diff src/fftw-3.3.3/doc/html/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/doc/html/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,84 @@
+<html lang="en">
+<head>
+<title>The 1d Discrete Fourier Transform (DFT) - FFTW 3.3.3</title>
+<meta http-equiv="Content-Type" content="text/html">
+<meta name="description" content="FFTW 3.3.3">
+<meta name="generator" content="makeinfo 4.13">
+<link title="Top" rel="start" href="index.html#Top">
+<link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
+<link rel="prev" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
+<link rel="next" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" title="The 1d Real-data DFT">
+<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
+<!--
+This manual is for FFTW
+(version 3.3.3, 25 November 2012).
+
+Copyright (C) 2003 Matteo Frigo.
+
+Copyright (C) 2003 Massachusetts Institute of Technology.
+
+     Permission is granted to make and distribute verbatim copies of
+     this manual provided the copyright notice and this permission
+     notice are preserved on all copies.
+
+     Permission is granted to copy and distribute modified versions of
+     this manual under the conditions for verbatim copying, provided
+     that the entire resulting derived work is distributed under the
+     terms of a permission notice identical to this one.
+
+     Permission is granted to copy and distribute translations of this
+     manual into another language, under the above conditions for
+     modified versions, except that this permission notice may be
+     stated in a translation approved by the Free Software Foundation.
+   -->
+<meta http-equiv="Content-Style-Type" content="text/css">
+<style type="text/css"><!--
+  pre.display { font-family:inherit }
+  pre.format  { font-family:inherit }
+  pre.smalldisplay { font-family:inherit; font-size:smaller }
+  pre.smallformat  { font-family:inherit; font-size:smaller }
+  pre.smallexample { font-size:smaller }
+  pre.smalllisp    { font-size:smaller }
+  span.sc    { font-variant:small-caps }
+  span.roman { font-family:serif; font-weight:normal; } 
+  span.sansserif { font-family:sans-serif; font-weight:normal; } 
+--></style>
+</head>
+<body>
+<div class="node">
+<a name="The-1d-Discrete-Fourier-Transform-(DFT)"></a>
+<a name="The-1d-Discrete-Fourier-Transform-_0028DFT_0029"></a>
+<p>
+Next:&nbsp;<a rel="next" accesskey="n" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT">The 1d Real-data DFT</a>,
+Previous:&nbsp;<a rel="previous" accesskey="p" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>,
+Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
+<hr>
+</div>
+
+<h4 class="subsection">4.8.1 The 1d Discrete Fourier Transform (DFT)</h4>
+
+<p><a name="index-discrete-Fourier-transform-292"></a><a name="index-DFT-293"></a>The forward (<code>FFTW_FORWARD</code>) discrete Fourier transform (DFT) of a
+1d complex array X of size n computes an array Y,
+where:
+<center><img src="equation-dft.png" align="top">.</center>The backward (<code>FFTW_BACKWARD</code>) DFT computes:
+<center><img src="equation-idft.png" align="top">.</center>
+
+   <p><a name="index-normalization-294"></a>FFTW computes an unnormalized transform, in that there is no coefficient
+in front of the summation in the DFT.  In other words, applying the
+forward and then the backward transform will multiply the input by
+n.
+
+   <p><a name="index-frequency-295"></a>From above, an <code>FFTW_FORWARD</code> transform corresponds to a sign of
+-1 in the exponent of the DFT.  Note also that we use the
+standard &ldquo;in-order&rdquo; output ordering&mdash;the k-th output
+corresponds to the frequency k/n (or k/T, where T
+is your total sampling period).  For those who like to think in terms of
+positive and negative frequencies, this means that the positive
+frequencies are stored in the first half of the output and the negative
+frequencies are stored in backwards order in the second half of the
+output.  (The frequency -k/n is the same as the frequency
+(n-k)/n.)
+
+<!-- =========> -->
+   </body></html>
+