Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/q1fv_5.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/q1fv_5.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,439 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:31 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twidsq_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include q1f.h */ + +/* + * This function contains 100 FP additions, 95 FP multiplications, + * (or, 55 additions, 50 multiplications, 45 fused multiply/add), + * 69 stack variables, 4 constants, and 50 memory accesses + */ +#include "q1f.h" + +static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) +{ + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP618033988, +0.618033988749894848204586834365638117720309180); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { + V Te, T1w, Ty, TS, TW, Tb, T1t, Tv, T1g, T1c, TP, TV, T1f, T19, TY; + V TX; + { + V T1, T1j, Tl, Ti, Ta, T8, T1A, T1q, T1s, T9, TF, T1r, TZ, TR, TL; + V TC, Ts, Tu, TQ, TI, T15, T1b, T10, T11, Tt; + { + V T1n, T1o, T1k, T1l, T7, Td, T4, Tc; + { + V T5, T6, T2, T3; + T1 = LD(&(x[0]), ms, &(x[0])); + T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); + T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); + T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); + T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); + T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); + T7 = VADD(T5, T6); + Td = VSUB(T5, T6); + T4 = VADD(T2, T3); + Tc = VSUB(T2, T3); + } + { + V Tm, Tn, Tr, Tx, T1v, T1p; + Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); + T1v = VSUB(T1n, T1o); + T1p = VADD(T1n, T1o); + { + V T1u, T1m, Tp, Tq; + T1u = VSUB(T1k, T1l); + T1m = VADD(T1k, T1l); + Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); + Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td)); + Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc)); + Ta = VSUB(T4, T7); + T8 = VADD(T4, T7); + Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); + T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u)); + T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v)); + T1q = VADD(T1m, T1p); + T1s = VSUB(T1m, T1p); + Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); + T9 = VFNMS(LDK(KP250000000), T8, T1); + Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); + Tr = VADD(Tp, Tq); + Tx = VSUB(Tp, Tq); + } + { + V TJ, TK, TG, Tw, To, TH, T13, T14; + TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); + T1r = VFNMS(LDK(KP250000000), T1q, T1j); + TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); + TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); + TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); + Tw = VSUB(Tm, Tn); + To = VADD(Tm, Tn); + TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); + TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); + T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); + T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); + TR = VSUB(TJ, TK); + TL = VADD(TJ, TK); + Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw)); + TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx)); + Ts = VADD(To, Tr); + Tu = VSUB(To, Tr); + TQ = VSUB(TG, TH); + TI = VADD(TG, TH); + T15 = VADD(T13, T14); + T1b = VSUB(T13, T14); + T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); + T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); + Tt = VFNMS(LDK(KP250000000), Ts, Tl); + } + } + } + { + V TO, T12, T1a, Th, T1z, TN, TM, T18, T17; + ST(&(x[0]), VADD(T1, T8), ms, &(x[0])); + TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ)); + TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR)); + TM = VADD(TI, TL); + TO = VSUB(TI, TL); + ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0])); + T12 = VADD(T10, T11); + T1a = VSUB(T10, T11); + ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)])); + Th = VFNMS(LDK(KP559016994), Ta, T9); + Tb = VFMA(LDK(KP559016994), Ta, T9); + T1t = VFMA(LDK(KP559016994), T1s, T1r); + T1z = VFNMS(LDK(KP559016994), T1s, T1r); + ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0])); + TN = VFNMS(LDK(KP250000000), TM, TF); + { + V T16, Tk, Tj, T1C, T1B, TD, TE, TB; + TB = VFNMS(LDK(KP559016994), Tu, Tt); + Tv = VFMA(LDK(KP559016994), Tu, Tt); + T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b)); + T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a)); + T18 = VSUB(T12, T15); + T16 = VADD(T12, T15); + Tk = BYTWJ(&(W[TWVL * 4]), VFNMSI(Ti, Th)); + Tj = BYTWJ(&(W[TWVL * 2]), VFMAI(Ti, Th)); + T1C = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1A, T1z)); + T1B = BYTWJ(&(W[TWVL * 2]), VFMAI(T1A, T1z)); + TD = BYTWJ(&(W[TWVL * 2]), VFMAI(TC, TB)); + TE = BYTWJ(&(W[TWVL * 4]), VFNMSI(TC, TB)); + ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)])); + T17 = VFNMS(LDK(KP250000000), T16, TZ); + ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); + ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); + ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); + ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); + ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); + ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); + } + TP = VFMA(LDK(KP559016994), TO, TN); + TV = VFNMS(LDK(KP559016994), TO, TN); + T1f = VFNMS(LDK(KP559016994), T18, T17); + T19 = VFMA(LDK(KP559016994), T18, T17); + } + } + TY = BYTWJ(&(W[TWVL * 4]), VFNMSI(TW, TV)); + TX = BYTWJ(&(W[TWVL * 2]), VFMAI(TW, TV)); + { + V T1i, T1h, TU, TT; + T1i = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1g, T1f)); + T1h = BYTWJ(&(W[TWVL * 2]), VFMAI(T1g, T1f)); + TU = BYTWJ(&(W[TWVL * 6]), VFMAI(TS, TP)); + TT = BYTWJ(&(W[0]), VFNMSI(TS, TP)); + { + V Tg, Tf, TA, Tz; + Tg = BYTWJ(&(W[TWVL * 6]), VFMAI(Te, Tb)); + Tf = BYTWJ(&(W[0]), VFNMSI(Te, Tb)); + TA = BYTWJ(&(W[TWVL * 6]), VFMAI(Ty, Tv)); + Tz = BYTWJ(&(W[0]), VFNMSI(Ty, Tv)); + { + V T1e, T1d, T1y, T1x; + T1e = BYTWJ(&(W[TWVL * 6]), VFMAI(T1c, T19)); + T1d = BYTWJ(&(W[0]), VFNMSI(T1c, T19)); + T1y = BYTWJ(&(W[TWVL * 6]), VFMAI(T1w, T1t)); + T1x = BYTWJ(&(W[0]), VFNMSI(T1w, T1t)); + ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); + ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); + ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); + ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); + ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); + ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); + ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); + ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); + ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); + ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {55, 50, 45, 0}, 0, 0, 0 }; + +void XSIMD(codelet_q1fv_5) (planner *p) { + X(kdft_difsq_register) (p, q1fv_5, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include q1f.h */ + +/* + * This function contains 100 FP additions, 70 FP multiplications, + * (or, 85 additions, 55 multiplications, 15 fused multiply/add), + * 44 stack variables, 4 constants, and 50 memory accesses + */ +#include "q1f.h" + +static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) +{ + DVK(KP250000000, +0.250000000000000000000000000000000000000000000); + DVK(KP587785252, +0.587785252292473129168705954639072768597652438); + DVK(KP951056516, +0.951056516295153572116439333379382143405698634); + DVK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + R *x; + x = ri; + for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) { + V T8, T7, Th, Te, T9, Ta, T1q, T1p, T1z, T1w, T1r, T1s, Ts, Tr, TB; + V Ty, Tt, Tu, TM, TL, TV, TS, TN, TO, T16, T15, T1f, T1c, T17, T18; + { + V T6, Td, T3, Tc; + T8 = LD(&(x[0]), ms, &(x[0])); + { + V T4, T5, T1, T2; + T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); + T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); + T6 = VADD(T4, T5); + Td = VSUB(T4, T5); + T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); + T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0])); + T3 = VADD(T1, T2); + Tc = VSUB(T1, T2); + } + T7 = VMUL(LDK(KP559016994), VSUB(T3, T6)); + Th = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td))); + Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td))); + T9 = VADD(T3, T6); + Ta = VFNMS(LDK(KP250000000), T9, T8); + } + { + V T1o, T1v, T1l, T1u; + T1q = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)])); + { + V T1m, T1n, T1j, T1k; + T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)])); + T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); + T1o = VADD(T1m, T1n); + T1v = VSUB(T1m, T1n); + T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)])); + T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)])); + T1l = VADD(T1j, T1k); + T1u = VSUB(T1j, T1k); + } + T1p = VMUL(LDK(KP559016994), VSUB(T1l, T1o)); + T1z = VBYI(VFNMS(LDK(KP587785252), T1u, VMUL(LDK(KP951056516), T1v))); + T1w = VBYI(VFMA(LDK(KP951056516), T1u, VMUL(LDK(KP587785252), T1v))); + T1r = VADD(T1l, T1o); + T1s = VFNMS(LDK(KP250000000), T1r, T1q); + } + { + V Tq, Tx, Tn, Tw; + Ts = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)])); + { + V To, Tp, Tl, Tm; + To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)])); + Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); + Tq = VADD(To, Tp); + Tx = VSUB(To, Tp); + Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)])); + Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)])); + Tn = VADD(Tl, Tm); + Tw = VSUB(Tl, Tm); + } + Tr = VMUL(LDK(KP559016994), VSUB(Tn, Tq)); + TB = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tx))); + Ty = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tx))); + Tt = VADD(Tn, Tq); + Tu = VFNMS(LDK(KP250000000), Tt, Ts); + } + { + V TK, TR, TH, TQ; + TM = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)])); + { + V TI, TJ, TF, TG; + TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)])); + TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); + TK = VADD(TI, TJ); + TR = VSUB(TI, TJ); + TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)])); + TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)])); + TH = VADD(TF, TG); + TQ = VSUB(TF, TG); + } + TL = VMUL(LDK(KP559016994), VSUB(TH, TK)); + TV = VBYI(VFNMS(LDK(KP587785252), TQ, VMUL(LDK(KP951056516), TR))); + TS = VBYI(VFMA(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TR))); + TN = VADD(TH, TK); + TO = VFNMS(LDK(KP250000000), TN, TM); + } + { + V T14, T1b, T11, T1a; + T16 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)])); + { + V T12, T13, TZ, T10; + T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)])); + T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); + T14 = VADD(T12, T13); + T1b = VSUB(T12, T13); + TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)])); + T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)])); + T11 = VADD(TZ, T10); + T1a = VSUB(TZ, T10); + } + T15 = VMUL(LDK(KP559016994), VSUB(T11, T14)); + T1f = VBYI(VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1b))); + T1c = VBYI(VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1b))); + T17 = VADD(T11, T14); + T18 = VFNMS(LDK(KP250000000), T17, T16); + } + ST(&(x[0]), VADD(T8, T9), ms, &(x[0])); + ST(&(x[WS(rs, 4)]), VADD(T1q, T1r), ms, &(x[0])); + ST(&(x[WS(rs, 2)]), VADD(TM, TN), ms, &(x[0])); + ST(&(x[WS(rs, 3)]), VADD(T16, T17), ms, &(x[WS(rs, 1)])); + ST(&(x[WS(rs, 1)]), VADD(Ts, Tt), ms, &(x[WS(rs, 1)])); + { + V Tj, Tk, Ti, T1B, T1C, T1A; + Ti = VSUB(Ta, T7); + Tj = BYTWJ(&(W[TWVL * 2]), VADD(Th, Ti)); + Tk = BYTWJ(&(W[TWVL * 4]), VSUB(Ti, Th)); + ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)])); + ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)])); + T1A = VSUB(T1s, T1p); + T1B = BYTWJ(&(W[TWVL * 2]), VADD(T1z, T1A)); + T1C = BYTWJ(&(W[TWVL * 4]), VSUB(T1A, T1z)); + ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)])); + ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)])); + } + { + V T1h, T1i, T1g, TD, TE, TC; + T1g = VSUB(T18, T15); + T1h = BYTWJ(&(W[TWVL * 2]), VADD(T1f, T1g)); + T1i = BYTWJ(&(W[TWVL * 4]), VSUB(T1g, T1f)); + ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)])); + ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)])); + TC = VSUB(Tu, Tr); + TD = BYTWJ(&(W[TWVL * 2]), VADD(TB, TC)); + TE = BYTWJ(&(W[TWVL * 4]), VSUB(TC, TB)); + ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)])); + ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)])); + } + { + V TX, TY, TW, TT, TU, TP; + TW = VSUB(TO, TL); + TX = BYTWJ(&(W[TWVL * 2]), VADD(TV, TW)); + TY = BYTWJ(&(W[TWVL * 4]), VSUB(TW, TV)); + ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)])); + ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)])); + TP = VADD(TL, TO); + TT = BYTWJ(&(W[0]), VSUB(TP, TS)); + TU = BYTWJ(&(W[TWVL * 6]), VADD(TS, TP)); + ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)])); + } + { + V Tf, Tg, Tb, Tz, TA, Tv; + Tb = VADD(T7, Ta); + Tf = BYTWJ(&(W[0]), VSUB(Tb, Te)); + Tg = BYTWJ(&(W[TWVL * 6]), VADD(Te, Tb)); + ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)])); + ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)])); + Tv = VADD(Tr, Tu); + Tz = BYTWJ(&(W[0]), VSUB(Tv, Ty)); + TA = BYTWJ(&(W[TWVL * 6]), VADD(Ty, Tv)); + ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)])); + } + { + V T1d, T1e, T19, T1x, T1y, T1t; + T19 = VADD(T15, T18); + T1d = BYTWJ(&(W[0]), VSUB(T19, T1c)); + T1e = BYTWJ(&(W[TWVL * 6]), VADD(T1c, T19)); + ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)])); + T1t = VADD(T1p, T1s); + T1x = BYTWJ(&(W[0]), VSUB(T1t, T1w)); + T1y = BYTWJ(&(W[TWVL * 6]), VADD(T1w, T1t)); + ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)])); + ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(0, 1), + VTW(0, 2), + VTW(0, 3), + VTW(0, 4), + {TW_NEXT, VL, 0} +}; + +static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, {85, 55, 15, 0}, 0, 0, 0 }; + +void XSIMD(codelet_q1fv_5) (planner *p) { + X(kdft_difsq_register) (p, q1fv_5, &desc); +} +#endif /* HAVE_FMA */