Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t3fv_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:38:55 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */ | |
29 | |
30 /* | |
31 * This function contains 138 FP additions, 118 FP multiplications, | |
32 * (or, 92 additions, 72 multiplications, 46 fused multiply/add), | |
33 * 90 stack variables, 4 constants, and 40 memory accesses | |
34 */ | |
35 #include "t3f.h" | |
36 | |
37 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { | |
48 V T1k, T1w, T1r, T1z, T1o, T1y, T1v, T1h; | |
49 { | |
50 V T2, T8, T3, Td; | |
51 T2 = LDW(&(W[0])); | |
52 T8 = LDW(&(W[TWVL * 2])); | |
53 T3 = LDW(&(W[TWVL * 4])); | |
54 Td = LDW(&(W[TWVL * 6])); | |
55 { | |
56 V T7, TM, T1F, T23, T1p, Tp, T1j, T27, T1P, T1I, T1i, T1L, T28, T1S, T1q; | |
57 V TE, T1n, T1d, T26, T2e; | |
58 { | |
59 V T1, TK, T5, TH; | |
60 T1 = LD(&(x[0]), ms, &(x[0])); | |
61 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
62 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
63 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
64 { | |
65 V TA, Tx, TU, T1O, T14, Th, T1G, T1R, T1b, T1J, To, Ts, TV, Tv, TO; | |
66 V TQ, TT, Ty, TB; | |
67 { | |
68 V Tq, Tt, T17, T1a, Tk, Tn; | |
69 { | |
70 V Tl, Ti, T15, T18, TZ, Tc, T6, Tb, Tf, T10, T12, TL; | |
71 { | |
72 V TJ, Ta, T9, T4; | |
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
74 TA = VZMULJ(T2, T8); | |
75 T9 = VZMUL(T2, T8); | |
76 Tx = VZMUL(T8, T3); | |
77 Tl = VZMULJ(T8, T3); | |
78 T4 = VZMUL(T2, T3); | |
79 Tq = VZMULJ(T2, T3); | |
80 Tt = VZMULJ(T2, Td); | |
81 Ti = VZMULJ(T8, Td); | |
82 T15 = VZMULJ(TA, Td); | |
83 T18 = VZMULJ(TA, T3); | |
84 TU = VZMUL(TA, T3); | |
85 TJ = VZMULJ(T9, Td); | |
86 TZ = VZMUL(T9, T3); | |
87 Tc = VZMULJ(T9, T3); | |
88 T6 = VZMULJ(T4, T5); | |
89 Tb = VZMULJ(T9, Ta); | |
90 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
91 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
92 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
93 TL = VZMULJ(TJ, TK); | |
94 } | |
95 { | |
96 V T1D, T11, T13, T19, T1E, Tg, T16, TI, Te, Tj, Tm; | |
97 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
98 TI = VZMULJ(Tc, TH); | |
99 Te = VZMULJ(Tc, Td); | |
100 T7 = VSUB(T1, T6); | |
101 T1D = VADD(T1, T6); | |
102 T11 = VZMULJ(TZ, T10); | |
103 T13 = VZMULJ(T8, T12); | |
104 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
105 T17 = VZMULJ(T15, T16); | |
106 TM = VSUB(TI, TL); | |
107 T1E = VADD(TI, TL); | |
108 Tg = VZMULJ(Te, Tf); | |
109 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
110 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
111 T1O = VADD(T11, T13); | |
112 T14 = VSUB(T11, T13); | |
113 T1a = VZMULJ(T18, T19); | |
114 T1F = VSUB(T1D, T1E); | |
115 T23 = VADD(T1D, T1E); | |
116 Th = VSUB(Tb, Tg); | |
117 T1G = VADD(Tb, Tg); | |
118 Tk = VZMULJ(Ti, Tj); | |
119 Tn = VZMULJ(Tl, Tm); | |
120 } | |
121 } | |
122 { | |
123 V Tr, Tu, TN, TP, TS; | |
124 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
125 T1R = VADD(T17, T1a); | |
126 T1b = VSUB(T17, T1a); | |
127 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
128 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
129 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
130 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
131 T1J = VADD(Tk, Tn); | |
132 To = VSUB(Tk, Tn); | |
133 Ts = VZMULJ(Tq, Tr); | |
134 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
135 Tv = VZMULJ(Tt, Tu); | |
136 TO = VZMULJ(T3, TN); | |
137 TQ = VZMULJ(Td, TP); | |
138 TT = VZMULJ(T2, TS); | |
139 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
140 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
141 } | |
142 } | |
143 { | |
144 V T1N, Tw, T1H, TR, Tz, TC, T1c, TX, T1K, TW; | |
145 T1p = VSUB(Th, To); | |
146 Tp = VADD(Th, To); | |
147 TW = VZMULJ(TU, TV); | |
148 T1N = VADD(Ts, Tv); | |
149 Tw = VSUB(Ts, Tv); | |
150 T1H = VADD(TO, TQ); | |
151 TR = VSUB(TO, TQ); | |
152 Tz = VZMULJ(Tx, Ty); | |
153 TC = VZMULJ(TA, TB); | |
154 T1j = VSUB(T1b, T14); | |
155 T1c = VADD(T14, T1b); | |
156 TX = VSUB(TT, TW); | |
157 T1K = VADD(TT, TW); | |
158 T27 = VADD(T1N, T1O); | |
159 T1P = VSUB(T1N, T1O); | |
160 { | |
161 V TD, T1Q, T24, TY, T25; | |
162 TD = VSUB(Tz, TC); | |
163 T1Q = VADD(Tz, TC); | |
164 T1I = VSUB(T1G, T1H); | |
165 T24 = VADD(T1G, T1H); | |
166 TY = VADD(TR, TX); | |
167 T1i = VSUB(TX, TR); | |
168 T25 = VADD(T1J, T1K); | |
169 T1L = VSUB(T1J, T1K); | |
170 T28 = VADD(T1Q, T1R); | |
171 T1S = VSUB(T1Q, T1R); | |
172 T1q = VSUB(Tw, TD); | |
173 TE = VADD(Tw, TD); | |
174 T1n = VSUB(T1c, TY); | |
175 T1d = VADD(TY, T1c); | |
176 T26 = VADD(T24, T25); | |
177 T2e = VSUB(T24, T25); | |
178 } | |
179 } | |
180 } | |
181 } | |
182 { | |
183 V T1M, T1Z, T1Y, T1T, T29, T2f, T1g, TF, T1m, T1e; | |
184 T1M = VADD(T1I, T1L); | |
185 T1Z = VSUB(T1I, T1L); | |
186 T1Y = VSUB(T1P, T1S); | |
187 T1T = VADD(T1P, T1S); | |
188 T29 = VADD(T27, T28); | |
189 T2f = VSUB(T27, T28); | |
190 T1g = VSUB(Tp, TE); | |
191 TF = VADD(Tp, TE); | |
192 T1m = VFNMS(LDK(KP250000000), T1d, TM); | |
193 T1e = VADD(TM, T1d); | |
194 { | |
195 V T1W, T2c, T1f, T2i, T2g, T22, T20, T1V, T2b, T1U, T2a, TG; | |
196 T1k = VFMA(LDK(KP618033988), T1j, T1i); | |
197 T1w = VFNMS(LDK(KP618033988), T1i, T1j); | |
198 T1W = VSUB(T1M, T1T); | |
199 T1U = VADD(T1M, T1T); | |
200 T2c = VSUB(T26, T29); | |
201 T2a = VADD(T26, T29); | |
202 T1f = VFNMS(LDK(KP250000000), TF, T7); | |
203 TG = VADD(T7, TF); | |
204 T2i = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T2e, T2f)); | |
205 T2g = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T2f, T2e)); | |
206 T22 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1Y, T1Z)); | |
207 T20 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1Z, T1Y)); | |
208 ST(&(x[WS(rs, 10)]), VADD(T1F, T1U), ms, &(x[0])); | |
209 T1V = VFNMS(LDK(KP250000000), T1U, T1F); | |
210 ST(&(x[0]), VADD(T23, T2a), ms, &(x[0])); | |
211 T2b = VFNMS(LDK(KP250000000), T2a, T23); | |
212 ST(&(x[WS(rs, 15)]), VFMAI(T1e, TG), ms, &(x[WS(rs, 1)])); | |
213 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, TG), ms, &(x[WS(rs, 1)])); | |
214 T1r = VFMA(LDK(KP618033988), T1q, T1p); | |
215 T1z = VFNMS(LDK(KP618033988), T1p, T1q); | |
216 { | |
217 V T21, T1X, T2h, T2d; | |
218 T21 = VFMA(LDK(KP559016994), T1W, T1V); | |
219 T1X = VFNMS(LDK(KP559016994), T1W, T1V); | |
220 T2h = VFNMS(LDK(KP559016994), T2c, T2b); | |
221 T2d = VFMA(LDK(KP559016994), T2c, T2b); | |
222 ST(&(x[WS(rs, 18)]), VFNMSI(T20, T1X), ms, &(x[0])); | |
223 ST(&(x[WS(rs, 2)]), VFMAI(T20, T1X), ms, &(x[0])); | |
224 ST(&(x[WS(rs, 14)]), VFMAI(T22, T21), ms, &(x[0])); | |
225 ST(&(x[WS(rs, 6)]), VFNMSI(T22, T21), ms, &(x[0])); | |
226 ST(&(x[WS(rs, 16)]), VFNMSI(T2g, T2d), ms, &(x[0])); | |
227 ST(&(x[WS(rs, 4)]), VFMAI(T2g, T2d), ms, &(x[0])); | |
228 ST(&(x[WS(rs, 12)]), VFMAI(T2i, T2h), ms, &(x[0])); | |
229 ST(&(x[WS(rs, 8)]), VFNMSI(T2i, T2h), ms, &(x[0])); | |
230 T1o = VFNMS(LDK(KP559016994), T1n, T1m); | |
231 T1y = VFMA(LDK(KP559016994), T1n, T1m); | |
232 T1v = VFNMS(LDK(KP559016994), T1g, T1f); | |
233 T1h = VFMA(LDK(KP559016994), T1g, T1f); | |
234 } | |
235 } | |
236 } | |
237 } | |
238 } | |
239 { | |
240 V T1C, T1A, T1s, T1u, T1l, T1t, T1B, T1x; | |
241 T1C = VFMA(LDK(KP951056516), T1z, T1y); | |
242 T1A = VFNMS(LDK(KP951056516), T1z, T1y); | |
243 T1s = VFMA(LDK(KP951056516), T1r, T1o); | |
244 T1u = VFNMS(LDK(KP951056516), T1r, T1o); | |
245 T1l = VFMA(LDK(KP951056516), T1k, T1h); | |
246 T1t = VFNMS(LDK(KP951056516), T1k, T1h); | |
247 T1B = VFMA(LDK(KP951056516), T1w, T1v); | |
248 T1x = VFNMS(LDK(KP951056516), T1w, T1v); | |
249 ST(&(x[WS(rs, 11)]), VFMAI(T1u, T1t), ms, &(x[WS(rs, 1)])); | |
250 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)])); | |
251 ST(&(x[WS(rs, 19)]), VFMAI(T1s, T1l), ms, &(x[WS(rs, 1)])); | |
252 ST(&(x[WS(rs, 1)]), VFNMSI(T1s, T1l), ms, &(x[WS(rs, 1)])); | |
253 ST(&(x[WS(rs, 3)]), VFMAI(T1A, T1x), ms, &(x[WS(rs, 1)])); | |
254 ST(&(x[WS(rs, 17)]), VFNMSI(T1A, T1x), ms, &(x[WS(rs, 1)])); | |
255 ST(&(x[WS(rs, 7)]), VFMAI(T1C, T1B), ms, &(x[WS(rs, 1)])); | |
256 ST(&(x[WS(rs, 13)]), VFNMSI(T1C, T1B), ms, &(x[WS(rs, 1)])); | |
257 } | |
258 } | |
259 } | |
260 VLEAVE(); | |
261 } | |
262 | |
263 static const tw_instr twinstr[] = { | |
264 VTW(0, 1), | |
265 VTW(0, 3), | |
266 VTW(0, 9), | |
267 VTW(0, 19), | |
268 {TW_NEXT, VL, 0} | |
269 }; | |
270 | |
271 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {92, 72, 46, 0}, 0, 0, 0 }; | |
272 | |
273 void XSIMD(codelet_t3fv_20) (planner *p) { | |
274 X(kdft_dit_register) (p, t3fv_20, &desc); | |
275 } | |
276 #else /* HAVE_FMA */ | |
277 | |
278 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 20 -name t3fv_20 -include t3f.h */ | |
279 | |
280 /* | |
281 * This function contains 138 FP additions, 92 FP multiplications, | |
282 * (or, 126 additions, 80 multiplications, 12 fused multiply/add), | |
283 * 73 stack variables, 4 constants, and 40 memory accesses | |
284 */ | |
285 #include "t3f.h" | |
286 | |
287 static void t3fv_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
288 { | |
289 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
290 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
291 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
292 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
293 { | |
294 INT m; | |
295 R *x; | |
296 x = ri; | |
297 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(20, rs)) { | |
298 V T2, T8, T9, TA, T3, Tc, T4, TZ, T18, Tl, Tq, Tx, TU, Td, Te; | |
299 V T15, Ti, Tt, TJ; | |
300 T2 = LDW(&(W[0])); | |
301 T8 = LDW(&(W[TWVL * 2])); | |
302 T9 = VZMUL(T2, T8); | |
303 TA = VZMULJ(T2, T8); | |
304 T3 = LDW(&(W[TWVL * 4])); | |
305 Tc = VZMULJ(T9, T3); | |
306 T4 = VZMUL(T2, T3); | |
307 TZ = VZMUL(T9, T3); | |
308 T18 = VZMULJ(TA, T3); | |
309 Tl = VZMULJ(T8, T3); | |
310 Tq = VZMULJ(T2, T3); | |
311 Tx = VZMUL(T8, T3); | |
312 TU = VZMUL(TA, T3); | |
313 Td = LDW(&(W[TWVL * 6])); | |
314 Te = VZMULJ(Tc, Td); | |
315 T15 = VZMULJ(TA, Td); | |
316 Ti = VZMULJ(T8, Td); | |
317 Tt = VZMULJ(T2, Td); | |
318 TJ = VZMULJ(T9, Td); | |
319 { | |
320 V T7, TM, T1U, T2d, T1i, T1p, T1q, T1j, Tp, TE, TF, T26, T27, T2b, T1M; | |
321 V T1P, T1V, TY, T1c, T1d, T23, T24, T2a, T1F, T1I, T1W, TG, T1e; | |
322 { | |
323 V T1, TL, T6, TI, TK, T5, TH, T1S, T1T; | |
324 T1 = LD(&(x[0]), ms, &(x[0])); | |
325 TK = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
326 TL = VZMULJ(TJ, TK); | |
327 T5 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
328 T6 = VZMULJ(T4, T5); | |
329 TH = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
330 TI = VZMULJ(Tc, TH); | |
331 T7 = VSUB(T1, T6); | |
332 TM = VSUB(TI, TL); | |
333 T1S = VADD(T1, T6); | |
334 T1T = VADD(TI, TL); | |
335 T1U = VSUB(T1S, T1T); | |
336 T2d = VADD(T1S, T1T); | |
337 } | |
338 { | |
339 V Th, T1K, T14, T1E, T1b, T1H, To, T1N, Tw, T1D, TR, T1L, TX, T1O, TD; | |
340 V T1G; | |
341 { | |
342 V Tb, Tg, Ta, Tf; | |
343 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
344 Tb = VZMULJ(T9, Ta); | |
345 Tf = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
346 Tg = VZMULJ(Te, Tf); | |
347 Th = VSUB(Tb, Tg); | |
348 T1K = VADD(Tb, Tg); | |
349 } | |
350 { | |
351 V T11, T13, T10, T12; | |
352 T10 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
353 T11 = VZMULJ(TZ, T10); | |
354 T12 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
355 T13 = VZMULJ(T8, T12); | |
356 T14 = VSUB(T11, T13); | |
357 T1E = VADD(T11, T13); | |
358 } | |
359 { | |
360 V T17, T1a, T16, T19; | |
361 T16 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); | |
362 T17 = VZMULJ(T15, T16); | |
363 T19 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
364 T1a = VZMULJ(T18, T19); | |
365 T1b = VSUB(T17, T1a); | |
366 T1H = VADD(T17, T1a); | |
367 } | |
368 { | |
369 V Tk, Tn, Tj, Tm; | |
370 Tj = LD(&(x[WS(rs, 16)]), ms, &(x[0])); | |
371 Tk = VZMULJ(Ti, Tj); | |
372 Tm = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
373 Tn = VZMULJ(Tl, Tm); | |
374 To = VSUB(Tk, Tn); | |
375 T1N = VADD(Tk, Tn); | |
376 } | |
377 { | |
378 V Ts, Tv, Tr, Tu; | |
379 Tr = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
380 Ts = VZMULJ(Tq, Tr); | |
381 Tu = LD(&(x[WS(rs, 18)]), ms, &(x[0])); | |
382 Tv = VZMULJ(Tt, Tu); | |
383 Tw = VSUB(Ts, Tv); | |
384 T1D = VADD(Ts, Tv); | |
385 } | |
386 { | |
387 V TO, TQ, TN, TP; | |
388 TN = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
389 TO = VZMULJ(T3, TN); | |
390 TP = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); | |
391 TQ = VZMULJ(Td, TP); | |
392 TR = VSUB(TO, TQ); | |
393 T1L = VADD(TO, TQ); | |
394 } | |
395 { | |
396 V TT, TW, TS, TV; | |
397 TS = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
398 TT = VZMULJ(T2, TS); | |
399 TV = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
400 TW = VZMULJ(TU, TV); | |
401 TX = VSUB(TT, TW); | |
402 T1O = VADD(TT, TW); | |
403 } | |
404 { | |
405 V Tz, TC, Ty, TB; | |
406 Ty = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
407 Tz = VZMULJ(Tx, Ty); | |
408 TB = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
409 TC = VZMULJ(TA, TB); | |
410 TD = VSUB(Tz, TC); | |
411 T1G = VADD(Tz, TC); | |
412 } | |
413 T1i = VSUB(TX, TR); | |
414 T1p = VSUB(Th, To); | |
415 T1q = VSUB(Tw, TD); | |
416 T1j = VSUB(T1b, T14); | |
417 Tp = VADD(Th, To); | |
418 TE = VADD(Tw, TD); | |
419 TF = VADD(Tp, TE); | |
420 T26 = VADD(T1D, T1E); | |
421 T27 = VADD(T1G, T1H); | |
422 T2b = VADD(T26, T27); | |
423 T1M = VSUB(T1K, T1L); | |
424 T1P = VSUB(T1N, T1O); | |
425 T1V = VADD(T1M, T1P); | |
426 TY = VADD(TR, TX); | |
427 T1c = VADD(T14, T1b); | |
428 T1d = VADD(TY, T1c); | |
429 T23 = VADD(T1K, T1L); | |
430 T24 = VADD(T1N, T1O); | |
431 T2a = VADD(T23, T24); | |
432 T1F = VSUB(T1D, T1E); | |
433 T1I = VSUB(T1G, T1H); | |
434 T1W = VADD(T1F, T1I); | |
435 } | |
436 TG = VADD(T7, TF); | |
437 T1e = VBYI(VADD(TM, T1d)); | |
438 ST(&(x[WS(rs, 5)]), VSUB(TG, T1e), ms, &(x[WS(rs, 1)])); | |
439 ST(&(x[WS(rs, 15)]), VADD(TG, T1e), ms, &(x[WS(rs, 1)])); | |
440 { | |
441 V T2c, T2e, T2f, T29, T2i, T25, T28, T2h, T2g; | |
442 T2c = VMUL(LDK(KP559016994), VSUB(T2a, T2b)); | |
443 T2e = VADD(T2a, T2b); | |
444 T2f = VFNMS(LDK(KP250000000), T2e, T2d); | |
445 T25 = VSUB(T23, T24); | |
446 T28 = VSUB(T26, T27); | |
447 T29 = VBYI(VFMA(LDK(KP951056516), T25, VMUL(LDK(KP587785252), T28))); | |
448 T2i = VBYI(VFNMS(LDK(KP587785252), T25, VMUL(LDK(KP951056516), T28))); | |
449 ST(&(x[0]), VADD(T2d, T2e), ms, &(x[0])); | |
450 T2h = VSUB(T2f, T2c); | |
451 ST(&(x[WS(rs, 8)]), VSUB(T2h, T2i), ms, &(x[0])); | |
452 ST(&(x[WS(rs, 12)]), VADD(T2i, T2h), ms, &(x[0])); | |
453 T2g = VADD(T2c, T2f); | |
454 ST(&(x[WS(rs, 4)]), VADD(T29, T2g), ms, &(x[0])); | |
455 ST(&(x[WS(rs, 16)]), VSUB(T2g, T29), ms, &(x[0])); | |
456 } | |
457 { | |
458 V T1Z, T1X, T1Y, T1R, T22, T1J, T1Q, T21, T20; | |
459 T1Z = VMUL(LDK(KP559016994), VSUB(T1V, T1W)); | |
460 T1X = VADD(T1V, T1W); | |
461 T1Y = VFNMS(LDK(KP250000000), T1X, T1U); | |
462 T1J = VSUB(T1F, T1I); | |
463 T1Q = VSUB(T1M, T1P); | |
464 T1R = VBYI(VFNMS(LDK(KP587785252), T1Q, VMUL(LDK(KP951056516), T1J))); | |
465 T22 = VBYI(VFMA(LDK(KP951056516), T1Q, VMUL(LDK(KP587785252), T1J))); | |
466 ST(&(x[WS(rs, 10)]), VADD(T1U, T1X), ms, &(x[0])); | |
467 T21 = VADD(T1Z, T1Y); | |
468 ST(&(x[WS(rs, 6)]), VSUB(T21, T22), ms, &(x[0])); | |
469 ST(&(x[WS(rs, 14)]), VADD(T22, T21), ms, &(x[0])); | |
470 T20 = VSUB(T1Y, T1Z); | |
471 ST(&(x[WS(rs, 2)]), VADD(T1R, T20), ms, &(x[0])); | |
472 ST(&(x[WS(rs, 18)]), VSUB(T20, T1R), ms, &(x[0])); | |
473 } | |
474 { | |
475 V T1k, T1r, T1z, T1w, T1o, T1y, T1h, T1v; | |
476 T1k = VFMA(LDK(KP951056516), T1i, VMUL(LDK(KP587785252), T1j)); | |
477 T1r = VFMA(LDK(KP951056516), T1p, VMUL(LDK(KP587785252), T1q)); | |
478 T1z = VFNMS(LDK(KP587785252), T1p, VMUL(LDK(KP951056516), T1q)); | |
479 T1w = VFNMS(LDK(KP587785252), T1i, VMUL(LDK(KP951056516), T1j)); | |
480 { | |
481 V T1m, T1n, T1f, T1g; | |
482 T1m = VFMS(LDK(KP250000000), T1d, TM); | |
483 T1n = VMUL(LDK(KP559016994), VSUB(T1c, TY)); | |
484 T1o = VADD(T1m, T1n); | |
485 T1y = VSUB(T1n, T1m); | |
486 T1f = VMUL(LDK(KP559016994), VSUB(Tp, TE)); | |
487 T1g = VFNMS(LDK(KP250000000), TF, T7); | |
488 T1h = VADD(T1f, T1g); | |
489 T1v = VSUB(T1g, T1f); | |
490 } | |
491 { | |
492 V T1l, T1s, T1B, T1C; | |
493 T1l = VADD(T1h, T1k); | |
494 T1s = VBYI(VSUB(T1o, T1r)); | |
495 ST(&(x[WS(rs, 19)]), VSUB(T1l, T1s), ms, &(x[WS(rs, 1)])); | |
496 ST(&(x[WS(rs, 1)]), VADD(T1l, T1s), ms, &(x[WS(rs, 1)])); | |
497 T1B = VADD(T1v, T1w); | |
498 T1C = VBYI(VADD(T1z, T1y)); | |
499 ST(&(x[WS(rs, 13)]), VSUB(T1B, T1C), ms, &(x[WS(rs, 1)])); | |
500 ST(&(x[WS(rs, 7)]), VADD(T1B, T1C), ms, &(x[WS(rs, 1)])); | |
501 } | |
502 { | |
503 V T1t, T1u, T1x, T1A; | |
504 T1t = VSUB(T1h, T1k); | |
505 T1u = VBYI(VADD(T1r, T1o)); | |
506 ST(&(x[WS(rs, 11)]), VSUB(T1t, T1u), ms, &(x[WS(rs, 1)])); | |
507 ST(&(x[WS(rs, 9)]), VADD(T1t, T1u), ms, &(x[WS(rs, 1)])); | |
508 T1x = VSUB(T1v, T1w); | |
509 T1A = VBYI(VSUB(T1y, T1z)); | |
510 ST(&(x[WS(rs, 17)]), VSUB(T1x, T1A), ms, &(x[WS(rs, 1)])); | |
511 ST(&(x[WS(rs, 3)]), VADD(T1x, T1A), ms, &(x[WS(rs, 1)])); | |
512 } | |
513 } | |
514 } | |
515 } | |
516 } | |
517 VLEAVE(); | |
518 } | |
519 | |
520 static const tw_instr twinstr[] = { | |
521 VTW(0, 1), | |
522 VTW(0, 3), | |
523 VTW(0, 9), | |
524 VTW(0, 19), | |
525 {TW_NEXT, VL, 0} | |
526 }; | |
527 | |
528 static const ct_desc desc = { 20, XSIMD_STRING("t3fv_20"), twinstr, &GENUS, {126, 80, 12, 0}, 0, 0, 0 }; | |
529 | |
530 void XSIMD(codelet_t3fv_20) (planner *p) { | |
531 X(kdft_dit_register) (p, t3fv_20, &desc); | |
532 } | |
533 #endif /* HAVE_FMA */ |