, &ri, &ii);
280 X(extract_reim)(p->sign, O, &ro, &io);
281 cld_dft = X(mkplan_d)(plnr,
282 X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
283 X(mktensor_1d)(p->vn, 2, 2),
284 ri, ii, ro, io));
285 if (XM(any_true)(!cld_dft, p->comm)) goto nada;
286
287 if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
288 I = (ddft_first && preserve_input) ? p->O : p->I;
289 O = p->O;
290 cldt = X(mkplan_d)(plnr,
291 XM(mkproblem_transpose)(
292 m, r, p->vn * 2,
293 I, O,
294 ddft_first ? mblock[OB] : mblock[IB],
295 ddft_first ? rblock[OB] : rblock[IB],
296 p->comm, 0));
297 if (XM(any_true)(!cldt, p->comm)) goto nada;
298 }
299
300 pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
301
302 pln->cld_ddft = cld_ddft;
303 pln->cld_dft = cld_dft;
304 pln->cldt = cldt;
305 pln->preserve_input = preserve_input;
306 X(extract_reim)(p->sign, p->O, &ro, &io);
307 pln->roff = ro - p->O;
308 pln->ioff = io - p->O;
309 pln->vn = p->vn;
310 pln->m = m;
311 pln->r = r;
312 pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
313 pln->xmax = pln->xmin + mpb - 1;
314 pln->xs = rp * p->vn * 2;
315 pln->t = 0;
316
317 X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
318 if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
319 {
320 double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
321 pln->super.super.ops.mul += 8 * n0;
322 pln->super.super.ops.add += 4 * n0;
323 pln->super.super.ops.other += 8 * n0;
324 }
325
326 return &(pln->super.super);
327
328 nada:
329 X(plan_destroy_internal)(cldt);
330 X(plan_destroy_internal)(cld_dft);
331 X(plan_destroy_internal)(cld_ddft);
332 return (plan *) 0;
333 }
334
335 static solver *mksolver(rdftapply apply, int preserve_input)
336 {
337 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
338 S *slv = MKSOLVER(S, &sadt);
339 slv->apply = apply;
340 slv->preserve_input = preserve_input;
341 return &(slv->super);
342 }
343
344 void XM(dft_rank1_register)(planner *p)
345 {
346 rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
347 unsigned int iapply;
348 int preserve_input;
349 for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
350 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
351 REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
352 }