comparison src/fftw-3.3.3/doc/html/The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 <html lang="en">
2 <head>
3 <title>The 1d Discrete Fourier Transform (DFT) - FFTW 3.3.3</title>
4 <meta http-equiv="Content-Type" content="text/html">
5 <meta name="description" content="FFTW 3.3.3">
6 <meta name="generator" content="makeinfo 4.13">
7 <link title="Top" rel="start" href="index.html#Top">
8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
9 <link rel="prev" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
10 <link rel="next" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" title="The 1d Real-data DFT">
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
12 <!--
13 This manual is for FFTW
14 (version 3.3.3, 25 November 2012).
15
16 Copyright (C) 2003 Matteo Frigo.
17
18 Copyright (C) 2003 Massachusetts Institute of Technology.
19
20 Permission is granted to make and distribute verbatim copies of
21 this manual provided the copyright notice and this permission
22 notice are preserved on all copies.
23
24 Permission is granted to copy and distribute modified versions of
25 this manual under the conditions for verbatim copying, provided
26 that the entire resulting derived work is distributed under the
27 terms of a permission notice identical to this one.
28
29 Permission is granted to copy and distribute translations of this
30 manual into another language, under the above conditions for
31 modified versions, except that this permission notice may be
32 stated in a translation approved by the Free Software Foundation.
33 -->
34 <meta http-equiv="Content-Style-Type" content="text/css">
35 <style type="text/css"><!--
36 pre.display { font-family:inherit }
37 pre.format { font-family:inherit }
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
39 pre.smallformat { font-family:inherit; font-size:smaller }
40 pre.smallexample { font-size:smaller }
41 pre.smalllisp { font-size:smaller }
42 span.sc { font-variant:small-caps }
43 span.roman { font-family:serif; font-weight:normal; }
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
45 --></style>
46 </head>
47 <body>
48 <div class="node">
49 <a name="The-1d-Discrete-Fourier-Transform-(DFT)"></a>
50 <a name="The-1d-Discrete-Fourier-Transform-_0028DFT_0029"></a>
51 <p>
52 Next:&nbsp;<a rel="next" accesskey="n" href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT">The 1d Real-data DFT</a>,
53 Previous:&nbsp;<a rel="previous" accesskey="p" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>,
54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
55 <hr>
56 </div>
57
58 <h4 class="subsection">4.8.1 The 1d Discrete Fourier Transform (DFT)</h4>
59
60 <p><a name="index-discrete-Fourier-transform-292"></a><a name="index-DFT-293"></a>The forward (<code>FFTW_FORWARD</code>) discrete Fourier transform (DFT) of a
61 1d complex array X of size n computes an array Y,
62 where:
63 <center><img src="equation-dft.png" align="top">.</center>The backward (<code>FFTW_BACKWARD</code>) DFT computes:
64 <center><img src="equation-idft.png" align="top">.</center>
65
66 <p><a name="index-normalization-294"></a>FFTW computes an unnormalized transform, in that there is no coefficient
67 in front of the summation in the DFT. In other words, applying the
68 forward and then the backward transform will multiply the input by
69 n.
70
71 <p><a name="index-frequency-295"></a>From above, an <code>FFTW_FORWARD</code> transform corresponds to a sign of
72 -1 in the exponent of the DFT. Note also that we use the
73 standard &ldquo;in-order&rdquo; output ordering&mdash;the k-th output
74 corresponds to the frequency k/n (or k/T, where T
75 is your total sampling period). For those who like to think in terms of
76 positive and negative frequencies, this means that the positive
77 frequencies are stored in the first half of the output and the negative
78 frequencies are stored in backwards order in the second half of the
79 output. (The frequency -k/n is the same as the frequency
80 (n-k)/n.)
81
82 <!-- =========> -->
83 </body></html>
84