Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/mpi/dft-rank1.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* Complex DFTs of rank == 1 via six-step algorithm. */ | |
22 | |
23 #include "mpi-dft.h" | |
24 #include "mpi-transpose.h" | |
25 #include "dft.h" | |
26 | |
27 typedef struct { | |
28 solver super; | |
29 rdftapply apply; /* apply_ddft_first or apply_ddft_last */ | |
30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ | |
31 } S; | |
32 | |
33 typedef struct { | |
34 plan_mpi_dft super; | |
35 | |
36 triggen *t; | |
37 plan *cldt, *cld_ddft, *cld_dft; | |
38 INT roff, ioff; | |
39 int preserve_input; | |
40 INT vn, xmin, xmax, xs, m, r; | |
41 } P; | |
42 | |
43 static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi) | |
44 { | |
45 void (*rotate)(triggen *, INT, R, R, R *) = t->rotate; | |
46 INT im, iv; | |
47 for (im = 0; im < m; ++im) | |
48 for (iv = 0; iv < vn; ++iv) { | |
49 /* TODO: modify/inline rotate function | |
50 so that it can do whole vn vector at once? */ | |
51 R c[2]; | |
52 rotate(t, ir * im, *xr, *xi, c); | |
53 *xr = c[0]; *xi = c[1]; | |
54 xr += 2; xi += 2; | |
55 } | |
56 } | |
57 | |
58 /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT, | |
59 plus twiddle factors between the size-m and size-r 1d DFTs, where | |
60 the m dimension is initially distributed. The output is transposed | |
61 to r x m where the r dimension is distributed. | |
62 | |
63 This algorithm follows the general sequence: | |
64 global transpose (m x r -> r x m) | |
65 DFTs of size m | |
66 multiply by twiddles + global transpose (r x m -> m x r) | |
67 DFTs of size r | |
68 global transpose (m x r -> r x m) | |
69 where the multiplication by twiddles can come before or after | |
70 the middle transpose. The first/last transposes are omitted | |
71 for SCRAMBLED_IN/OUT formats, respectively. | |
72 | |
73 However, we wish to exploit our dft-rank1-bigvec solver, which | |
74 solves a vector of distributed DFTs via transpose+dft+transpose. | |
75 Therefore, we can group *either* the DFTs of size m *or* the | |
76 DFTs of size r with their surrounding transposes as a single | |
77 distributed-DFT (ddft) plan. These two variations correspond to | |
78 apply_ddft_first or apply_ddft_last, respectively. | |
79 */ | |
80 | |
81 static void apply_ddft_first(const plan *ego_, R *I, R *O) | |
82 { | |
83 const P *ego = (const P *) ego_; | |
84 plan_dft *cld_dft; | |
85 plan_rdft *cldt, *cld_ddft; | |
86 INT roff, ioff, im, mmax, ms, r, vn; | |
87 triggen *t; | |
88 R *dI, *dO; | |
89 | |
90 /* distributed size-m DFTs, with output in m x r format */ | |
91 cld_ddft = (plan_rdft *) ego->cld_ddft; | |
92 cld_ddft->apply(ego->cld_ddft, I, O); | |
93 | |
94 cldt = (plan_rdft *) ego->cldt; | |
95 if (ego->preserve_input || !cldt) I = O; | |
96 | |
97 /* twiddle multiplications, followed by 1d DFTs of size-r */ | |
98 cld_dft = (plan_dft *) ego->cld_dft; | |
99 roff = ego->roff; ioff = ego->ioff; | |
100 mmax = ego->xmax; ms = ego->xs; | |
101 t = ego->t; r = ego->r; vn = ego->vn; | |
102 dI = O; dO = I; | |
103 for (im = ego->xmin; im <= mmax; ++im) { | |
104 do_twiddle(t, im, r, vn, dI+roff, dI+ioff); | |
105 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); | |
106 dI += ms; dO += ms; | |
107 } | |
108 | |
109 /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */ | |
110 if (cldt) | |
111 cldt->apply((plan *) cldt, I, O); | |
112 } | |
113 | |
114 static void apply_ddft_last(const plan *ego_, R *I, R *O) | |
115 { | |
116 const P *ego = (const P *) ego_; | |
117 plan_dft *cld_dft; | |
118 plan_rdft *cldt, *cld_ddft; | |
119 INT roff, ioff, ir, rmax, rs, m, vn; | |
120 triggen *t; | |
121 R *dI, *dO0, *dO; | |
122 | |
123 /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */ | |
124 cldt = (plan_rdft *) ego->cldt; | |
125 if (cldt) { | |
126 cldt->apply((plan *) cldt, I, O); | |
127 dI = O; | |
128 } | |
129 else | |
130 dI = I; | |
131 if (ego->preserve_input) dO = O; else dO = I; | |
132 dO0 = dO; | |
133 | |
134 /* 1d DFTs of size m, followed by twiddle multiplications */ | |
135 cld_dft = (plan_dft *) ego->cld_dft; | |
136 roff = ego->roff; ioff = ego->ioff; | |
137 rmax = ego->xmax; rs = ego->xs; | |
138 t = ego->t; m = ego->m; vn = ego->vn; | |
139 for (ir = ego->xmin; ir <= rmax; ++ir) { | |
140 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff); | |
141 do_twiddle(t, ir, m, vn, dO+roff, dO+ioff); | |
142 dI += rs; dO += rs; | |
143 } | |
144 | |
145 /* distributed size-r DFTs, with output in r x m format */ | |
146 cld_ddft = (plan_rdft *) ego->cld_ddft; | |
147 cld_ddft->apply(ego->cld_ddft, dO0, O); | |
148 } | |
149 | |
150 static int applicable(const S *ego, const problem *p_, | |
151 const planner *plnr, | |
152 INT *r, INT rblock[2], INT mblock[2]) | |
153 { | |
154 const problem_mpi_dft *p = (const problem_mpi_dft *) p_; | |
155 int n_pes; | |
156 MPI_Comm_size(p->comm, &n_pes); | |
157 return (1 | |
158 && p->sz->rnk == 1 | |
159 | |
160 && ONLY_SCRAMBLEDP(p->flags) | |
161 | |
162 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) | |
163 && p->I != p->O)) | |
164 | |
165 && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last) | |
166 && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first) | |
167 | |
168 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */ | |
169 || !XM(dft_serial_applicable)(p)) | |
170 | |
171 /* disallow if dft-rank1-bigvec is applicable since the | |
172 data distribution may be slightly different (ugh!) */ | |
173 && (p->vn < n_pes || p->flags) | |
174 | |
175 && (*r = XM(choose_radix)(p->sz->dims[0], n_pes, | |
176 p->flags, p->sign, | |
177 rblock, mblock)) | |
178 | |
179 /* ddft_first or last has substantial advantages in the | |
180 bigvec transpositions for the common case where | |
181 n_pes == n/r or r, respectively */ | |
182 && (!NO_UGLYP(plnr) | |
183 || !(*r == n_pes && ego->apply == apply_ddft_first) | |
184 || !(p->sz->dims[0].n / *r == n_pes | |
185 && ego->apply == apply_ddft_last)) | |
186 ); | |
187 } | |
188 | |
189 static void awake(plan *ego_, enum wakefulness wakefulness) | |
190 { | |
191 P *ego = (P *) ego_; | |
192 X(plan_awake)(ego->cldt, wakefulness); | |
193 X(plan_awake)(ego->cld_dft, wakefulness); | |
194 X(plan_awake)(ego->cld_ddft, wakefulness); | |
195 | |
196 switch (wakefulness) { | |
197 case SLEEPY: | |
198 X(triggen_destroy)(ego->t); ego->t = 0; | |
199 break; | |
200 default: | |
201 ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m); | |
202 break; | |
203 } | |
204 } | |
205 | |
206 static void destroy(plan *ego_) | |
207 { | |
208 P *ego = (P *) ego_; | |
209 X(plan_destroy_internal)(ego->cldt); | |
210 X(plan_destroy_internal)(ego->cld_dft); | |
211 X(plan_destroy_internal)(ego->cld_ddft); | |
212 } | |
213 | |
214 static void print(const plan *ego_, printer *p) | |
215 { | |
216 const P *ego = (const P *) ego_; | |
217 p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))", | |
218 ego->r, | |
219 ego->super.apply == apply_ddft_first ? "/first" : "/last", | |
220 ego->preserve_input==2 ?"/p":"", | |
221 ego->cld_ddft, ego->cld_dft, ego->cldt); | |
222 } | |
223 | |
224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
225 { | |
226 const S *ego = (const S *) ego_; | |
227 const problem_mpi_dft *p; | |
228 P *pln; | |
229 plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0; | |
230 R *ri, *ii, *ro, *io, *I, *O; | |
231 INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb; | |
232 int my_pe, n_pes, preserve_input, ddft_first; | |
233 dtensor *sz; | |
234 static const plan_adt padt = { | |
235 XM(dft_solve), awake, print, destroy | |
236 }; | |
237 | |
238 UNUSED(ego); | |
239 | |
240 if (!applicable(ego, p_, plnr, &r, rblock, mblock)) | |
241 return (plan *) 0; | |
242 | |
243 p = (const problem_mpi_dft *) p_; | |
244 | |
245 MPI_Comm_rank(p->comm, &my_pe); | |
246 MPI_Comm_size(p->comm, &n_pes); | |
247 | |
248 m = p->sz->dims[0].n / r; | |
249 | |
250 /* some hackery so that we can plan both ddft_first and ddft_last | |
251 as if they were ddft_first */ | |
252 if ((ddft_first = (ego->apply == apply_ddft_first))) { | |
253 rp = r; mp = m; | |
254 mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB]; | |
255 mpb = XM(block)(mp, mpblock[OB], my_pe); | |
256 } | |
257 else { | |
258 rp = m; mp = r; | |
259 mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB]; | |
260 mpb = XM(block)(mp, mpblock[IB], my_pe); | |
261 } | |
262 | |
263 preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); | |
264 | |
265 sz = XM(mkdtensor)(1); | |
266 sz->dims[0].n = mp; | |
267 sz->dims[0].b[IB] = mpblock[IB]; | |
268 sz->dims[0].b[OB] = mpblock[OB]; | |
269 I = (ddft_first || !preserve_input) ? p->I : p->O; | |
270 O = p->O; | |
271 cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn, | |
272 I, O, p->comm, p->sign, | |
273 RANK1_BIGVEC_ONLY)); | |
274 if (XM(any_true)(!cld_ddft, p->comm)) goto nada; | |
275 | |
276 I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2); | |
277 O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I, | |
278 rp * p->vn * 2); | |
279 X(extract_reim)(p->sign, I, &ri, &ii); | |
280 X(extract_reim)(p->sign, O, &ro, &io); | |
281 cld_dft = X(mkplan_d)(plnr, | |
282 X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2), | |
283 X(mktensor_1d)(p->vn, 2, 2), | |
284 ri, ii, ro, io)); | |
285 if (XM(any_true)(!cld_dft, p->comm)) goto nada; | |
286 | |
287 if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */ | |
288 I = (ddft_first && preserve_input) ? p->O : p->I; | |
289 O = p->O; | |
290 cldt = X(mkplan_d)(plnr, | |
291 XM(mkproblem_transpose)( | |
292 m, r, p->vn * 2, | |
293 I, O, | |
294 ddft_first ? mblock[OB] : mblock[IB], | |
295 ddft_first ? rblock[OB] : rblock[IB], | |
296 p->comm, 0)); | |
297 if (XM(any_true)(!cldt, p->comm)) goto nada; | |
298 } | |
299 | |
300 pln = MKPLAN_MPI_DFT(P, &padt, ego->apply); | |
301 | |
302 pln->cld_ddft = cld_ddft; | |
303 pln->cld_dft = cld_dft; | |
304 pln->cldt = cldt; | |
305 pln->preserve_input = preserve_input; | |
306 X(extract_reim)(p->sign, p->O, &ro, &io); | |
307 pln->roff = ro - p->O; | |
308 pln->ioff = io - p->O; | |
309 pln->vn = p->vn; | |
310 pln->m = m; | |
311 pln->r = r; | |
312 pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe; | |
313 pln->xmax = pln->xmin + mpb - 1; | |
314 pln->xs = rp * p->vn * 2; | |
315 pln->t = 0; | |
316 | |
317 X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops); | |
318 if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops); | |
319 { | |
320 double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn; | |
321 pln->super.super.ops.mul += 8 * n0; | |
322 pln->super.super.ops.add += 4 * n0; | |
323 pln->super.super.ops.other += 8 * n0; | |
324 } | |
325 | |
326 return &(pln->super.super); | |
327 | |
328 nada: | |
329 X(plan_destroy_internal)(cldt); | |
330 X(plan_destroy_internal)(cld_dft); | |
331 X(plan_destroy_internal)(cld_ddft); | |
332 return (plan *) 0; | |
333 } | |
334 | |
335 static solver *mksolver(rdftapply apply, int preserve_input) | |
336 { | |
337 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 }; | |
338 S *slv = MKSOLVER(S, &sadt); | |
339 slv->apply = apply; | |
340 slv->preserve_input = preserve_input; | |
341 return &(slv->super); | |
342 } | |
343 | |
344 void XM(dft_rank1_register)(planner *p) | |
345 { | |
346 rdftapply apply[] = { apply_ddft_first, apply_ddft_last }; | |
347 unsigned int iapply; | |
348 int preserve_input; | |
349 for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply) | |
350 for (preserve_input = 0; preserve_input <= 1; ++preserve_input) | |
351 REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input)); | |
352 } |