Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/doc/html/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/doc/html/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,84 @@ +<html lang="en"> +<head> +<title>The 1d Discrete Fourier Transform (DFT) - FFTW 3.3.3</title> +<meta http-equiv="Content-Type" content="text/html"> +<meta name="description" content="FFTW 3.3.3"> +<meta name="generator" content="makeinfo 4.13"> +<link title="Top" rel="start" href="index.html#Top"> +<link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes"> +<link rel="prev" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes"> +<link rel="next" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" title="The 1d Real-data DFT"> +<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> +<!-- +This manual is for FFTW +(version 3.3.3, 25 November 2012). + +Copyright (C) 2003 Matteo Frigo. + +Copyright (C) 2003 Massachusetts Institute of Technology. + + Permission is granted to make and distribute verbatim copies of + this manual provided the copyright notice and this permission + notice are preserved on all copies. + + Permission is granted to copy and distribute modified versions of + this manual under the conditions for verbatim copying, provided + that the entire resulting derived work is distributed under the + terms of a permission notice identical to this one. + + Permission is granted to copy and distribute translations of this + manual into another language, under the above conditions for + modified versions, except that this permission notice may be + stated in a translation approved by the Free Software Foundation. + --> +<meta http-equiv="Content-Style-Type" content="text/css"> +<style type="text/css"><!-- + pre.display { font-family:inherit } + pre.format { font-family:inherit } + pre.smalldisplay { font-family:inherit; font-size:smaller } + pre.smallformat { font-family:inherit; font-size:smaller } + pre.smallexample { font-size:smaller } + pre.smalllisp { font-size:smaller } + span.sc { font-variant:small-caps } + span.roman { font-family:serif; font-weight:normal; } + span.sansserif { font-family:sans-serif; font-weight:normal; } +--></style> +</head> +<body> +<div class="node"> +<a name="The-1d-Discrete-Fourier-Transform-(DFT)"></a> +<a name="The-1d-Discrete-Fourier-Transform-_0028DFT_0029"></a> +<p> +Next: <a rel="next" accesskey="n" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT">The 1d Real-data DFT</a>, +Previous: <a rel="previous" accesskey="p" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>, +Up: <a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a> +<hr> +</div> + +<h4 class="subsection">4.8.1 The 1d Discrete Fourier Transform (DFT)</h4> + +<p><a name="index-discrete-Fourier-transform-292"></a><a name="index-DFT-293"></a>The forward (<code>FFTW_FORWARD</code>) discrete Fourier transform (DFT) of a +1d complex array X of size n computes an array Y, +where: +<center><img src="equation-dft.png" align="top">.</center>The backward (<code>FFTW_BACKWARD</code>) DFT computes: +<center><img src="equation-idft.png" align="top">.</center> + + <p><a name="index-normalization-294"></a>FFTW computes an unnormalized transform, in that there is no coefficient +in front of the summation in the DFT. In other words, applying the +forward and then the backward transform will multiply the input by +n. + + <p><a name="index-frequency-295"></a>From above, an <code>FFTW_FORWARD</code> transform corresponds to a sign of +-1 in the exponent of the DFT. Note also that we use the +standard “in-order” output ordering—the k-th output +corresponds to the frequency k/n (or k/T, where T +is your total sampling period). For those who like to think in terms of +positive and negative frequencies, this means that the positive +frequencies are stored in the first half of the output and the negative +frequencies are stored in backwards order in the second half of the +output. (The frequency -k/n is the same as the frequency +(n-k)/n.) + +<!-- =========> --> + </body></html> +