Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/t1sv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/t1sv_8.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,379 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:24 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */ + +/* + * This function contains 66 FP additions, 36 FP multiplications, + * (or, 44 additions, 14 multiplications, 22 fused multiply/add), + * 59 stack variables, 1 constants, and 32 memory accesses + */ +#include "ts.h" + +static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) { + V T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, Tu, T14, TF, Tx, T16; + V TL, Tt, TW, Tp, Tq, Tw; + { + V T3, T6, T2, T5; + T1 = LD(&(ri[0]), ms, &(ri[0])); + T1m = LD(&(ii[0]), ms, &(ii[0])); + T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); + T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); + T2 = LDW(&(W[TWVL * 6])); + T5 = LDW(&(W[TWVL * 7])); + { + V Tg, Tj, Ti, Ta, Td, T1k, T4, T9, Tc, TR, Th, Tf; + Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); + Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); + Tf = LDW(&(W[TWVL * 10])); + Ti = LDW(&(W[TWVL * 11])); + Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); + Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); + T1k = VMUL(T2, T6); + T4 = VMUL(T2, T3); + T9 = LDW(&(W[TWVL * 2])); + Tc = LDW(&(W[TWVL * 3])); + TR = VMUL(Tf, Tj); + Th = VMUL(Tf, Tg); + { + V TB, TE, TH, TK, TG, TD, TJ, T13, TC, TA, TP, Tb, T15, TI, Tn; + TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); + TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); + T1l = VFNMS(T5, T3, T1k); + T7 = VFMA(T5, T6, T4); + TP = VMUL(T9, Td); + Tb = VMUL(T9, Ta); + TS = VFNMS(Ti, Tg, TR); + Tk = VFMA(Ti, Tj, Th); + TA = LDW(&(W[TWVL * 12])); + TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); + TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); + TG = LDW(&(W[TWVL * 4])); + TQ = VFNMS(Tc, Ta, TP); + Te = VFMA(Tc, Td, Tb); + TD = LDW(&(W[TWVL * 13])); + TJ = LDW(&(W[TWVL * 5])); + T13 = VMUL(TA, TE); + TC = VMUL(TA, TB); + To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); + T15 = VMUL(TG, TK); + TI = VMUL(TG, TH); + Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); + Tn = LDW(&(W[0])); + Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); + T14 = VFNMS(TD, TB, T13); + TF = VFMA(TD, TE, TC); + Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); + T16 = VFNMS(TJ, TH, T15); + TL = VFMA(TJ, TK, TI); + Tt = LDW(&(W[TWVL * 8])); + TW = VMUL(Tn, Tr); + Tp = VMUL(Tn, To); + Tq = LDW(&(W[TWVL * 1])); + Tw = LDW(&(W[TWVL * 9])); + } + } + } + { + V T8, T1g, TM, T1j, TX, Ts, T1n, T1r, T1s, Tl, T1c, T18, TZ, Ty, T1a; + V TU; + { + V TO, T17, T12, TY, Tv, TT; + T8 = VADD(T1, T7); + TO = VSUB(T1, T7); + T17 = VSUB(T14, T16); + T1g = VADD(T14, T16); + TM = VADD(TF, TL); + T12 = VSUB(TF, TL); + TY = VMUL(Tt, Tx); + Tv = VMUL(Tt, Tu); + TT = VSUB(TQ, TS); + T1j = VADD(TQ, TS); + TX = VFNMS(Tq, To, TW); + Ts = VFMA(Tq, Tr, Tp); + T1n = VADD(T1l, T1m); + T1r = VSUB(T1m, T1l); + T1s = VSUB(Te, Tk); + Tl = VADD(Te, Tk); + T1c = VADD(T12, T17); + T18 = VSUB(T12, T17); + TZ = VFNMS(Tw, Tu, TY); + Ty = VFMA(Tw, Tx, Tv); + T1a = VSUB(TO, TT); + TU = VADD(TO, TT); + } + { + V T1v, T1t, Tm, T1e, T1o, T1q, TN, T1p, T1d, T1u, T19, T1w, T1i, T1h; + { + V T10, T1f, Tz, TV, T11, T1b; + T1v = VADD(T1s, T1r); + T1t = VSUB(T1r, T1s); + T10 = VSUB(TX, TZ); + T1f = VADD(TX, TZ); + Tz = VADD(Ts, Ty); + TV = VSUB(Ts, Ty); + T11 = VADD(TV, T10); + T1b = VSUB(T10, TV); + Tm = VADD(T8, Tl); + T1e = VSUB(T8, Tl); + T1o = VADD(T1j, T1n); + T1q = VSUB(T1n, T1j); + TN = VADD(Tz, TM); + T1p = VSUB(TM, Tz); + T1d = VSUB(T1b, T1c); + T1u = VADD(T1b, T1c); + T19 = VADD(T11, T18); + T1w = VSUB(T18, T11); + T1i = VADD(T1f, T1g); + T1h = VSUB(T1f, T1g); + } + ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0])); + ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0])); + ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0])); + ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)])); + ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)])); + ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)])); + ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)])); + ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)])); + ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0])); + ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0])); + ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0])); + ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0])); + ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + {TW_NEXT, (2 * VL), 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1sv_8) (planner *p) { + X(kdft_dit_register) (p, t1sv_8, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */ + +/* + * This function contains 66 FP additions, 32 FP multiplications, + * (or, 52 additions, 18 multiplications, 14 fused multiply/add), + * 28 stack variables, 1 constants, and 32 memory accesses + */ +#include "ts.h" + +static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) { + V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM; + V TP; + { + V T1, T18, T6, T17; + T1 = LD(&(ri[0]), ms, &(ri[0])); + T18 = LD(&(ii[0]), ms, &(ii[0])); + { + V T3, T5, T2, T4; + T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); + T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); + T2 = LDW(&(W[TWVL * 6])); + T4 = LDW(&(W[TWVL * 7])); + T6 = VFMA(T2, T3, VMUL(T4, T5)); + T17 = VFNMS(T4, T3, VMUL(T2, T5)); + } + T7 = VADD(T1, T6); + T1e = VSUB(T18, T17); + TH = VSUB(T1, T6); + T19 = VADD(T17, T18); + } + { + V Tz, TS, TE, TT; + { + V Tw, Ty, Tv, Tx; + Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); + Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); + Tv = LDW(&(W[TWVL * 12])); + Tx = LDW(&(W[TWVL * 13])); + Tz = VFMA(Tv, Tw, VMUL(Tx, Ty)); + TS = VFNMS(Tx, Tw, VMUL(Tv, Ty)); + } + { + V TB, TD, TA, TC; + TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); + TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); + TA = LDW(&(W[TWVL * 4])); + TC = LDW(&(W[TWVL * 5])); + TE = VFMA(TA, TB, VMUL(TC, TD)); + TT = VFNMS(TC, TB, VMUL(TA, TD)); + } + TF = VADD(Tz, TE); + T13 = VADD(TS, TT); + TR = VSUB(Tz, TE); + TU = VSUB(TS, TT); + } + { + V Tc, TI, Th, TJ; + { + V T9, Tb, T8, Ta; + T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); + Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); + T8 = LDW(&(W[TWVL * 2])); + Ta = LDW(&(W[TWVL * 3])); + Tc = VFMA(T8, T9, VMUL(Ta, Tb)); + TI = VFNMS(Ta, T9, VMUL(T8, Tb)); + } + { + V Te, Tg, Td, Tf; + Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); + Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); + Td = LDW(&(W[TWVL * 10])); + Tf = LDW(&(W[TWVL * 11])); + Th = VFMA(Td, Te, VMUL(Tf, Tg)); + TJ = VFNMS(Tf, Te, VMUL(Td, Tg)); + } + Ti = VADD(Tc, Th); + T1f = VSUB(Tc, Th); + TK = VSUB(TI, TJ); + T16 = VADD(TI, TJ); + } + { + V To, TN, Tt, TO; + { + V Tl, Tn, Tk, Tm; + Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); + Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); + Tk = LDW(&(W[0])); + Tm = LDW(&(W[TWVL * 1])); + To = VFMA(Tk, Tl, VMUL(Tm, Tn)); + TN = VFNMS(Tm, Tl, VMUL(Tk, Tn)); + } + { + V Tq, Ts, Tp, Tr; + Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); + Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); + Tp = LDW(&(W[TWVL * 8])); + Tr = LDW(&(W[TWVL * 9])); + Tt = VFMA(Tp, Tq, VMUL(Tr, Ts)); + TO = VFNMS(Tr, Tq, VMUL(Tp, Ts)); + } + Tu = VADD(To, Tt); + T12 = VADD(TN, TO); + TM = VSUB(To, Tt); + TP = VSUB(TN, TO); + } + { + V Tj, TG, T1b, T1c; + Tj = VADD(T7, Ti); + TG = VADD(Tu, TF); + ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0])); + ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0])); + { + V T15, T1a, T11, T14; + T15 = VADD(T12, T13); + T1a = VADD(T16, T19); + ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0])); + ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0])); + T11 = VSUB(T7, Ti); + T14 = VSUB(T12, T13); + ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0])); + ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0])); + } + T1b = VSUB(TF, Tu); + T1c = VSUB(T19, T16); + ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0])); + ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0])); + { + V TX, T1g, T10, T1d, TY, TZ; + TX = VSUB(TH, TK); + T1g = VSUB(T1e, T1f); + TY = VSUB(TP, TM); + TZ = VADD(TR, TU); + T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ)); + T1d = VMUL(LDK(KP707106781), VADD(TY, TZ)); + ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)])); + } + { + V TL, T1i, TW, T1h, TQ, TV; + TL = VADD(TH, TK); + T1i = VADD(T1f, T1e); + TQ = VADD(TM, TP); + TV = VSUB(TR, TU); + TW = VMUL(LDK(KP707106781), VADD(TQ, TV)); + T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ)); + ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)])); + ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)])); + ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)])); + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + VTW(0, 5), + VTW(0, 6), + VTW(0, 7), + {TW_NEXT, (2 * VL), 0} +}; + +static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 }; + +void XSIMD(codelet_t1sv_8) (planner *p) { + X(kdft_dit_register) (p, t1sv_8, &desc); +} +#endif /* HAVE_FMA */