Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/dft/simd/common/t1sv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-11 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Sun Nov 25 07:39:24 EST 2012 */ | |
23 | |
24 #include "codelet-dft.h" | |
25 | |
26 #ifdef HAVE_FMA | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */ | |
29 | |
30 /* | |
31 * This function contains 66 FP additions, 36 FP multiplications, | |
32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add), | |
33 * 59 stack variables, 1 constants, and 32 memory accesses | |
34 */ | |
35 #include "ts.h" | |
36 | |
37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) { | |
43 V T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, Tu, T14, TF, Tx, T16; | |
44 V TL, Tt, TW, Tp, Tq, Tw; | |
45 { | |
46 V T3, T6, T2, T5; | |
47 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
48 T1m = LD(&(ii[0]), ms, &(ii[0])); | |
49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
51 T2 = LDW(&(W[TWVL * 6])); | |
52 T5 = LDW(&(W[TWVL * 7])); | |
53 { | |
54 V Tg, Tj, Ti, Ta, Td, T1k, T4, T9, Tc, TR, Th, Tf; | |
55 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
56 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
57 Tf = LDW(&(W[TWVL * 10])); | |
58 Ti = LDW(&(W[TWVL * 11])); | |
59 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
60 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
61 T1k = VMUL(T2, T6); | |
62 T4 = VMUL(T2, T3); | |
63 T9 = LDW(&(W[TWVL * 2])); | |
64 Tc = LDW(&(W[TWVL * 3])); | |
65 TR = VMUL(Tf, Tj); | |
66 Th = VMUL(Tf, Tg); | |
67 { | |
68 V TB, TE, TH, TK, TG, TD, TJ, T13, TC, TA, TP, Tb, T15, TI, Tn; | |
69 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
70 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
71 T1l = VFNMS(T5, T3, T1k); | |
72 T7 = VFMA(T5, T6, T4); | |
73 TP = VMUL(T9, Td); | |
74 Tb = VMUL(T9, Ta); | |
75 TS = VFNMS(Ti, Tg, TR); | |
76 Tk = VFMA(Ti, Tj, Th); | |
77 TA = LDW(&(W[TWVL * 12])); | |
78 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
79 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
80 TG = LDW(&(W[TWVL * 4])); | |
81 TQ = VFNMS(Tc, Ta, TP); | |
82 Te = VFMA(Tc, Td, Tb); | |
83 TD = LDW(&(W[TWVL * 13])); | |
84 TJ = LDW(&(W[TWVL * 5])); | |
85 T13 = VMUL(TA, TE); | |
86 TC = VMUL(TA, TB); | |
87 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
88 T15 = VMUL(TG, TK); | |
89 TI = VMUL(TG, TH); | |
90 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
91 Tn = LDW(&(W[0])); | |
92 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
93 T14 = VFNMS(TD, TB, T13); | |
94 TF = VFMA(TD, TE, TC); | |
95 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
96 T16 = VFNMS(TJ, TH, T15); | |
97 TL = VFMA(TJ, TK, TI); | |
98 Tt = LDW(&(W[TWVL * 8])); | |
99 TW = VMUL(Tn, Tr); | |
100 Tp = VMUL(Tn, To); | |
101 Tq = LDW(&(W[TWVL * 1])); | |
102 Tw = LDW(&(W[TWVL * 9])); | |
103 } | |
104 } | |
105 } | |
106 { | |
107 V T8, T1g, TM, T1j, TX, Ts, T1n, T1r, T1s, Tl, T1c, T18, TZ, Ty, T1a; | |
108 V TU; | |
109 { | |
110 V TO, T17, T12, TY, Tv, TT; | |
111 T8 = VADD(T1, T7); | |
112 TO = VSUB(T1, T7); | |
113 T17 = VSUB(T14, T16); | |
114 T1g = VADD(T14, T16); | |
115 TM = VADD(TF, TL); | |
116 T12 = VSUB(TF, TL); | |
117 TY = VMUL(Tt, Tx); | |
118 Tv = VMUL(Tt, Tu); | |
119 TT = VSUB(TQ, TS); | |
120 T1j = VADD(TQ, TS); | |
121 TX = VFNMS(Tq, To, TW); | |
122 Ts = VFMA(Tq, Tr, Tp); | |
123 T1n = VADD(T1l, T1m); | |
124 T1r = VSUB(T1m, T1l); | |
125 T1s = VSUB(Te, Tk); | |
126 Tl = VADD(Te, Tk); | |
127 T1c = VADD(T12, T17); | |
128 T18 = VSUB(T12, T17); | |
129 TZ = VFNMS(Tw, Tu, TY); | |
130 Ty = VFMA(Tw, Tx, Tv); | |
131 T1a = VSUB(TO, TT); | |
132 TU = VADD(TO, TT); | |
133 } | |
134 { | |
135 V T1v, T1t, Tm, T1e, T1o, T1q, TN, T1p, T1d, T1u, T19, T1w, T1i, T1h; | |
136 { | |
137 V T10, T1f, Tz, TV, T11, T1b; | |
138 T1v = VADD(T1s, T1r); | |
139 T1t = VSUB(T1r, T1s); | |
140 T10 = VSUB(TX, TZ); | |
141 T1f = VADD(TX, TZ); | |
142 Tz = VADD(Ts, Ty); | |
143 TV = VSUB(Ts, Ty); | |
144 T11 = VADD(TV, T10); | |
145 T1b = VSUB(T10, TV); | |
146 Tm = VADD(T8, Tl); | |
147 T1e = VSUB(T8, Tl); | |
148 T1o = VADD(T1j, T1n); | |
149 T1q = VSUB(T1n, T1j); | |
150 TN = VADD(Tz, TM); | |
151 T1p = VSUB(TM, Tz); | |
152 T1d = VSUB(T1b, T1c); | |
153 T1u = VADD(T1b, T1c); | |
154 T19 = VADD(T11, T18); | |
155 T1w = VSUB(T18, T11); | |
156 T1i = VADD(T1f, T1g); | |
157 T1h = VSUB(T1f, T1g); | |
158 } | |
159 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0])); | |
160 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0])); | |
161 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0])); | |
162 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)])); | |
163 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)])); | |
164 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)])); | |
165 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)])); | |
166 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)])); | |
167 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)])); | |
168 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)])); | |
169 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)])); | |
170 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0])); | |
171 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0])); | |
172 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0])); | |
173 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0])); | |
174 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0])); | |
175 } | |
176 } | |
177 } | |
178 } | |
179 VLEAVE(); | |
180 } | |
181 | |
182 static const tw_instr twinstr[] = { | |
183 VTW(0, 1), | |
184 VTW(0, 2), | |
185 VTW(0, 3), | |
186 VTW(0, 4), | |
187 VTW(0, 5), | |
188 VTW(0, 6), | |
189 VTW(0, 7), | |
190 {TW_NEXT, (2 * VL), 0} | |
191 }; | |
192 | |
193 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 }; | |
194 | |
195 void XSIMD(codelet_t1sv_8) (planner *p) { | |
196 X(kdft_dit_register) (p, t1sv_8, &desc); | |
197 } | |
198 #else /* HAVE_FMA */ | |
199 | |
200 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */ | |
201 | |
202 /* | |
203 * This function contains 66 FP additions, 32 FP multiplications, | |
204 * (or, 52 additions, 18 multiplications, 14 fused multiply/add), | |
205 * 28 stack variables, 1 constants, and 32 memory accesses | |
206 */ | |
207 #include "ts.h" | |
208 | |
209 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
210 { | |
211 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
212 { | |
213 INT m; | |
214 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) { | |
215 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM; | |
216 V TP; | |
217 { | |
218 V T1, T18, T6, T17; | |
219 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
220 T18 = LD(&(ii[0]), ms, &(ii[0])); | |
221 { | |
222 V T3, T5, T2, T4; | |
223 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
224 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
225 T2 = LDW(&(W[TWVL * 6])); | |
226 T4 = LDW(&(W[TWVL * 7])); | |
227 T6 = VFMA(T2, T3, VMUL(T4, T5)); | |
228 T17 = VFNMS(T4, T3, VMUL(T2, T5)); | |
229 } | |
230 T7 = VADD(T1, T6); | |
231 T1e = VSUB(T18, T17); | |
232 TH = VSUB(T1, T6); | |
233 T19 = VADD(T17, T18); | |
234 } | |
235 { | |
236 V Tz, TS, TE, TT; | |
237 { | |
238 V Tw, Ty, Tv, Tx; | |
239 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
240 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
241 Tv = LDW(&(W[TWVL * 12])); | |
242 Tx = LDW(&(W[TWVL * 13])); | |
243 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty)); | |
244 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty)); | |
245 } | |
246 { | |
247 V TB, TD, TA, TC; | |
248 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
249 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
250 TA = LDW(&(W[TWVL * 4])); | |
251 TC = LDW(&(W[TWVL * 5])); | |
252 TE = VFMA(TA, TB, VMUL(TC, TD)); | |
253 TT = VFNMS(TC, TB, VMUL(TA, TD)); | |
254 } | |
255 TF = VADD(Tz, TE); | |
256 T13 = VADD(TS, TT); | |
257 TR = VSUB(Tz, TE); | |
258 TU = VSUB(TS, TT); | |
259 } | |
260 { | |
261 V Tc, TI, Th, TJ; | |
262 { | |
263 V T9, Tb, T8, Ta; | |
264 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
265 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
266 T8 = LDW(&(W[TWVL * 2])); | |
267 Ta = LDW(&(W[TWVL * 3])); | |
268 Tc = VFMA(T8, T9, VMUL(Ta, Tb)); | |
269 TI = VFNMS(Ta, T9, VMUL(T8, Tb)); | |
270 } | |
271 { | |
272 V Te, Tg, Td, Tf; | |
273 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
274 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
275 Td = LDW(&(W[TWVL * 10])); | |
276 Tf = LDW(&(W[TWVL * 11])); | |
277 Th = VFMA(Td, Te, VMUL(Tf, Tg)); | |
278 TJ = VFNMS(Tf, Te, VMUL(Td, Tg)); | |
279 } | |
280 Ti = VADD(Tc, Th); | |
281 T1f = VSUB(Tc, Th); | |
282 TK = VSUB(TI, TJ); | |
283 T16 = VADD(TI, TJ); | |
284 } | |
285 { | |
286 V To, TN, Tt, TO; | |
287 { | |
288 V Tl, Tn, Tk, Tm; | |
289 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
290 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
291 Tk = LDW(&(W[0])); | |
292 Tm = LDW(&(W[TWVL * 1])); | |
293 To = VFMA(Tk, Tl, VMUL(Tm, Tn)); | |
294 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn)); | |
295 } | |
296 { | |
297 V Tq, Ts, Tp, Tr; | |
298 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
299 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
300 Tp = LDW(&(W[TWVL * 8])); | |
301 Tr = LDW(&(W[TWVL * 9])); | |
302 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts)); | |
303 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts)); | |
304 } | |
305 Tu = VADD(To, Tt); | |
306 T12 = VADD(TN, TO); | |
307 TM = VSUB(To, Tt); | |
308 TP = VSUB(TN, TO); | |
309 } | |
310 { | |
311 V Tj, TG, T1b, T1c; | |
312 Tj = VADD(T7, Ti); | |
313 TG = VADD(Tu, TF); | |
314 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0])); | |
315 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0])); | |
316 { | |
317 V T15, T1a, T11, T14; | |
318 T15 = VADD(T12, T13); | |
319 T1a = VADD(T16, T19); | |
320 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0])); | |
321 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0])); | |
322 T11 = VSUB(T7, Ti); | |
323 T14 = VSUB(T12, T13); | |
324 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0])); | |
325 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0])); | |
326 } | |
327 T1b = VSUB(TF, Tu); | |
328 T1c = VSUB(T19, T16); | |
329 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0])); | |
330 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0])); | |
331 { | |
332 V TX, T1g, T10, T1d, TY, TZ; | |
333 TX = VSUB(TH, TK); | |
334 T1g = VSUB(T1e, T1f); | |
335 TY = VSUB(TP, TM); | |
336 TZ = VADD(TR, TU); | |
337 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ)); | |
338 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ)); | |
339 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)])); | |
340 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)])); | |
341 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)])); | |
342 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)])); | |
343 } | |
344 { | |
345 V TL, T1i, TW, T1h, TQ, TV; | |
346 TL = VADD(TH, TK); | |
347 T1i = VADD(T1f, T1e); | |
348 TQ = VADD(TM, TP); | |
349 TV = VSUB(TR, TU); | |
350 TW = VMUL(LDK(KP707106781), VADD(TQ, TV)); | |
351 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ)); | |
352 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)])); | |
353 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)])); | |
354 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)])); | |
355 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)])); | |
356 } | |
357 } | |
358 } | |
359 } | |
360 VLEAVE(); | |
361 } | |
362 | |
363 static const tw_instr twinstr[] = { | |
364 VTW(0, 1), | |
365 VTW(0, 2), | |
366 VTW(0, 3), | |
367 VTW(0, 4), | |
368 VTW(0, 5), | |
369 VTW(0, 6), | |
370 VTW(0, 7), | |
371 {TW_NEXT, (2 * VL), 0} | |
372 }; | |
373 | |
374 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 }; | |
375 | |
376 void XSIMD(codelet_t1sv_8) (planner *p) { | |
377 X(kdft_dit_register) (p, t1sv_8, &desc); | |
378 } | |
379 #endif /* HAVE_FMA */ |