Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t3fv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t3fv_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,533 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:38:55 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */ + +/* + * This function contains 138 FP additions, 118 FP multiplications, + * (or, 92 additions, 72 multiplications, 46 fused multiply/add), + * 90 stack variables, 4 constants, and 40 memory accesses + */ +#include "t3f.h" + +static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { + V T1k, T1w, T1r, T1z, T1o, T1y, T1v, T1h; + { + V T2, T8, T3, Td; + T2 = LDW(&(W[0])); + T8 = LDW(&(W[TWVL * 2])); + T3 = LDW(&(W[TWVL * 4])); + Td = LDW(&(W[TWVL * 6])); + { + V T7, TM, T1F, T23, T1p, Tp, T1j, T27, T1P, T1I, T1i, T1L, T28, T1S, T1q; + V TE, T1n, T1d, T26, T2e; + { + V T1, TK, T5, TH; + T1 = LD(&(x[0]), ms, &(x[0])); + TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + { + V TA, Tx, TU, T1O, T14, Th, T1G, T1R, T1b, T1J, To, Ts, TV, Tv, TO; + V TQ, TT, Ty, TB; + { + V Tq, Tt, T17, T1a, Tk, Tn; + { + V Tl, Ti, T15, T18, TZ, Tc, T6, Tb, Tf, T10, T12, TL; + { + V TJ, Ta, T9, T4; + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + TA = VZMULJ(T2, T8); + T9 = VZMUL(T2, T8); + Tx = VZMUL(T8, T3); + Tl = VZMULJ(T8, T3); + T4 = VZMUL(T2, T3); + Tq = VZMULJ(T2, T3); + Tt = VZMULJ(T2, Td); + Ti = VZMULJ(T8, Td); + T15 = VZMULJ(TA, Td); + T18 = VZMULJ(TA, T3); + TU = VZMUL(TA, T3); + TJ = VZMULJ(T9, Td); + TZ = VZMUL(T9, T3); + Tc = VZMULJ(T9, T3); + T6 = VZMULJ(T4, T5); + Tb = VZMULJ(T9, Ta); + Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + TL = VZMULJ(TJ, TK); + } + { + V T1D, T11, T13, T19, T1E, Tg, T16, TI, Te, Tj, Tm; + T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); + TI = VZMULJ(Tc, TH); + Te = VZMULJ(Tc, Td); + T7 = VSUB(T1, T6); + T1D = VADD(T1, T6); + T11 = VZMULJ(TZ, T10); + T13 = VZMULJ(T8, T12); + T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T17 = VZMULJ(T15, T16); + TM = VSUB(TI, TL); + T1E = VADD(TI, TL); + Tg = VZMULJ(Te, Tf); + Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); + Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + T1O = VADD(T11, T13); + T14 = VSUB(T11, T13); + T1a = VZMULJ(T18, T19); + T1F = VSUB(T1D, T1E); + T23 = VADD(T1D, T1E); + Th = VSUB(Tb, Tg); + T1G = VADD(Tb, Tg); + Tk = VZMULJ(Ti, Tj); + Tn = VZMULJ(Tl, Tm); + } + } + { + V Tr, Tu, TN, TP, TS; + Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + T1R = VADD(T17, T1a); + T1b = VSUB(T17, T1a); + Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); + TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); + TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T1J = VADD(Tk, Tn); + To = VSUB(Tk, Tn); + Ts = VZMULJ(Tq, Tr); + TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + Tv = VZMULJ(Tt, Tu); + TO = VZMULJ(T3, TN); + TQ = VZMULJ(Td, TP); + TT = VZMULJ(T2, TS); + Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + } + } + { + V T1N, Tw, T1H, TR, Tz, TC, T1c, TX, T1K, TW; + T1p = VSUB(Th, To); + Tp = VADD(Th, To); + TW = VZMULJ(TU, TV); + T1N = VADD(Ts, Tv); + Tw = VSUB(Ts, Tv); + T1H = VADD(TO, TQ); + TR = VSUB(TO, TQ); + Tz = VZMULJ(Tx, Ty); + TC = VZMULJ(TA, TB); + T1j = VSUB(T1b, T14); + T1c = VADD(T14, T1b); + TX = VSUB(TT, TW); + T1K = VADD(TT, TW); + T27 = VADD(T1N, T1O); + T1P = VSUB(T1N, T1O); + { + V TD, T1Q, T24, TY, T25; + TD = VSUB(Tz, TC); + T1Q = VADD(Tz, TC); + T1I = VSUB(T1G, T1H); + T24 = VADD(T1G, T1H); + TY = VADD(TR, TX); + T1i = VSUB(TX, TR); + T25 = VADD(T1J, T1K); + T1L = VSUB(T1J, T1K); + T28 = VADD(T1Q, T1R); + T1S = VSUB(T1Q, T1R); + T1q = VSUB(Tw, TD); + TE = VADD(Tw, TD); + T1n = VSUB(T1c, TY); + T1d = VADD(TY, T1c); + T26 = VADD(T24, T25); + T2e = VSUB(T24, T25); + } + } + } + } + { + V T1M, T1Z, T1Y, T1T, T29, T2f, T1g, TF, T1m, T1e; + T1M = VADD(T1I, T1L); + T1Z = VSUB(T1I, T1L); + T1Y = VSUB(T1P, T1S); + T1T = VADD(T1P, T1S); + T29 = VADD(T27, T28); + T2f = VSUB(T27, T28); + T1g = VSUB(Tp, TE); + TF = VADD(Tp, TE); + T1m = VFNMS(LDK(KP250000000), T1d, TM); + T1e = VADD(TM, T1d); + { + V T1W, T2c, T1f, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, TG; + T1k = VFMA(LDK(KP618033988), T1j, T1i); + T1w = VFNMS(LDK(KP618033988), T1i, T1j); + T1W = VSUB(T1M, T1T); + T1U = VADD(T1M, T1T); + T2c = VSUB(T26, T29); + T2a = VADD(T26, T29); + T1f = VFNMS(LDK(KP250000000), TF, T7); + TG = VADD(T7, TF); + T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f)); + T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e)); + T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z)); + T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y)); + ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0])); + T1V = VFNMS(LDK(KP250000000), T1U, T1F); + ST(&(x[0]), VADD(T23, T2a), ms, &(x[0])); + T2b = VFNMS(LDK(KP250000000), T2a, T23); + ST(&(x[WS(rs, 15)]), VFMAI(T1e, TG), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 5)]), VFNMSI(T1e, TG), ms, &(x[WS(rs, 1)])); + T1r = VFMA(LDK(KP618033988), T1q, T1p); + T1z = VFNMS(LDK(KP618033988), T1p, T1q); + { + V T21, T1X, T2h, T2d; + T21 = VFMA(LDK(KP559016994), T1W, T1V); + T1X = VFNMS(LDK(KP559016994), T1W, T1V); + T2h = VFNMS(LDK(KP559016994), T2c, T2b); + T2d = VFMA(LDK(KP559016994), T2c, T2b); + ST(&(x[WS(rs, 18)]), VFNMSI(T20, T1X), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VFMAI(T20, T1X), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VFMAI(T22, T21), ms, &(x[0])); + ST(&(x[WS(rs, 6)]), VFNMSI(T22, T21), ms, &(x[0])); + ST(&(x[WS(rs, 16)]), VFNMSI(T2g, T2d), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VFMAI(T2g, T2d), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VFMAI(T2i, T2h), ms, &(x[0])); + ST(&(x[WS(rs, 8)]), VFNMSI(T2i, T2h), ms, &(x[0])); + T1o = VFNMS(LDK(KP559016994), T1n, T1m); + T1y = VFMA(LDK(KP559016994), T1n, T1m); + T1v = VFNMS(LDK(KP559016994), T1g, T1f); + T1h = VFMA(LDK(KP559016994), T1g, T1f); + } + } + } + } + } + { + V T1C, T1A, T1s, T1u, T1l, T1t, T1B, T1x; + T1C = VFMA(LDK(KP951056516), T1z, T1y); + T1A = VFNMS(LDK(KP951056516), T1z, T1y); + T1s = VFMA(LDK(KP951056516), T1r, T1o); + T1u = VFNMS(LDK(KP951056516), T1r, T1o); + T1l = VFMA(LDK(KP951056516), T1k, T1h); + T1t = VFNMS(LDK(KP951056516), T1k, T1h); + T1B = VFMA(LDK(KP951056516), T1w, T1v); + T1x = VFNMS(LDK(KP951056516), T1w, T1v); + ST(&(x[WS(rs, 11)]), VFMAI(T1u, T1t), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 19)]), VFMAI(T1s, T1l), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VFNMSI(T1s, T1l), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VFMAI(T1A, T1x), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 17)]), VFNMSI(T1A, T1x), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 13)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + VTW(0, 19), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3fv_20) (planner *p) { + X(kdft_dit_register) (p, t3fv_20, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */ + +/* + * This function contains 138 FP additions, 92 FP multiplications, + * (or, 126 additions, 80 multiplications, 12 fused multiply/add), + * 73 stack variables, 4 constants, and 40 memory accesses + */ +#include "t3f.h" + +static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { + V T2, T8, T9, TA, T3, Tc, T4, TZ, T18, Tl, Tq, Tx, TU, Td, Te; + V T15, Ti, Tt, TJ; + T2 = LDW(&(W[0])); + T8 = LDW(&(W[TWVL * 2])); + T9 = VZMUL(T2, T8); + TA = VZMULJ(T2, T8); + T3 = LDW(&(W[TWVL * 4])); + Tc = VZMULJ(T9, T3); + T4 = VZMUL(T2, T3); + TZ = VZMUL(T9, T3); + T18 = VZMULJ(TA, T3); + Tl = VZMULJ(T8, T3); + Tq = VZMULJ(T2, T3); + Tx = VZMUL(T8, T3); + TU = VZMUL(TA, T3); + Td = LDW(&(W[TWVL * 6])); + Te = VZMULJ(Tc, Td); + T15 = VZMULJ(TA, Td); + Ti = VZMULJ(T8, Td); + Tt = VZMULJ(T2, Td); + TJ = VZMULJ(T9, Td); + { + V T7, TM, T1U, T2d, T1i, T1p, T1q, T1j, Tp, TE, TF, T26, T27, T2b, T1M; + V T1P, T1V, TY, T1c, T1d, T23, T24, T2a, T1F, T1I, T1W, TG, T1e; + { + V T1, TL, T6, TI, TK, T5, TH, T1S, T1T; + T1 = LD(&(x[0]), ms, &(x[0])); + TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); + TL = VZMULJ(TJ, TK); + T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); + T6 = VZMULJ(T4, T5); + TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); + TI = VZMULJ(Tc, TH); + T7 = VSUB(T1, T6); + TM = VSUB(TI, TL); + T1S = VADD(T1, T6); + T1T = VADD(TI, TL); + T1U = VSUB(T1S, T1T); + T2d = VADD(T1S, T1T); + } + { + V Th, T1K, T14, T1E, T1b, T1H, To, T1N, Tw, T1D, TR, T1L, TX, T1O, TD; + V T1G; + { + V Tb, Tg, Ta, Tf; + Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + Tb = VZMULJ(T9, Ta); + Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); + Tg = VZMULJ(Te, Tf); + Th = VSUB(Tb, Tg); + T1K = VADD(Tb, Tg); + } + { + V T11, T13, T10, T12; + T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); + T11 = VZMULJ(TZ, T10); + T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T13 = VZMULJ(T8, T12); + T14 = VSUB(T11, T13); + T1E = VADD(T11, T13); + } + { + V T17, T1a, T16, T19; + T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); + T17 = VZMULJ(T15, T16); + T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); + T1a = VZMULJ(T18, T19); + T1b = VSUB(T17, T1a); + T1H = VADD(T17, T1a); + } + { + V Tk, Tn, Tj, Tm; + Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); + Tk = VZMULJ(Ti, Tj); + Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); + Tn = VZMULJ(Tl, Tm); + To = VSUB(Tk, Tn); + T1N = VADD(Tk, Tn); + } + { + V Ts, Tv, Tr, Tu; + Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); + Ts = VZMULJ(Tq, Tr); + Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); + Tv = VZMULJ(Tt, Tu); + Tw = VSUB(Ts, Tv); + T1D = VADD(Ts, Tv); + } + { + V TO, TQ, TN, TP; + TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); + TO = VZMULJ(T3, TN); + TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); + TQ = VZMULJ(Td, TP); + TR = VSUB(TO, TQ); + T1L = VADD(TO, TQ); + } + { + V TT, TW, TS, TV; + TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + TT = VZMULJ(T2, TS); + TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); + TW = VZMULJ(TU, TV); + TX = VSUB(TT, TW); + T1O = VADD(TT, TW); + } + { + V Tz, TC, Ty, TB; + Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); + Tz = VZMULJ(Tx, Ty); + TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + TC = VZMULJ(TA, TB); + TD = VSUB(Tz, TC); + T1G = VADD(Tz, TC); + } + T1i = VSUB(TX, TR); + T1p = VSUB(Th, To); + T1q = VSUB(Tw, TD); + T1j = VSUB(T1b, T14); + Tp = VADD(Th, To); + TE = VADD(Tw, TD); + TF = VADD(Tp, TE); + T26 = VADD(T1D, T1E); + T27 = VADD(T1G, T1H); + T2b = VADD(T26, T27); + T1M = VSUB(T1K, T1L); + T1P = VSUB(T1N, T1O); + T1V = VADD(T1M, T1P); + TY = VADD(TR, TX); + T1c = VADD(T14, T1b); + T1d = VADD(TY, T1c); + T23 = VADD(T1K, T1L); + T24 = VADD(T1N, T1O); + T2a = VADD(T23, T24); + T1F = VSUB(T1D, T1E); + T1I = VSUB(T1G, T1H); + T1W = VADD(T1F, T1I); + } + TG = VADD(T7, TF); + T1e = VBYI(VADD(TM, T1d)); + ST(&(x[WS(rs, 5)]), VSUB(TG, T1e), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 15)]), VADD(TG, T1e), ms, &(x[WS(rs, 1)])); + { + V T2c, T2e, T2f, T29, T2i, T25, T28, T2h, T2g; + T2c = VMUL(LDK(KP559016994), VSUB(T2a, T2b)); + T2e = VADD(T2a, T2b); + T2f = VFNMS(LDK(KP250000000), T2e, T2d); + T25 = VSUB(T23, T24); + T28 = VSUB(T26, T27); + T29 = VBYI(VFMA(LDK(KP951056516), T25, VMUL(LDK(KP587785252), T28))); + T2i = VBYI(VFNMS(LDK(KP587785252), T25, VMUL(LDK(KP951056516), T28))); + ST(&(x[0]), VADD(T2d, T2e), ms, &(x[0])); + T2h = VSUB(T2f, T2c); + ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0])); + ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0])); + T2g = VADD(T2c, T2f); + ST(&(x[WS(rs, 4)]), VADD(T29, T2g), ms, &(x[0])); + ST(&(x[WS(rs, 16)]), VSUB(T2g, T29), ms, &(x[0])); + } + { + V T1Z, T1X, T1Y, T1R, T22, T1J, T1Q, T21, T20; + T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W)); + T1X = VADD(T1V, T1W); + T1Y = VFNMS(LDK(KP250000000), T1X, T1U); + T1J = VSUB(T1F, T1I); + T1Q = VSUB(T1M, T1P); + T1R = VBYI(VFNMS(LDK(KP587785252), T1Q, VMUL(LDK(KP951056516), T1J))); + T22 = VBYI(VFMA(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J))); + ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0])); + T21 = VADD(T1Z, T1Y); + ST(&(x[WS(rs, 6)]), VSUB(T21, T22), ms, &(x[0])); + ST(&(x[WS(rs, 14)]), VADD(T22, T21), ms, &(x[0])); + T20 = VSUB(T1Y, T1Z); + ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0])); + ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0])); + } + { + V T1k, T1r, T1z, T1w, T1o, T1y, T1h, T1v; + T1k = VFMA(LDK(KP951056516), T1i, VMUL(LDK(KP587785252), T1j)); + T1r = VFMA(LDK(KP951056516), T1p, VMUL(LDK(KP587785252), T1q)); + T1z = VFNMS(LDK(KP587785252), T1p, VMUL(LDK(KP951056516), T1q)); + T1w = VFNMS(LDK(KP587785252), T1i, VMUL(LDK(KP951056516), T1j)); + { + V T1m, T1n, T1f, T1g; + T1m = VFMS(LDK(KP250000000), T1d, TM); + T1n = VMUL(LDK(KP559016994), VSUB(T1c, TY)); + T1o = VADD(T1m, T1n); + T1y = VSUB(T1n, T1m); + T1f = VMUL(LDK(KP559016994), VSUB(Tp, TE)); + T1g = VFNMS(LDK(KP250000000), TF, T7); + T1h = VADD(T1f, T1g); + T1v = VSUB(T1g, T1f); + } + { + V T1l, T1s, T1B, T1C; + T1l = VADD(T1h, T1k); + T1s = VBYI(VSUB(T1o, T1r)); + ST(&(x[WS(rs, 19)]), VSUB(T1l, T1s), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(T1l, T1s), ms, &(x[WS(rs, 1)])); + T1B = VADD(T1v, T1w); + T1C = VBYI(VADD(T1z, T1y)); + ST(&(x[WS(rs, 13)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 7)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)])); + } + { + V T1t, T1u, T1x, T1A; + T1t = VSUB(T1h, T1k); + T1u = VBYI(VADD(T1r, T1o)); + ST(&(x[WS(rs, 11)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 9)]), VADD(T1t, T1u), ms, &(x[WS(rs, 1)])); + T1x = VSUB(T1v, T1w); + T1A = VBYI(VSUB(T1y, T1z)); + ST(&(x[WS(rs, 17)]), VSUB(T1x, T1A), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 3)]), VADD(T1x, T1A), ms, &(x[WS(rs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 3), + VTW(0, 9), + VTW(0, 19), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t3fv_20) (planner *p) { + X(kdft_dit_register) (p, t3fv_20, &desc); +} +#endif /* HAVE_FMA */